W. Buxton, S. Patel, W. Reeves, and

R. Baecker

Structured Sound Synthesis Project (SSSP)
Computer Systems Research Group
University of Toronto

Toronto, Ontario, Canada M5S 1A1

Introduction

One of the main attractions of electroacoustic mu-
sic is the potential for composers to design and con-
trol their own palette of timbral resources. A key
frustration, however, results from the difficulty in
actually doing so. Consequently, in spite of tech-
nological advances, systems appearing on the mar-
ket are reminiscent of organs and conventional
instruments in their reliance on preset timbres.
Very little progress seems to have been made in the
development of tools to aid composers in “rolling
their own” timbres.

With analog equipment, the musician could use a
“hands-on” approach to exploring the timbral po-
tential of various configurations. The adoption of
digital technology provided greater precision, so-
phistication, and potential, but initially made tim-
bral exploration more remote. With the current
trend toward highly interactive real-time digital
systems, the composer should now have the best of
both worlds. It is toward such an end that this pa-
per is directed.

Ideally, timbre should be controlled according to
perceptual rather than acoustic attributes. How-
ever, our limited understanding of perception, cog-
nition, and acoustics makes this difficult at present,
although work by Grey (1975; 1977) and Wessel
(1979) is making considerable headway in this di-
rection. If we must deal with timbral specification
in mainly acoustic terms, it is important to provide
an environment for doing so that minimizes the

Patel is currently with Human Computing Resources, Toronto,
Canada. Reeves is now with Lucasfilm Ltd., San Rafael, Califor-
nia. Baecker is with both University of Toronto and Human
Computing Resources.

Computer Music Journal, Vol. 6, No. 2, Summer 1982,
0148-9267/82/020032-13 $04.00/00
© 1982 Massachusetts Institute of Technology.

32

Objed and the Design of
Timbral Resources

nonmusical problems of the task and that permits
the composer to develop an ability to understand
and predict the perceptual consequences of chang-
ing acoustic parameters. The realization of such a
timbre editing environment requires that:

1. The data being edited is clearly represented.
2. There is a good correspondence between the
things that the composer wants to do and

the operators that the editing environment
provides.

3. The bookkeeping and administrative tasks
of the user are minimal.

4. The syntax for all transactions is succinct,
intuitive, and consistent.

5. The system have a high tolerance for user
error, and that it encourage exploration and
experimentation (i.e., learning).

We will examine one program that attempts to
fulfill these requirements. The intention is to pro-
vide a case study that will serve as the basis for dis-
cussion of the issues involved. It is hoped that as
much will be learned from the program’s deficien-
cies as from its strengths.

Objed and Objects

Objed is a program that permits named sets of
timbral characteristics (called objects) to be de-
fined, auditioned, and modified. Objects have three
properties:

1. Each is contained in a separate, uniquely
named file.

2. Each defines a set of timbral characteristics
(including time-varying functions) that can
be used to orchestrate one or more notes.

3. The parameters determining pitch, max-
imum amplitude, and duration of each in-
stance of an object are determined by the

Computer Music Journal

orchestrated note rather than the object
itself.

Objects can be compared to Music V instruments
(Mathews 1969), and patches on analog synthe-
sizers. The usage described derives directly from
Truax’s POD system (1976). The concept is general,
but the current SSSP implementation restricts the
composer to working with the following limited set
of object types (type is determined by the method
of sound synthesis employed): fixed waveform, fre-
quency modulation (FM) (Chowning 1973), addi-
tive synthesis (Moorer 1977), Vosim (Kaegi and
Tempelaars 1978), and waveshaping (Arfib 1979;
Le Brun 1979). Each object type is like a Smalltalk
“class” (Krasner 1980), although the two were de-
veloped independently.

The composer’s task in object editing is one of
plugging values into the fixed template defined for
the object type being used. As a result, the com-
poser works at a level halfway between the two
extremes of instrument definition at the unit-
generator level (as in Music V-type programs) and
the use of presets. (Unit generators are signal pro-
cessing elements, which are the lowest-level mod-
ules used in defining Music V instruments.) In this
approach, the composer is restricted by the object
types available as to the range of timbres that can
be generated. However, if the available object types
are well chosen, a musically rich palette of timbres
is possible. Furthermore, the number of object
types or the synthesis techniques used are not re-
stricted by the object concept. New methods can
and have been introduced. (In fact, the concept of a
meta-object editor would be worth developing, so as
to facilitate the specification of new object types,
using the unit-generator concept, for example.)

