Computer Graphics

Volume 17, Number 3 July 1983

TOWARDS A CONPREHENSIVE
USER INTERFACE MANAGEMENT SYSTEM

W. Buxton, M. R. Lamb,
D. Sherman & K. C. Smith

Computer Systems Research Group
University of Toronto
Toronto, Ontario
Canada M5S 1A4

ABSTRACT

A UIMS developed at the University of Toronto is presented.
The system has two main components. The first is a set of
tools to support the design and implementation of interac~
tive graphics programs. The second is a run-time support
package which handles interactions between the system
and the user (things such as hit detection, event detection,
screen updates, and procedure invocation), and provides
facilities for logging user interactions for later protocol
analysis.

The design/implementation tool Is a preprocessor, called
MENULAY, which permits the applications programmer to use
interactive graphics techniques to design graphics menus
and their functionality. The output of this preprocessor is
high~level code which can be compiled with application-~
specific routines. User interactions with the resulting exe-
cutable module are then handled by the run-time support
package. The presentation works through an example from
design to execution in a step-by-step manner.

CR Categories and Subject Descriptors: D.2.2 [Software]
Tools and Techniques - User Interfaces; H.1.2 [Information
Systems] User/Machine Systems - Human Information Pro-
cessing; 1.3.4 [Computer Graphics] Graphics Utilities -
Software Support; 1.3.6 [Computer Graphics] Methodology
and Techniques - Interactive Techniques.

General Terms: Human-Computer Dialogue, Interaction
Management.

Additional Keywords and Phrases: Dialogue Design and
Specification, and Dialogue Run-Time Support.

1. INTRODUCTION

Traditionally, interactive graphical programs have been writ-
ten using conventional programming languages, low-level
tools, and often ad hoc techniques. The cost of doing so
has been time, frustration, and quality of end product.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© ACM 0-89791-109-1/83/007/0035 $00.75

A user interface management system (UIMS) is intended to
reduce this cost. The objective is to free the applications
programmer from low-level details so as to be able to con~
centrate on higher applications-specific aspects of the
user interface. A UIMS typically consists of a package of
tools which support the implementation, debugging and
evaluation of interactive human-computer dialogues.

An analogy can be drawn between a UIMS and a data base
management system (DBMS). The DBMS mediates between
programmer and data, enforcing a consistency of technique
among all programmers in accessing that data. It provides
portability because only the lowest-level DBMS routines are
hardware-dependent. Similarly, the UIMS mediates between
the applications programmer and the input events,
encouraging a consistency both of graphical layout
representation and of input processing mechanisms.

This paper presents a UIMS developed at the Computer Sys-
tems Research Group, University of Toronto. The system
comprises a set of tools for designing and implementing
menu-based dialogues and for providing run-time support
for more general event-driven interactive programs. The
module for designing/implementing menu-based dialogues
has the property of permitting hand-written programs to be
integrated with code automatically synthesized from the
programmer's specifications.

1.1 The Need for a UIMS

Our current understanding of human-computer interaction is
extremely limited. We cannot sit down and design an inter-
face for an application and know, a priori, how well it will
perform. We must accept at the outset, therefore, the
inevitable intertwining of specification, design, and imple-
mentation (Swartout & Balzer, 1982). Design then becomes
an iterative process, each iteration consisting of three
phases: design, implementation and evaluation (Buxton &
Sniderman, 1980). The motivation to develop improved tools
can therefore be seen as a desire to increase the number
of iterations that we can afford to pass through in this loop.
The hoped-for consequence will be an improvement in the
quality of the user interfaces which we produce.

The UIMS presented herein aids in the design and imple-

mentation phases by providing the following set of tools: a

graphics package; sketch editors; a standardized graphics

communications protocol; table-driven run-time support of
the user dialogue; and, most recentiy, a graphical layout and

interaction specification preprocessor which generates C

language programs. Underway are the development of

interaction analysis tools to aid in the evaluation phase of
the cycle.

