W. Buxton, S. Patel, W. Reeves, and
R. Baecker

Structured Sound Synthesis Project
Computer Systems Research Group
University of Toronto

Toronto, Ontario, Canada M5S 1Al

Introduction

In conversation, we typically constrain our com-
ments to fall within the scope of the topic at hand.
Scope can be used to define the sphere of action of
any activity. When conductors request that players
“play a little more staccato in the lower brass,” they
are imposing a certain scope (lower brass) on a spe-
cific action (play). Scope is an important concept in
many contexts in which we desire to specify the
precise range of some command. In this article we
will consider the expression of scope in interactive
score editors (Buxton et al. 1979).

Most existing score editors restrict the degree to
which they permit users to impose scope upon op-
erators, or commands (Smith 1972; Reeves et al.
1978; Wallraff 1978). For the most part, operators
(such as “play” or “delete”) can only be directed to-
ward single notes or entire scores. This is un-
satisfactory because ideally any operator should be
able to be directed to any arbitrary grouping of
notes the composer thinks of in the mind’s ear.
There are, however, considerable problems in im-
plementing such a facility, most notably developing
the semantics and syntax appropriate for such spec-
ification in a musical context. Addressing these is-
sues is a current topic of research with the Struc-
tured Synthesis Sound Project (SSSP). Although this
research is still in progress, we believe that the
interim results presented here help to give some
structure to the problem and will be of use to those
currently writing or designing score-editing
software.

S. Patel is currently with Human Computing Resources,
Toronto, Canada. W. Reeves is now with Lucasfilm Corp.,
Novato, California. R. Baecker is with both the University of
Toronto and Human Computing Resources.

Computer Music Journal, Vol. 5, No. 3, Fall 1981,

0148-9267/81/000050-07 $05.00/0
© 1981 Massachusetts Institute of Technology.

50

Scope in Interactive
Score Editors

The Semantics of Scope

The objective in scope specification is to identify
without ambiguity the notes that serve as the oper-
and of a command. If this is to be done fluently, the
grouping criteria must match the way that the
notes may be grouped in the composer’s mind.
Such criteria form the basis for an unambiguous de-
scription of the notes. A first step in our research
was to attempt to gain some understanding of these
criteria through techniques of observation and in-
terrogation. As a result, we have come to view
grouping criteria as falling into five basic
categories:

Simple grouping criterion — scope is either the
whole score or a single note (e.g., “play the
third note”).

Block-of-time grouping criterion — scope is a
set of notes contained in a particular time
interval (e.g., “delete the notes of the third
bar”).

Local-attributes grouping criterion — notes are
encompassed in the scope on the basis of
self-contained attributes such as pitch or du-
ration (e.g., “raise the volume of all notes be-
low C3”).

Contextual-attributes grouping criterion — a
note’s context (relationship to other notes
and their attributes) determines whether the
note is included in the scope of an opera-
tor (e.g., specifications such as “all notes
followed by a leap of an octave upwards” or
“sounding simultaneously with three or
more other notes”).

Named-structural-entities grouping criterion —
scope is specified by naming the musical
structure to be affected (e.g., “motif A”).

We see each successive category as growing in se-
mantic power. Together, these categories form a
foundation for the semantics of scope specification.

Computer Music Journal

Simple Scope

When scope can only be expressed as a single note
or an entire score, we refer to it as simple scope. If
a program allows both single-note and whole-score
scope to be expressed, the minimum basis for a
score editor is provided. With regard to the underly-
ing representation of the score data, simple scope
presents no real problems since the operand of a
command is either the entire data set or a single
record. At this level, scope lends itself well to ei-
ther a graphics or alphanumeric mode of specifica-
tion. In graphics mode, for example, the entire score
can be encompassed by activating the light-button
corresponding to the desired operator. An operator
can modify a single note by pointing at the desired
note. (See the article by Buxton et al. [1979] for
more details on such graphic techniques.) Alpha-
numeric-based interaction, on the other hand, can
be modeled on line-oriented text editors. In such
cases, scope can be specified as the line currently
being edited or as the entire score file.