Our rationale for taking the somewhat restrictive
template approach of the object formalism is based
on the resulting ability to build a powerful user in-
terface for timbre specification. Since each object
has a system-defined template, the program can
provide an “intelligent” editing environment that
“understands” what the user is trying to do. Errors
are detected more easily, diagnostic messages are
clearer, and the assignment of default values is sim-
plified. While the timbre space offered by this ap-
proach is limited when compared to the potential

of the Music V instrument paradigm, in many cases
the tools offered by Objed, for example, give the
composer control over a broader timbral range. Po-
tential is only meaningful to composers if it falls
within their “threshold of patience.” The approach
exemplified by Objed is intended to extend this
threshold as far as possible.

The use of objects, as described, is not incompati-
ble with either Music V-type instruments or pre-
sets. Objed provides a middle ground between the
two. As has already been pointed out, the unit-
generator approach could be used to define the tem-
plate of new object types. On the other hand, ob-
jects whose parameters have been previously
defined can be used as presets. In this case, the
composer can select the preset closest to the timbre
desired and use Objed to “clone” a new object that
is a variation of this existing one.

Objed in Perspective

Before progressing, it is important to put the task of
editing objects in perspective with respect to the
overall task of composing using the SSSP system.
The description given below is brief. Those readers
wishing detailed information on the software avail-
able in the SSSP system are referred to Music Soft-
ware User’s Manual (Buxton 1981).

We view the SSSP software as providing suitable
environments for performing three basic tasks:

1. Defining and editing a palette of timbres to
be used in a composition. This is referred to
as object definition.

2. Defining and editing musical scores, includ-
ing the task of orchestrating the notes of
these scores, using the lexicon of objects de-
fined by the composer.

3. Defining the performance information af-
fecting a composition, usually by real-
time interpretation, or conducting, of the
material.

Each computer program is designed to assist the
composer in the performance of one of these three
tasks. Objed, for example, is the primary environ-
ment for performing the first task. Usually, how-

Buxton et al. 33

ever, there are alternative ways of performing a
particular task. The most appropriate environment
for expressing one musical idea during score defini-
tion, for example, may not be the best for express-
ing some other (equally valid) idea. Hence, the two
different programs Sced and Scriva (Buxton et al.
1979), support alternative approaches to performing
the second task of score editing. For carrying out
the third task (performance), the Conduct program
(Buxton et al. 1980) is the environment available.

There are two benefits gained from viewing the
software in terms of different task environments.
First, composers are provided a simple mental
model with which to view what they are doing;
that is, in terms of one of these three tasks. As the
number of alternative ways of performing a task
increases, having this mental model available be-
comes more and more helpful to the composer. Sec-
ond, this approach allows the software to be
structured in such a way that no order of perform-
ing these three tasks is forced upon the composer.
In fact, the composer can ignore tasks that are not
of immediate interest. For example, if the composer
just wants to deal with scores, the material can be
auditioned with automatically assumed default
timbres from within the score-editing environ-
ments. Similarly, as we shall see in more detail, the
composer who wants to work on timbres without
having to think about scores may do so, by using
Objed. The point is that the system can be intro-
duced and compositions built up incrementally.
The composer need not be confronted with detail
until it is needed.

In practice, the expert composer usually jumps
from environment to environment. As stated ear-
lier, the system is designed to facilitate this type of
action as well. For example, one can jump into a
score-editing environment from within Objed. This
is often useful if one suddenly wants to specify a
special score to test the object being designed. Sim-
ilarly, one can temporarily jump into Conduct or
Objed from any of the score editors, without ever
having to suspend explicitly or save the material
being worked upon. It would be fruitless to try to
design one environment that fulfills all musical
needs. Our philosophy is to make a number of

34

strong, specifically oriented, software packages and
obtain completeness by allowing the composer to
access one environment from within another.