1. This Is not to Imply that data-base g t Is Independent of the
user Interface. Rather, the tools applled to each of these free the
applicatlons programmer so that thelr mutual Influence can be better
taken Into consideration.

Computer Graphics

Each of the modules of the existing system has limitations.
Howaver, when viewed together, the various pieces begin
to shed some light on what would comprise a comprehensive
set of tools for the user interface designer. In presenting
our experience in a longitudinal way, it is hoped that we will
make some contribution towards the realization of such a
comprehensive set of tools.

1.2 Uof T UIMS Structure

In its current state, our UIMS consists of two main modules.
The first is a preprocessor which enables the program
designer, using interactive graphics techniques, to design
and specify the graphical layout and functionality of menu-
based user interfaces. It is with this module that the appli-
cations programmer establishes the relationships between
what the user sees, does, and hears, and the application~
specific semantics underlying the program being imple-
mented.

The second main module is the run-time support package. It
handles things such as event and hit detection, procedure
invocation, and updating the display - all according to the
schema specified using the preprocessor. An important
aspect of this implementation is that the code executed by
the run-time module can be generated automatically (com-
plete with comments) from the data specified to the prepro-
cessor.

The applicability of the current implementation of the
preprocessor is restricted to menu-based interaction.
Within this domain, however, it is quite flexible, and sup-
ports various types of displays (colour or monochrome) and
sound output. The run-time support package is more gen-
eral and does not depend upon the preprocessor. It is
designed for supporting event-driven software and a
variety of input devices. These two packages do not stand
alone. They are just two components in a more general "kit"
of prototyping tools to support iterative and experimental
programming (Deutsh & Taft, 1980). In discussing these
tools, we find it useful to distinguish between general
design tools and programmers’ packaged units.

The general design tools facilitate the specification of
graphical information and functional relationships, the writ-
ing of application-specific code and the debugging of suc-
cessive versions of applications programs. Many of these
tools are standard components in modern operating sys-
tems. Besides the two modules mentioned above, our
inventory of such tools includes: (1) the UNIX< operating
system, with its highly sophisticated command interpreter,
C language compiler, hierarchical file system and many utili-
ties; (2) the GPAC device-independent graphics package
(Reeves, 1975); (3) routines to save and retrieve pictures
stored as standard format metafiles; (4) text editors; (8)
graphical sketch editors; and (B8) interactive symbolic
debuggers.

Programmers' packaged units are ready-made modules
which can be integrated into applications software. They
are documented and tested building-blocks. They are gen-
erally packaged versions of blocks of code which are
observed to be reccuring and of general utility. Our library
of such modules, therefore, is continually expanding.
Representative of such packaged units are: (1) specialized
iconic cursors which can be used as meaningful tracking
symbols; (2) directory windows which permit graphical user
reference to any file of a given type; (3) a graphical poten-
tiometer with a "knob" which the user can 'slide" up and
down to change the value of a program parameter; (4) a
graphical piano keyboard which audibly plays the notes
pointed to; (8) routines to manipulate lightbuttons within the
above menu-driven system (e.g, to flash, deactivate and
highlight individual menu items); and (6) an audio support
package, which drives a digital sound synthesizer (Buxton,
Fogels, Fedorkow, Sasaki & Smith, 1978). Many of these

ety

2. UNIX Is a trademark of Bell Laboratories.

Volume 17, Number 3

July 1983

modules will be llustrated in examples which follow.

2. EVOLUTION OF OUR UIMS

Our UIMS has evolved over several years, in parallel with the
development of innovative software for graphics applica-~
tions. It is implemented in the C programming language on a
PDP-11/46, which was acquired in 1975 and runs UNiX ver-
sion 6.

First came GPAC, a device-independent graphics package
(Reeves, 1975), onto which successively higher levels were
built. Interaction techniques, specialized cursors and direc-
tory windows followed, in 1976-78. As part of the Structure
Sound Synthesis Project, the table-driven run-time support
package of the UIMS was put together in 1979. Finally, in
1982, MENULAY, the graphical menu layout and function
specification preprocessor was built.