Scope by Block of Time

While simple scope can provide the basis for an ele-
mentary score editor, many compositionally impor-
tant concepts are commonly encountered that
cannot be handled by such an editor. For example,
we might want to audition the last section of a long
score or a sequence of notes in the middle, or we
might want to transpose a particular chord. In each
case, we want to address the set of notes falling
within a particular block of time. The situation is
commonplace in which such blocks are expressed
with regard to note position by number (as in our
first example), bars, rehearsal marks, seconds, or
beats. If such concepts can be expressed in a conge-
nial way, the editor’s power is substantially in-
creased, as is its usefulness to the composer. For
example, notes of isolated “chunks” of the score
can be heard in context, chords can be treated as
single entities, and entire sections can be saved or
copied in a single gesture for the purpose of repeats.
In making scope specification available by block

of time, the designer must pay close attention to
delimiters and their effect on the underlying data
structures. Bar lines or rehearsal marks cannot be
used unless these concepts are kept in the data
base. If time is represented by fractions of a beat
with respect to a metronome marking (as in the
SSSP system described by Buxton et al. [1978]),
specification by units of real time (such as seconds)
may be awkward to implement.

The mode of interaction also has an effect on the
techniques of delimitation available in a system.
Graphics-based systems that permit scrolling
through and zooming in and out of the score lend
themselves well to use of the current viewport as
the scope delimiter. The specification of blocks of
time by the use of markers on a time line is an-
other technique better suited to a graphics-based
approach. Alphanumeric systems are often more
appropriate when numerical values are used as de-
limiters, such as when precise timings in seconds
are required.

An ideal environment would provide a number of
alternative methods for delimiting scope. For the
purposes of the current discussion, however, we
will present only one sample approach taken from
the SSSP alphanumeric score editor sced (Buxton
1981a). sced is modeled on the line-oriented text
editor ed (Kernighan 1974). ed is the most com-
monly used text editor at our facility. While from a
purely musical perspective it is not the best model
to use, sced was based on ed to permit text-editing
skills to be applied to music and vice versa. How-
ever, we chose not to edit scores as text files.
Rather, SSSP music editors operate directly on the
musical data structures. This has several advan-
tages: (1) scores need not be compiled into a lower-
level representation to be performed, which results
in fewer files and operations and permits real-time
synthesis for purposes of verification; (2) the editor
can be interpretative because it has knowledge
about the various operations and can therefore pro-
vide error checking and other forms of help; (3)
scores are edited in the common language of the
SSSP system and therefore any score can be edited
by any score editor whether or not it is graphics-

based.

W. Buxton et al. 51

In sced note numbers rather than line numbers
are the basis for navigating through the score. Thus
note number is the basis for scope delimitation.

The following examples illustrate sample imple-
mentation of scope by block of time. First, the spec-
ification of scope at this semantic level encom-
passes the previous level, simple scope. The first
example,

3d

means “delete the third note,” while
*p

means “print the entire score” (by convention, *
means “all notes”). Double delimiters are used to
expand upon simple scope. The example

3,81

means “let me listen (I) to notes three through
eight,” while the statement

10,$w fred

means “write (w) or save notes ten through to the
end (specified by the special symbol $) as a new
score called fred.”

The specification of scope at this level has met
with a very positive response from composers. Cer-
tain frustrations have arisen, however, which dem-
onstrate that extraction of a block of time cannot
enable us to handle all cases encountered in the ed-
iting of scores. Therefore the technique is insuffi-
cient, regardless of the units used for boundary
delimitation.

Scope by Local Attributes

The problem with specifying scope using the tech-
niques discussed thus far is that all notes in the in-
dicated block of time are encompassed. Thus
concepts such as “all quarter notes in the third bar”
or “all brass playing mf below middle C in this sec-

52

tion” cannot be accommodated. While time-block
specification helps the composer focus in on one
whole area of the score, it does not permit the iden-
tification of the specific notes in question. Such
identification can be made if a note has some user-
specified characteristic included in the scope. For
the purposes of this discussion, let us say that the
“legal” characteristics are the local attributes of
the notes themselves. Besides block of time, we
should be able to take a note’s pitch, duration, loud-
ness, instrument, and other properties into consid-
eration before we include it in the scope.

The power of scope specification at this level de-
pends on the composer’s ability to express ar-
bitrarily complex relations among these attributes.
This implies that logical relations (e.g., equivalence,
greater than, not equal to, etc.) and conjunctions
(e.g., and, or, and exclusive or) must be expressible.

With implemented score-editing systems, the
crucial limitation is that only attribute fields that
form part of the data base can be considered as cri-
teria for inclusion in the current scope. It is not
possible to specify “all notes played by trumpets,”
for example, if no record is kept of orchestration.
(The only exceptions to this are attributes that are
implicit, such as note number or time. With this
provision, it becomes clear that simple and block-
of-time levels of scope specification are encom-
passed by the local-attributes level.) While it is easy
for a musician to group notes mentally according to
some relationship, it becomes more difficult when
notes must be unambiguously identified to a com-
puter. To get a feeling for some of the problems in-
volved, let us look at some specific examples.
Again, these are taken from the alphanumeric score
editor sced.