On Entering Objed

On initial entry, the Objed display is as shown in
Fig. 1. The display is divided into five regions, each
with a different function. The main region, which
occupies the upper two-thirds of the screen, is
where the actual data being edited is displayed. In
the example, a simple, fixed-waveform object is
being edited. Its components, all of which are
graphically displayed, are a waveform; a time-
varying function, controlling pitch; and an enve-
lope, controlling the contour of the note’s volume.

To the left, below the main region, is an area con-
taining data pertaining to the pitch, volume, and
duration at which the object being edited can be au-
ditioned. These values are not part of the object:
they are simply conveniences for exploring its be-
havior at different pitches, durations, and volumes.

The central panel in the lower part of the screen
contains various options that allow the user to
change the state of the editing environment. The
user can change the type of object being edited and
change the way in which the edited object can be
auditioned.

The panel to the lower right is dedicated to the
saving and retrieving of objects with a minimum of
effort. The elongated region along the bottom left
edge is a window that permits the composer to ac-
cess the “outside world” without leaving Objed.

Objed is designed to minimize the amount of
rote learning that must be undertaken by the user.
Rather than memorize a large number of com-
mands, the user need only remember a simple strat-
egy that forms the basis for all interactions: when
one wants to change something, one just points at
the diagram or word that represents it on the dis-
play and depresses the selection (Z) button on the
tablet’s cursor. Any consequent options will then
be presented, and the same method of interaction is
applied to them.

Computer Music Journal

Fig. 1. Screen image gener-
ated by Objed upon entry
to the program.

2 I W T
WAVEFORMS FUNCT NS
€4 T
R | ine Tobo o de . SdefanlE freq
R / LI
1 \,_/ H i
E
R
y
Q ”\K -
L e default_env
ut
H A
e =2
PLAY
| 1 1 e
I T1a8 | | - ;
249 3 U138 J P o fwt ob | SAVE
4] T | df fm_ob}
i ! * FINED WAVEFORM =
| | COMPARE of fuf_obl
|< | * NOTE MODE = df _vosim_ob}
! : 4] = SINGLE = df _ws _ob]
PITCH VoL DURATION EXiT
S
* WORKING ORJECTS =

Buxton et al.

35

Fig. 2. Graphic poten-
tiometers, used to control
parameters of the sound.

ez} e] le&_J 1§ df
i i}

<I+ * F1

COMP

Q *® NO

] x SI

Pi;zg ud: DURATION EXIT

Hearing an Object

It is often useful to begin by listening to the dis-
played object. This establishes a frame of reference
for future changes. The object is played when the
user activates the word (or light button) PLAY, seen
in the lower part of the work area. The sound is
immediately heard. The object itself has no specific
pitch, duration, or amplitude associated with it.
These must be provided externally for the object to
be heard. Assume that when PLAY was activated,
the sound had a pitch of A4, dynamics of about
mezzo-forte, and a duration of one-fourth note at
M.M. = 60. Obviously, it is desirable to be able to
change these values so as to learn more about the
object’s behavior in different contexts. This is the
function of the lower-left subpanel seen in Fig. 2,
where there are three graphic potentiometers, or
pots, one for éach performance parameter. The
value for each parameter is displayed numerically
in one of the boxes above, and its relative value is
seen by the position of the potentiometer’s handle
(the triangular pointer). The user can change the
value of any graphic potentiometer by “dragging”
its handle up or down, using the cursor. Alter-
natively, the user may point at the box above the
graphic potentiometer, activate the Z button, and
type in a numerical value. In this case, the tracking

36

Fig. 3. Setting a level on a
graphic potentiometer by
typing. The tracking sym-
bol has changed into the
icon of a terminal.

PLAY

I df _fwf_
)

* FIXED WAVEFQ
COMPARE

= NOTE HODE =
* SINGLE *

ix_e]

DURATION EXIT

symbol becomes an icon of a terminal (as seen in
Fig. 3), which acts as a prompt, signaling to the
user that something must be typed.

What has been seen thus far? First, nothing has
been defined from scratch. New objects are always
created by modifying existing ones. On entering the
program, the user can immediately audition a refer-
ence sound and begin working from there. A basis
for learning is provided, even for the user who does
not know what a sine wave is. Second, parameters
such as pitch and volume are changed using a tech-
nique that has an analogy in most users’ previous
experience. Third, iconic prompts appear where the
user’s attention is already focused, as was seen in
Fig. 3.