2.1 Table~driven run-time support system

With the development of a number of menu-based interac-
tive programs in the late 1970's, it became apparent that
the user interfaces all had a large number of common
features, but that each programmer implemented them with
a "personal’ touch. So personal, in fact, that the code was
difficult for others to understand or support. Accordingly,
we began to develop a more uniform methodology which not
only captured the best ideas of these various approaches,
but also made them available in a fully-documented and
well-supported environment. The basis of our new metho-~
dology was an externally-controlled, table-driven system
which supported event-driven interactions. The program-
mer supplied the system with the applications-specific rou-
tines and Information about what types of events were
active when, and what and how such events were to affect
the program's behaviour. At run-time, then, responses to
user interactions (such as event and hit detection, display
updates, and procedure invocation) were handled by this
package.

The present package, an extension of that developed in
1979, is primarily oriented towards screen and menu-based
systems. It is capable of supporting event-driven interac-
tions that go well beyond simple light-button selection
(examples are: Buxton, Sniderman, Reeves, Patel &
Baecker, 1978; and Buxton, Patel, Reeves & Baecker,
1982). The tables used by the system have nine user-
specified fields per entry. These fields include:

the name of a user-specified procedure which is to be
invoked upon the detection of a specified input event;

the input event which is to trigger that procedure;
fields to contain (variable) parameters of that procedure;

the x and y hit area for procedures triggered by pointing
events;

any text (or the name of a graphics file containing a picture)
to be displayed;

the x and y co-ordinates of the item to be displayed;
the item's size and colour.

The system also supports dummy table entries for setting
various parameters, such as whether subsequent hit-areas
are to have boxes drawn around them or not. As well, it pro-
vides for functions to be invoked in special cases arising in
menu-based systems: (1) if the user misses all of the light-
buttons, (2) when entering or (3) when exiting from the
menu.

Finally,the package provides easy-to-use routines for
setting-up and switching among the menus, or 'states' of
the application-defined system.

While this package was of value, it was still a tedious task
to specify the data which made up the tables. This was
especially true during the early stages of development,
when the graphic design, functionality, and syntax of the

Computer Graphics

user interface were continually being revised due to experi-
mentation. Consequently, we were motivated to develop
another tool which would facilitate the specification and
modification of these data. The result was the preproces-
sor, MENULAY, described in the next section.

3. MENULAY AND MAKEMENU
3.1 Concept

The preprocessor which serves as the front end of our
UIMS is known as MENULAY. The package is designed to
enable the user interface designer (who is not necessarily
the applications programmer) to specify rapidly and natur-
ally the graphical and functional relationships within and
among the displays making up a menu-based system.
Specifications made using the package are converted into
the C programming language and compiled through the use
of a companion program MAKEMENU. The resulting code can
be linked with application-specific routines.

MENULAY enables the designer to define user interfaces
which are made up of networks of menus. These may be
structured in a hierarchic manner, or in an arbitrary fashion.
Furthermore, the method of interacting with these menus is
open, and up to the designer. A prime objective of the tool
is to minimize the bias imposed by the path of least resis-
tance, which may favour one interaction technique over
another. MENULAY is a product of itseif. It therefore gives
the user interface designer a feel for the nature of the
interaction sequences being specified, while at the same
time indicates the range of tools available.

3.2 Functional Flow

The entire sequence as set out in Figure 1 can be per-
formed by the

Mm&mfﬂ&&mﬂuﬂ
MENULAY
A
\
[itore in manu seecification filel

N

MAKEMENU

create C programs for

i
(o Lo_and 7]

Figure 1. A typical Sequence for Constructing an Interac-
tive Dialogue

applications designer in an interactive graphics environ-
ment. A graphics tablet and four~button puck are used for
all input to MENULAY (except for such character-oriented
input as the typing of the names of application-specific
furictions to be called upon hit detection). The MAKEMENU
program creation and compilation options are also specified
graphically.