-{freq < C4}p

means “print all notes having a frequency less than
C4.” (In sced, the relational expression appears be-
tween braces and before the operator. In this and
other examples, key words such as “frequency” in-
dicate particular note attributes. All key words can
be abbreviated in order to reduce typing.)

{freq = C4, G3}orch flute

Computer Music Journal

will cause all notes having a pitch of C4 or G3 to be
orchestrated with the “flute.” An example of a
more complex relation would be

{dur <= V4 & obj != flute}d

which would delete all notes not orchestrated by
“flute” that had a duration less than or equal to a
quarter note.

{#>=3 & # <= 12 & vol <100}setvol +20
can also be written as
3,12{vol < 100}sv +20,

which means “increment by 20 units the volume of
all notes from the 3rd through the 12th whose vol-
ume is less than 100.”

There are several points worth noting about these
examples. First, it would be difficult to express
such logical relations using graphical techniques.
Although the concepts can be expressed easily in
natural language, the only way to express them to a
computer is with typed alphanumerics. The syntax
used to express the relational concepts in the exam-
ples is rather arcane. From a human-factors point of
view, some trade-off must be made between sim-
ilarity to natural language and succinctness. (Some
feeling for this conflict can be seen in the last ex-
ample—compare the natural-language interpreta-
tion with the second version in sced notation.)
Clearly, much research remains to be done. We
hope that work such as that of Card, Moran, and
Newell (1980) and Ledgard and coworkers (1980)
will help pave the way. These researchers raise is-
sues that must be dealt with in future score editors.
The paper by Card, Moran, and Newell is a study
quantifying the relationship between the verbosity
of a message and the efficiency of the human-
computer dialogue. The paper by the second group
investigates the influence of natural-language-based
constructs on the efficiency of text-editing tasks.

Second, while the simple and block-of-time lev-
els of scope could be carried out using general-
purpose text editors (if the score is represented
as a text file), this is not the case with the local-

attributes level. Here it is clear that the application-
specific nature of the attributes (and the operators,
e.g., “orch,” or “orchestrate a note by attaching an
instrument to it”) makes the expression of complex
logical relations impractical. We are no longer deal-
ing with concepts that can be expressed simply as
typographical operators. To enable scope specifica-
tion at this level, it appears that a special-purpose
editor that understands musical attributes must be
provided.

Scope by Contextual Attributes

The previous section showed how a score editor’s
power can be increased by having a note’s inclusion
in the scope depend on the note’s conformation to
certain composer-defined characteristics. Often,
however, more complex relations than those seen
thus far are required. Simple relations based on
pitch or duration are not enough. Rather, scope in-
clusion is sometimes best specified in terms of the
notes’ contextual attributes, or of the relationships
among different notes and their attributes. We
might want to specify, for example, a type of chord:
“all notes that sound in combination with three or
more others,” or a motif: “all notes orchestrated
with brass playing a dotted eighth, followed by a
sixteenth,” or an intervallic sequence: “all notes
preceded by a step downward of a minor second and
followed by an upward leap greater than a perfect
fifth.”

The ability to express such constraints is clearly
of musical value, and musicians have no difficulty
in grouping notes according to such criteria ver-
bally or mentally. When it comes to identifying (un-
ambiguously) such groups to a computer, however,
problems arise. In contrast to the situation in
which scope is defined by local attributes, the num-
ber of criteria for grouping in context is infinite. To
understand context, the editor must have a far
higher level of musical “knowledge” (1) to under-
stand the various criteria and (2) to perform the
consequent pattern recognition on the data base
that will isolate the notes in question. Even if the
appropriate concepts could be understood by the
editor, the specification language used by the com-

W. Buxton et al. 53

poser would probably be too cumbersome to be use-
ful. We have seen, for example, how specification of
local attributes can approach the threshold of prac-
tical complexity.

As formulated, specification of scope at the con-
textual level would seem impractical without a
great deal of research. We can either undertake this
research or reformulate the problem. For the pur-
poses at hand, we have chosen to reformulate the
problem.

Musicians have no problems dealing with the
concepts under consideration. An alternative ap-
proach, therefore, would be to make best use of the
requisite knowledge of the composer. The task is
then to provide an environment in which the com-
poser can use this knowledge to identify manually
the desired notes in an efficient way. The original
problem involved the computer collecting the notes
that fit a description supplied by the composer. We
are now sidestepping the description problem and
having the composer identify the notes. A descrip-
tive approach is being replaced by a demonstrative
one.