Waveform Selection

We will now consider changing one of the attri-
butes of the object itself. As an example, let us alter
the waveform associated with the object. Pointing
at the picture of the current waveform and depress-
ing the Z button will cause the panel seen in Fig. 4
to appear. A menu consisting of the eight wave-
forms currently loaded in the synthesizer appears
down the right margin of this panel. Selecting one

Computer Music Journal

Fig. 4. Window for wave-
form selection.

sihe

e - sawtooth
-~ s
A S
/ N
4 \ R
o N
7 b triangle
%
\\ // //,f//~\\\\\
R ,""'r ”ﬂ,/’ \‘“Mh
A % cosine
T /'
By ‘ i \
;i > et \
sihapr
i
- /\/\/\/
’ DONE cospulse
i LETe /‘\
~ _________.H»
randem
DEFINE BY SPECTRUM
DEFINE BY DRAWING b P y
i J/Mhuﬁ il
T { M
STORE wl ’ U i
spikad
*SYNTHESIZER OFF= s

\v/

#SYNTHESIZER BUFFERSw

of these waveforms with the cursor and then ac-
tivating the light button DONE restores the origi-
nal panel of Fig. 1, with the one difference that a
drawing of the selected waveform has replaced that
of the sinusoid. This brings up an important point:
the current state of the object being edited is al-
ways clearly displayed, thereby eliminating the
mental task of remembering its current attributes.

Creating New Waveforms by Spectrum

In the previous example (Fig. 4), if we had wanted
to define a new waveform rather than use one of
those in the synthesizer, we could have done so. By
activating the light button DEFINE BY SPECTRUM
in Fig. 4, we cause the panel shown in Fig. 5 to ap-
pear. What is seen in the work area is a bar graph in

Buxton et al. 37

monic; its height is the
amplitude of the harmonic
relative to the others.

Fig. 5. Defining a wave-
form by spectral content.
Each bar represents a har-

B
e
t i
| RS P EEn) i BaaT S TRESE SR RS leee) DRSS VaIo i T S R R Shal Rl IR TR e I S 5 e
DONE
i 1
-IE—IL‘ 128 «TAPE RECORDER GFFx
! F CALCULATE
| ! *SYNTHESIZER OFF+
-t A3
1ot HARMC VOLUME

=

which the height of the bars represents the relative
amplitude of the harmonics of a sound. Harmonics
1—16 appear from left to right. Any bar will jump
to the height of the cursor when the cursor passes
over the bar while the Z button is depressed. Thus,
a simple hand gesture can sketch the spectral en-
velope of a waveform. More importantly, the wave-
form is being synthesized all the while, and we can

38

use the graphic potentiometers in the lower left-
hand panel to adjust the overall amplitude and the
frequency of the fundamental. (Placement and use
of the latter are consistent with the main panel,
thereby simplifying learning of the control struc-
ture.] Throughout, the spectral content of the
sound and the graphics display are updated in real
time. The result is that musicians can quickly de-

Computer Music Journal

Fig. 6. Example of a wave-
form defined by spectral

content.
0
R
48 8 Y 28
5 1
gy
ot h 7, .
0 T O L I
W R AV ~
v B 56 0 R
R R B A R e M
4 g A EETT
UEL L,
97 A 21
o '; "‘!
! Al
DONE
New ;
i
FOURIER (MORMAL)
CHEBVCHEV {(FOR WAVESHAPING)
*SYNTHESIZER CFF=x
i
p-3

weighed sum of the Fourier series or the Cheby-
chev polynomials. In each case, the bar heights rep-
resent the relative weights of the different-order
functions. The Chebychev polynomials are used to
generate transfer functions to be employed in wave-
shaping synthesis.

The waveform is then loaded into the syn-
thesizer, and the user returns to the main panel by

velop a sense of the perceptual effect of spectral
content on steady-state tones.

Once the desired spectrum is defined, the com-
poser activates the CALCULATE light button, and
the new waveform is calculated and displayed (in
the time domain), as seen in Fig. 6. Activating
CALCULATE presents the user with the option of
having the waveform calculated according to the

Buxton et al. 39

activating the command DONE. The new version
of the object can then be auditioned, and other
changes can be made. For example, the envelope
associated with the object can be redefined using
techniques comparable to those seen with the
waveform.