3.3 Automatic Code Generation

MENULAY's elegance lies in the automatic conversion into C
language programs of the graphical interface specified by

37

Volume 17, Number 3 July 1983

the applications designer. This conversion is performed by
MENULAY's companion program, MAKEMENU. The programs
generated from MENULAY's compact specification files are
syntactically correct, complete and internally documented
with liberal comments. They are designed for compilation
with the same table-driven support system on which MENU-
LAY itself is built. Because these programs are in C, how-
ever, they can be adapted when required by using a text
editor. Where necessary, these changes can be recorded
automatically, and repeated whenever the menu specifica-
tion files are changed®.

Where the applications designer specifies names of
application-specific functions, the programs generated by
MAKEMENU contain unresolved external references
("hooks'). By writing functions with the required names and
referencing the appropriate file names when MAKEMENU is
called, the applications programmer can add any amount of
application-specific programming to the Ilayout and
sequence Information specified by the designer. The two
sets of code (computer-generated and programmer-
authored) are completely compatible, and can share global
variable names, external function references, and so on.

Work is presently underway on a decompiler which wiil be
able to reverse the MAKEMENU process. This decompiler,
called UNEMEKAM, will convert a C program which makes use
of the table-driven menu software into a menu specification
file which can be edited graphically using MENULAY.

3.4 Command Hierarchy

MENULAY has one main command level, contalning seven
basic commands. These are layout, size, colour, function,
get save, tryout and exit These are illustrated in Figure 2.

!Layout |

size
otour |
——
(creer]
+ save

It ryout l

r exit I

TE
Please potnt to the burette

WNITE
to add a drop of acid

saved Lth file “titratlon’.
>

Figure 2, MENULAY Commands

lLayout allows the designer to create textual items (e.g.,
light buttons) on the screen; add pictures either taken
from the system library of graphical icons or created by
the user with a sketch editor; change the position of any
item; and delete items from the screen (see Figure 3).

Size enables the designer to change the scale of any item
on the screen, either by "'sliding the knob'' on a graphical
potentiometer or by typing in a scale factor, as shown in

3. Hand-coding changes to MAKEMENU output obviously causes problems In
"unmaking" menus. Using the facility is a concesslon to reality: the
state-of-the-art does not yet permit us to make a totally comprehensive
UIMS.

Computer Graphics Volume 17, Number 3 July 1983

Figure 4.
Colour allows one to specify (or change) the colour of any m
item on the end-user's screen (see Figure 6). This is

independent of the device on which the designer Is using
MENULAY; the high-resolution display we most commonly
use, for example, does not support colour graphics.

LAYOUT
DONE

; =\

€—8LUE

>
[red] [ceen] rolton] biue] bink] foranse] bihite]

Figure 5, MENULAY - Assigning Colours to the Iltems on the
Screen

3 j

é @ A @ * J ﬁ é programmer before compilation of the program. The writ-
= ing of these functions is done entirely independently of

(and either before or after) the creation of the menu

specification file with MENULAY.

Function also allows programs of up to 50 characters ~

such as short print statements - to be typed directly

into MENULAY. MAKEMENU takes care of creating a hew
!M function name for the function table to enable the code
typed in by the user to be loaded.

Figure 3. MENULAY - Laying Out the Display Graphics

oo pace]

@ Please point to the burette

to add a drop of acid

are Ltarhpr

=Y

Lendue |

lho hitl

[>3

Figure 4. MENULAY - Changing the Size of an ltem (the]]
i r

stand) with a Graphical Potentiometer

Function enables the designer to specify what will happen
when the end-user points to light buttons. The light but-
tons may be text or pictures. The designer may also
specify a function to be invoked if the user activates an

Figure 6. MENULAY - Assigning Function Names to the Active
Items (Light-Buttons)

input event without pointing to any one light button. In Get (and save)} allow the user to retrleve from {and store
addition, it is possible to specify functions to be called into) a menu specification file the details of the layout
when the menu being designed is entered and exited. and functional relationships which the designer has
This is shown in Figure 6. specified. The menu specification file is extremely com-

pact and is thus a very efficient storage format. Each

i M AY's lib
The function names may be taken from MENULAY's library item of the menu screen is referenced by x and y co-

of utility functions or be written by the applications

Computer Graphics

ordinates, hit area, size, colour, function, text (if a tex-
tual item) or standard graphics format file name (if a
graphical icon).