The success of this demonstrative approach de-
pends on two conditions. First, the notation must
highlight the relevant features of the musical data.
Second, a straightforward means of interaction
must be provided. As a result of both of these con-
ditions, we have chosen to take a graphics-based ap-
proach in our experiments at the contextual level.
With graphics, we have the notational flexibility to
highlight most of the different features and rela-
tionships involved. We also have a far greater range
of options as means of interaction (alphanumerics
is one such option).

We have implemented this technique in the pro-
gram scriva (Buxton 1981b). In scriva, an intuitive
gesture—circling—can be combined with spatially
distributed data as a means of isolating desired
groups. More than one circle can be drawn on the
screen (Buxton et al. 1979). Doughnutlike circles
within a circle can be drawn, with the effect that all
notes within the larger circle, except those con-
tained in the inner one, are included in the current
scope. There can be as many “holes in the dough-
nut” as desired and a circle within the hole is again
a circle of inclusion.

54

Often the notes we want to group into the con-
textual-attributes level of scope are distributed
throughout the score, making circling impractical.
In such cases, the desired notes can be “collected”
if we point at them one by one with the graphics
cursor (Buxton et al. 1979).

With the techniques seen in the examples we can
make some headway in the specification of scope
according to context. The techniques are still rather
primitive, however, and much work remains to be
done.

Scope by Named Structural Entities

At the contextual-attributes level of scope, we en-
countered problems owing to our inability to de-
scribe adequately the notes constituting the scope
of an operator. As a result, we resorted to a demon-
strative approach. Another alternative is to identify
the notes in question by name. In cases where
these notes constitute a musically significant struc-
ture in the score, this is common practice among
musicians. Simple examples would be “motif A,”
“the second theme of the first movement,” or “the
ostinato in the second section.” Names such as
“the second theme” are too vague for automatic
isolation of the intended notes by a computer pro-
gram. This problem can often be circumvented if (1)
we are more rigorous as to what constitutes a name
and (2) if, when composed, musically significant
structures are named by the composer.

What does this mean musically? Our approach to
scope at the named-structural-entity level is based
on the assumption that the score is more than a
collection of notes. It is assumed that the score is
made up of sections, motifs, and parts, each of
which has an explicit name. Our approach is also
based on the assumption that the composer has as-
sembled the score so that there are relationships
among these structures. Finally, our approach as-
sumes that the internal representation reflects this
structural “recipe.” If these three conditions are
met, there is no reason why any of these structural
entities cannot be identified directly by name. At
the contextual-attributes level, we failed to perform

Computer Music Journal

Fig. 1. Snapshot of an im-
age generated by a three-
dimensional score display
and editor developed at
the SSSP.

the analysis that would extract the referenced part
of the score. At the named-structural-entities level,
the equivalent to such an analysis is given: it is the
explicit structure as pieced together by the com-
poser. This structure is reflected in the data
structures.

Rendering such an approach practical has one
other property. Whereas up to this point scope has
been based on purely physical or acoustical proper-
ties of the data (time, pitch, timbre, etc.), we now
have a means of scope specification with a com-
positional foundation!

There are, however, practical limitations to the
named-entity approach. Fundamental among these
is the need for an appropriate model for the under-
lying structure of scores. A list structure is too sim-
ple musically and a general relational network too
complex to handle (due to space/time trade-offs
that would result in poor performance). We have
chosen a hierarchical “tree” structure (Buxton et al.
1978). While this clearly has musical limitations, it
is the most general structure we feel to be man-
ageable at this moment.

The technique is impractical except for larger-
scale structures. It would not be reasonable to ex-
pect the composer to name every single entity. Yet
it is exactly these larger structures that are the
most poorly handled by the demonstrative tech-

nique. Smaller structures that are not well suited to
the naming technique are generally easily handled
by the demonstrative approach.

Our first experiments with structuring data by
named entities had to do with notational tech-
niques. How could the external representation of
the data reflect the underlying structure so as to aid
the composer in exploiting the information? The
example shown in Fig. 1 is an illustration of this
work. Illustrated is an example score called SUBa
taken from the program treed (Kwan 1978) (con-
trived for the purposes of demonstrating the sys-
tem). The feet at the bottom of the display
represent note events whose durations are propor-
tional to the length of the line that is the foot,
along the time axis. The triangles labeled SUBb,
SUBc, and so on represent large syntactic catego-
ries, that is, subscores. These subscores encapsulate
two or more notes. Thus SUBa is the root of the
tree, and SUB(is the lowest nonterminal. The
numbers 1, 2, . . . 8 next to the terminal branches
of the tree are labels used in editing. Since this is a
snapshot of a dynamic program display that can
be rotated in various ways, certain features that
emerge in movement cannot easily be seen in this
static image. For example, frequency information is
embedded in this representation that comes out
more clearly in the dynamic image. A clear struc-
ture is provided (in this example, at least) that facil-
itates the expression of concepts such as “play
SUBD,” or “transpose SUBd.”