Other Object Modes

Thus far, the object being edited has been of the
fixed-waveform type. We can experiment with an-
other mode by activating the light button FIXED
WAVEFORM seen in the lower central panel of
Fig. 7. As a result, the panel will switch to present
the set of object-type options. If we select “Fre-
quency Modulation” (FM), the display will appear
as seen in Fig. 8. The panel is the same as that seen
in Fig. 1, except that there are five additional ele-

ments in the work area. There is now a waveform

displayed for both the carrier and modulating waves.
In addition, graphic potentiometers are provided to

set both the maximum index of modulation and the

carrier-to-modulator (c:m) ratio. Finally, there is a
third time-varying function, which controls the
evolution of the index of modulation.

Figure 8 illustrates two points. First, the environ-
ment is the same regardless of object type. Second,
the work panel previously seen is a subset of the
current one. The benefit resulting from this consis-
tency is that skills learned at a simple level can be
applied to more complex tasks. Thus, the basis for
good pedagogical practice is provided.

More on Auditioning Objects

During an editing session, it is often desirable to be
able to audition the object repeatedly. One way to
do this is to activate the SINGLE button at the bot-
tom of the environment control panel (Fig. 7). The
button will be renamed CYCLE, indicating that
when PLAY is activated the sound will play repeat-
edly until stopped by the user.

One problem that still exists, however, is that all
of our interactions with the object’s data take the
two-part form: (1) change a value, (2) listen to the

40

Fig. 7. Editing environ-
ment control subpanel.

. g
e Ttk b B chue
. |
i * FIXED WAVEFORM *
] COMPARE
§ * NOTE MODE =
g * SINGLE *
!
DURATION EXIT

effect. It would often be more useful, when setting
the index of maximum modulation, for example, to
emulate the operation of an analog synthesizer.
That is, it would be useful to turn the sound on in
its steady state and hear the effect of adjusting pa-
rameters while they are being changed. (Sound is
heard when we define waveforms by spectrum.)
This can be accomplished by activating the CYCLE
button, which then switches to STEADY. Activat-
ing PLAY causes the object to sound, and the effect
of adjusting any of the graphic potentiometers (in-
cluding those affecting pitch and volume) is heard
immediately. When desired, we can return to the
original SINGLE mode by activating the button
STEADY. Thus, we have not only seen some new
modes of auditioning objects, but we have also in-
troduced a new concept: that of the rotary switch.
By convention, any light button enclosed by “#”
characters functions as a rotary switch. Activating
the button will cause it to change to a new label.
Repeated activation will cause it to rotate through
its “cycle” and return to its original value. Each
such button, then, provides a means of selecting
from a set of options for a particular function. The
mode currently in effect is that displayed. A means
is provided, therefore, of accessing significant com-
plexity that can be “hidden” until the user is ready
for it.

The effect of hearing an object in isolation is
often (usually?) very different from that of hearing
it in some musical context. So far, we have only
been able to hear an object as a single note. This
can be altered by activating the NOTE MODE but-
ton (Fig. 7). Once activated, the button is renamed
SCORE — UNIFORM ORCHESTRATION, and the

Computer Music Journal

Fig. 8. Work panel for edit-
ing an FM object.

WAVEFORMS'
AN T
R ihe Tk
R | <
1]
E
i’
81N |
iha L
] S E i

FUNCTIONS

|___ default_freq

dafault_shv

M
[a]
i ! l o "\ dafault_ind
T e i i1 i i ~
T T T
| | |
[| |
!]
| |
—LJ . _% PLAY
500 2y ‘
+] [
[4az] {teg] fo6 1 Pt SRR
i o T —l— d 2 aoby) SAVE
' aF b
i ol e Sl
i ! | COMPARE + df fm obj
1 ;] I ® NOTE MODE = df _Fuf_ob}
i f\ KJ = SINGLE = df _vosim_obl
B1TCH voL DURATION EXTT
>
* WORKING GRIECTS =

subpanel controlling note parameters is switched,
as seen in Fig. 9. The box that appears can be thought
of as a window that looks out on all of the scores
the composer has created. The name of each score
is listed in this directory window, and if there

are more names than will fit, a means of scrolling
through them is provided. When the PLAY button

is activated, the score whose name appears between
the horizontal lines of the window is heard. More
importantly for our purposes, the score is temporar-
ily orchestrated with the object currently being
edited! Furthermore, the metronome marking
controlling the tempo of the performance can be
changed by adjusting the graphic potentiometer be-