Tryout gives the user the opportunity to invoke makemenu,
the code generation program, by specifying graphically
the options and filés he wishes to access (see Flgure 7).

OPTIONS

+

Csounds 1 [(PILOTswm]
Crun]
COMPUTER-GENERATED COMMAND STRING

[RESET |
makemenu titration

l0 Bacy]
>4

[quit]

Figure 7. MENULAY - Generating 'C' Code to Implement
Specified Interface (by Invoking MAKEMENU)

Once the program has been compiled, tryout then runs it
for the user.

Exit is used to exit the program. The user is given a new
menu with "YES' and "NO'" options to confirm that he does
indeed wish to exit.

MENULAY has levels of use: "novice" and 'expert”. iIn
novice mode, only the basic commands (as set out above)
are accessible. All input Is done through one button on the
cursor puck, and instructions are given at various points in
the program. In expert mode, the other three buttons on the
puck can be used to perform special functions (e.g.,
displaying a grid while positioning items; flipping from one
menus of pictures or colours to another; assigning a func-
tion name which is identical to the text in the menu item),
and fewer instructional diagnostics are displayed. The sys-
tem maintains on disk a profile for each user (a file called
"userpro"), initially tagging each person as "novice" and
upgrading them based on experience with the system and
on specific request.

From any point within MENULAY (except during fayout, where
typing text causes the creation of light buttons containing
the text typed), the user can access the UNIX shell (com-
mand interpreter) by typing at the terminal. (When this hap-
pens, the MENULAY screen fades and the user's scroller is
reset to the full screen until the user returns to MENULAY.)
This means that the full range of terminal-based commands
can be accessed instantly without leaving MENULAY. For
example, any calculations which the designer wishes to
make in the course of the graphical layout specification can
be made by invoking the on-line desk calculator. Similarly,
the applications designer who is also a programmer may
compose a function by invoking the text editor. Or the
designer may send the programmer comments about the
implementation by electronic mail hefore there's a chance
to forget them.

39

Volume 17, Number 3

July 1983

3.5 Applications

MENULAY has already been used to construct the user
interface for each of the following programs: (1) MENULAY
itself; (2) the DRAW sketch editor, which is used to gen-
erate light-button graphics; (3) a computer-assisted
instruction (CAl) program which teaches children about
birds and their nestss(see Figure 8);

[SELECT-A-BEA]
}.

aipping

%

seed-crscking

™

all-purpose

+

9

) g

Lesring thsect-catchine probine
EXPLAIN
Frutt-esting hammering

Paint Lo the besk you wenti your bird to heve.

If you want more informatlon, polnt to EXPLAIN.

Figure 8. Beak Selection Sequence from 'Land Birds and
Their Nests'

and (4) a graphical piano keyboard and musical notation edi-
tor (Kuzmich, in preparation: see Figure 9).

i

> | o |
AY I ~

(&)
v]] w
o4t (D™ V| |
M Eid - — P
A : i ~ =~

fave 1} brave 2 buave 3 fave 4 lvave Slhave 6llave 7]
CPuaY] KiEaR]

luid]

Figure 9, 'Melody Manipulations' music notation editor and
teaching tool

it can be used tc assemblg, In minutes, sequences of
frames for CAl in virtually any area of instruction where
graphics is helpful. It has also proven useful for laying out

§. "Land Birds and Their Nests”, designed by Young Naturalist Foundation,
Toronto, Canada, and programmed by CSRG (in press).