We do not yet have usable score editors that work
on scores structured in this way. The number of
problems encountered make progress very slow.
One key challenge has been to use this complex
level of internal representation while retaining our
ability to play the scores in real time without any
compilation or preprocessing. Our recent efforts to
meet this challenge have focused on the perfor-
mance of such structures. These efforts resulted in
the conduct system (Buxton et al. 1980). One of the
key concepts reflected in the conduct system is the
ability to address and transform named structural
entities in real time. conduct is a convincing exam-
ple of the power and practicality of scope specifica-
tion at this level. We are now trying to bring this
power into the domain of our score-editing tools.

W. Buxton et al. 55

Conclusion

In this article we have described how the notion of
scope can be developed within the context of inter-
active score editors. Our objective is to extend the
means by which composers can express scope ac-
cording to musically relevant constraints. There are
three different syntactic approaches to scope defini-
tion: the descriptive approach, the demonstrative
approach, and the naming approach. Differing com-
binations of syntactic approach and semantic level
sometimes make conflicting demands on both the
underlying internal representation and the mode of
the musician-machine dialogue. With the descrip-
tive approach, greater semantic power can be
achieved by use of alphanumerics than by use of
graphics-based techniques. On the other hand,
graphics appear to be the most appropriate tech-
nique for the demonstrative approach. Both graph-
ics and alphanumerics can be used in addressing
named syntactic entities.

Acknowledgments

The work reported in this paper has benefited from
discussions, comments, and other types of input
from many people associated with the SSSP. In par-
ticular, we would like to acknowledge the contribu-
tions of James Montgomery, Martin Lamb, Wesley
Lowe, William Matthews, Otto Laske, Leslie Gon-
dor, K. C. Smith, Susan Frykberg, and Curtis Roads.
The research has been funded by the Social Sci-
ences and Humanities Research Council of Canada,
whose support we gratefully acknowledge.

56

References

Buxton, W. 1981a. “A Tutorial Introduction to sced.” In
Music Software User’s Manual, 2nd ed., ed. W. Buxton.
Toronto: Computer Systems Research Group, Univer-
sity of Toronto.

Buxton, W. 1981b. “Tutorial Introduction to scriva.” In
Music Software User’s Manual, 2nd ed., ed. W. Buxton.
Toronto: Computer Systems Research Group, Univer-
sity of Toronto.

Buxton, W. et al. 1978. “The Use of Hierarchy and In-
stance in a Data Structure for Computer Music.” Com-
puter Music Journal 2(4):10-20.

Buxton, W. et al. 1980. “A Microcomputer-Based Con-
ducting System.” Computer Music Journal 4(1):8-21.

Buxton, W. et al. 1979. “The Evolution of the SSSP Score
Editing Tools.” Computer Music Journal 3(4): 14-26.

Card, S. K., T. P. Moran, and A. Newell. 1980. “The Key-
stroke-Level Model for User Performance Time with
Interactive Systems.” Communications of the Associa-
tion for Computing Machinery 23(7):396-410.

Kernighan, B. W. 1974. “A Tutorial Introduction to the
UNIX Text Editor.” Murray Hill, New Jersey: Bell Lab-
oratories Technical Memorandum 74-1273-17.

Kwan, A. 1978. “Treed Project Report.” Unpublished
manuscript. Toronto: C.S.R.G., University of Toronto.
Ledgard, H. et al. 1980. “The Natural Language of Interac-
tive Systems.” Communications of the Association for

Computing Machinery 23(10):556—-563.

Reeves, W. et al. 1978. “Ludwig: An Example of Interac-
tive Computer Graphics in a Score Editor.” In Proceed-
ings of the 1978 International Computer Music
Conference, vol. 2, ed. C. Roads. Evanston, Illinois:
Northwestern University Press, pp. 392-409.

Smith, L. 1972. “SCORE—A Musician’s Approach to
Computer Music.” Journal of the Audio Engineering
Society 20(1): 7—14.

Walraff, D. 1978. “Nedit—A Graphical Editor for Musical
Scores.” In Proceedings of the 1978 International Com-
puter Music Conference, vol. 2, ed. C. Roads. Evanston,
Illinois: Northwestern University Press, pp. 410-450.

Computer Music Journal