Buxton et al. 41

Fig. 9. Control panel for
auditioning objects in the
context of user-defined

SCOres.
1]
!6—5—!_-—-1 Sy df fmoob| SAVE
! tue.m : dr b
| 2 x FM = He_obi
grimesff COMPARE df _fm_oby
two * SCORE -UMIFORM ORCHESTRATION df _fwf_obj
threa ® SINGLE = df _vosim_sb;
METRONOME SCORES - | exIT
~
* WORKING OBJECTS %

side the window. Pointing at any other name in the
window will cause it to move between the horizon-
tal lines so that it, too, can be played.

In the above way, the material being edited can be
heard in a variety of musically useful contexts, al-
lowing the composer to discover important musical
properties of the material being designed.

Naming, Saving, and Retrieving Objects

Before an object can be used outside the context of
the editing environment, it must be named and
then saved. An object’s current name appears in the
heavily outlined box at the top of the environment-
control subpanel (Fig. 7). A name can be changed in
the same way as anything else: the user points at it,
activates the Z button, and types in the new name
in response to the appearance of the terminal prompt
(icon). Saving an object for future use is equally
straightforward: the light button SAVE seen in the
bottom right-hand subpanel is activated. This same
subpanel also provides the mechanism for retriev-
ing previously defined objects. The technique is,
again, use of the directory window. In this case, in-
stead of previously defined scores, the window pro-
vides selective vision of objects. The name between
horizontal lines is always the same as that of the
object being edited. Selecting a different name
causes that object to be displayed in the work area
for purposes of editing or audition. One interesting

42

option is that the window provides views of objects
that have been defined and stored on disk [SAVED
OBJECTS *) or objects that are in primary memory,
having been worked on in the current session

(* WORKING OBJECTS *). Thus, while only one
object can be edited at a time, several working ob-
jects can be kept in primary memory during a work
session. Nothing need be saved unless it is desired
for a future session.

Buffering Working Objects

In the preceding discussion, it was seen that all ob-
jects that have been accessed during a particular
work session are kept in primary memory. Al-
though Objed only allows one object to be edited at
a time, the design of one object may depend on that
of another. This is the case in certain chords, for
example. In such cases, there are two requirements.
First, we want to be able to switch rapidly among
the objects concerned in order to make adjust-
ments, without having to save any of them until
they are in an acceptable state. Second, we want to
be able to audition the chord with the current ver-
sion of these objects.

Objed supports both of these features. The first
is accomplished using the WORKING OBJECTS
window and the buffering mechanism already de-
scribed. The second feature is achieved by activat-
ing the * SCORE — UNIFORM ORCHESTRA-

Computer Music Journal

TION #* button seen in the central panel of Fig. 9.
The result of doing so is that the button will read
#* SCORE — NORMAL ORCHESTRATION *. On
activation of the PLAY button in this mode, the
score played will be performed using the objects
specified by its orchestration, rather than by the ob-
ject currently being edited. The special benefit of
this is that the performance uses the versions of
the specified objects that are buffered in primary
memory by Objed. (Of course, if there is not a ver-
sion in primary memory, the disk copy is used.)
Thus, buffering the working objects of a session al-
lows faster interaction and enables a valuable fea-
ture to be added to the editor.

Comparing Objects

Another benefit of providing easy access to a set of
working objects can be seen in our next example.
One function that we feel is important is the ability
to compare objects in rapid succession. To do so,
the data for each object to be auditioned must al-
ready be in primary memory. Even then, if we have
to point to the object name, wait for its data to be
displayed, and then move the cursor to activate the
PLAY button, we have lost the instantaneous re-
sponse we desire. As a result, another light button,
COMPARE, is provided in the environment control
area. Activating this button causes almost every-
thing except the object window to disappear from
the display. In this mode, an object is played imme-
diately upon having its name selected with the
cursor. Since the objects are already in primary
memory and hand movement is minimized, rapid
comparisons are possible.