Computer Graphics

figures such as Figure 1 of this paper. Appendix | presents
a walk-through of a CAl example.

It is notable that since graphical icons for the user's screen
are referenced by file name, these pictures can be changed
without even having to recompile the applications program.
Thus, a program could be fully constructed by an applica-
tions designer who is not a graphic artist, and an artist
brought in later to revise the pictures.

4. UNIFORMITY AND PORTABILITY

It is important that a UIMS be portable in a number of
senses. The system described satisfies these criteria
theoretically and we are in the process of proving its porta-
bility in practice.

4.1 Output Device Independence

At the most primitive level, a user interface management
system must support a number of different output devices
with different characteristics. In the case of MENULAY and
MAKEMENU, for example, the device independence is
achieved by using the GPAC graphics package with such
varied devices as a high-resolution vector display with 16
intensity levels and a low-resolution 16-colour raster
display. The run-time support package (without MENULAY as
of yet) has also been made to run on various alphanumeric
terminals.

4.2 Input Device Independence

The UIMS must also be able to support alternative input
techniques. The primary input device used in MENULAY at
present is a graphics tablet with a four-button é:uck and
the typewriter keyboard. A set of Allison sliders™ are also
used, but are only available through pre-programmed pack-
ages. Other pointing devices (such as mice, light-pens, or
touch-screens) could be used in place of the tablet with the
provision of the appropriate GPAC device driver. The run-~
time support package, however, can be driven by virtually
any event-generating device that has a GPAC driver.

4.3 Language Independence

At a further level of portability, the UIMS should be struc-
tured to facilitate the ability to generate code in different
programming languages. The output of MENULAY is a
metacode which is translated into high-level language by
MAKEMENU. To output code In a different language would
involve rewriting this program and providing run-time sup-
port in a compatible format.

4.4 Machine Independence

At a higher degree of portability is the capacity to transfer
a system such as MENULAY either to a more powerful
machine than the PDP-11/45 (e.g., a VAX-11/780) or a less
powerful one (e.g. an APPLE microcomputer).

As has been noted, MENULAY and MAKEMENU are written in C
(a standardized language which is relatively portable) and
use GPAC, a device-independent graphics package (which
is itself written in C). Provided the necessary hardware
drivers are available, GPAC and thus MENULAY/MAKEMENU
could be transferred at reasonable cost to any system
which will support UNIX and C.

4.5 Applications Program Portability

In contrast with MENULAY, the applications programs gen-
erated by MAKEMENU can be ported even to systems which
do not support UNIX. With a cross-compiler and a basic
graphics package, for example, applications programs such
as computer-assisted instruction frames could be compiled
to rum o many microcomputers.

e ——————

6. This device Is a continuous beit slider. 1t is a treadmlli with a 9 by 1.5 cm
surface exposed which Is used as a motion-sensitive Input device. The
mechanlical section was developed by Allison Research Inc., 2817 Erica
Place, Nashvllle, Tenn. 37204. The electronlcs used here were
developed In house.

Volume 17, Number 3

July 1983

6. COMPARISON WITH OTHER SYSTEMS

Other UIMSs do exist, and have had an influence on the evo-
lution of our system. The most distinguishing feature of
MENULAY is its natural way of integrating graphical design
specification with human-written applications programming.
By way of comparison, we review briefly three systems:
TRW!'s FLAIR; Olsen's automatic code generation design; and
Kasik's TIGER.

6.1 FLAIR

FLAIR (Functional Language Articulated Interactive
Resource) (Wong & Reid, 1982), is a user interface dialogue
design tool which enables a system designer to construct
graphically a user dialogue for an applications program. Itis
largely driven by voice Input and incorporates text picture
construction and editing (at the graphical primitive level) as
well as dynamic frame layout. Its high-level features
include the ability to define and control a menu hierarchy,
graph and map generation, an on-line calculator and refa~
tional data base access for graphical entity storage and
retrieval.