The directory windows seen in the previous ex-
amples are the most important feature of the sys-
tem with respect to one of our initial demands: that
the cognitive effort required for administration and
bookkeeping be minimized. In computer science
terms, this represents file input and ouput. The
windows allow files to be input without the user
having to type names, remember spelling, or ex-
tract the score or object files from among the text
files and other items in the directory.

Conclusions

We have examined a particular program as a means
of improving our understanding of how to provide
composers with better control over timbral re-
sources. The examination has concentrated more
on the overall means than the specific content of
the editing process. Some of the guiding principles
of value in the design process are consistency
among interactions, flexibility in modes of opera-
tion [such as in audition), clarity of presentation of
data and operators, and the use of defaults.

While our experience with Objed has been posi-
tive, there are still some fundamental problems.
Musically, the most important is this: designing a
system around a score editor on the one hand, and
an object editor on the other hand, implies that
composition can be partitioned between the sono-
logical and deep-structural levels. This is a large as-
sumption; one that is clearly not justified in some
music. A more specific but related problem con-
cerns the program’s weakness in dealing with tim-
bres that are aggregates of two or more objects
functioning together. Finally, defining objects in
terms of data plugged into a template leaves very
little room for the specification of how the object
adapts its behavior in particular contexts. How can
the specification of adaptive information (such as
volume varying with pitch) be combined with the
environment described?

Clearly, the issue of timbral specification and
control is one that still requires a great deal of re-
search. It is hoped that the work presented here
will help in bringing such control to the composer.

Acknowledgments

The results reported in this paper have benefited
from the input of numerous composers who have
worked on the SSSP system, especially James
Montgomery and Philippe Menard. Several conver-
sations with David Wessel have also strongly influ-
enced our approach. Finally, Bob Pritchard and

M. R. Lamb have made many helpful comments
during the preparation of this manuscript.

Buxton et al. 43

The research reported in this paper has been un-
dertaken as part of the SSSP of the University of
Toronto. This research is supported by the Social
Sciences and Humanities Research Council of
Canada. This support is gratefully acknowledged.

References

Arfib, D. 1979. “Digital Synthesis of Complex Spectra by
Means of Multiplication of Non-linear Distorted Sine
Waves.” Journal of the Audio Engineering Society
27(10): 757~ 768.

Buxton, W. 1981. “Music Software User’s Manual.” Tech.
Note No. 22. Toronto: University of Toronto Computer
Systems Research Group.

Buxton, W. et al. 1979. “The Evolution of the SSSP Score
Editing Tools.” Computer Music Journal 3(4): 14-25.

Buxton, W. et al. 1980. “A Microcomputer-based Con-
ducting System.” Computer Music Journal 4(1):8-21.

Chowning, J. 1973. “The Synthesis of Complex Audio
Spectra by Means of Frequency Modulation.” Journal of
the Audio Engineering Society 21 :526—534. Reprinted
in Computer Music Journal 1(2):46-54.

44

Grey, J. 1975. “Exploration of Musical Timbre.” Tech.
Rep. STAN-M-2. Stanford, California: Stanford Univer-
sity Department of Music.

Grey, J. 1977. “Multidimensional Perceptual Scaling of
Musical Timbre.” Journal of the Acoustical Society of
America 61:1270-1277.

Kaegi, W, and S. Tempelaars. 1978. “VOSIM—A New
Sound Synthesis System.” Journal of the Audio Engi-
neering Society 26:418-424.

Krasner, G. 1980. “The Design of a Smalltalk Music Sys-
tem.” Computer Music Journal 4(4):4-14.

Le Brun, M. 1979. “Digital Waveshaping Synthesis.” Jour-
nal of the Audio Engineering Society 27 :250—266.

Mathews, M. V. 1969. The Technology of Computer Mu-
sic. Cambridge, Massachusetts: MIT Press.

Moorer, J. A. 1977. “Signal Processing Aspects of Com-
puter Music—A Survey.” Proceedings of the IEEE
65:1108—1137. Reprinted in Computer Music Journal
1{1):4-37.

Truax, B. 1976. “A Communicational Approach to Com-
puter Sound Programs.” Journal of Music Theory
20(2):227-300.

Wessel, D. 1979, “Timbre Space as a Musical Control
Structure.” Computer Music Journal 3(2):45-52.

Computer Music Journal