FLAIR is more advanced than MENULAY in its use of multiple
input technigues and in its ability to permit the applications
designer to specify a wide range of end user interactions.
However, we are in the process of extending MENULAY's
capabilities to permit the specification of a much wider
range of user interactions.

FLAIR contains a powerful set of internal utilities, but
appears to be rather limiting in its Integration with
application-specific code. FLAIR is a language and package
unto itself, with no apparent “hooks" into other programming
languages. This suggests that if the FLAIR "language’ does
not permit the applications programmer to program a certain
algorithm conveniently, then that algorithm will be inacces-
sible. MENULAY, on the other hand, creates menu specifica-
tion files that are converted into fully-documented C pro-
grams which, as noted earlier, are automatically integrated
with any code the programmer may have written for the
specific application.

6.2 Olsen's Model for Automatic Code Generation

Olsen (1982) describes research into the automatic genera-
tion of interactive graphical systems to facilitate faster and
cheaper generation of interactive user interfaces. This
work has not yet progressed beyond the design stage.

Olsen points out the useful distinction between these
design of the application program interface and thes writ-
ing of the program itself. He observes that it is the design
aspect of the program creation which is suited to automatic
program generation. This is because of the high cost in time
and effort of hand-coding and the increased reliability of
automatically generated software.

Olsen envisages the use of Pascal procedure definitions for
the characterization of interactive commands in the applica-
tions program. We feel that MENULAY is a significant
improvement over this idea in that the command menus and
interaction relationships are specified in the very way in
which the end user will interact with the applications pro-
gram, l.e. by pointing. Olsen does not address the possibility
of having the specification technique use the same devices
and interfaces as those the end-user will ultimately face.

6.3 TIGER

Kasik (1982), describes a UIMS which, like our UIMS, takes
care of the bookkeeping associated with screen layout,
interrupt handling and the definition of interactive dialogue
sequences. This UIMS, called TIGER, has as its core the
language TICCL, which permits the applications programmer
to concentrate on the logical functions which he wishes to
perform rather than the physical, low-level steps which
must be taken to accomplish the task.

Computer Graphics

TICCL can be used to describe algorithms which combine
graphical primitives ir response to user interactions as well
as to define user interaction sequences. TICCL code
operates at a higher level than the Pascal code which is
used for the non-graphical portion of the applications pro-
gramming.

TICCL is useful as a mechanism for specifying user interac-
tion at a higher level than is otherwise available to its
designers. Such a language combined with a higher level
package such as MENULAY would permit even more flexibil-
ity in user interface prototyping. While TIGER does not
currently incorporate a module comparable to MENULAY,
TICCL is a powerful language, and could support such a tool.

To the extent TICCL is used for constructing graphical primi-
tives from user interactions, it is more advanced than our
table-driven menu system for which MENULAY acts as
preprocesor. On the other hand, we feel that our program-
mers' packaged units, together with the flexibility of GPAC
and its integration intoc programmers' C code, provide a use-
ful alternative set of interaction response tools.

6. FUTURE DIRECTIONS
6.1 Protocol Analysis

The recording of sequential data about end-user interac-
tions is essential to the evaluation of the interaction tech-
niques used in an applications program. With a menu-driven
system based on cursor and tablet, this data consists of a
time-stamped record of each user input, recording the x and
y tablet co-ordinates of the cursor and the input event
which was activated.

We are in the process of developing tools for the analysis
of this data, stored in a so-called "dribble file’. As part of
the process of developing the interaction sequences for an
applications program, the designer will ask an end-user to
spend a session with the program. Afterwards the new
tools will facilitate the analysis of the 'dribble file'" for that
session in a number of ways. First, they will allow the
designer to ''play back'' the user interactions in real time, so
as to get a feel for the flow of the user-computer dialogue.
Second, they will draw for the designer a "spiderweb' which
superimposes graphically all of the hand motions of the user
in his interaction with the program (see Figure 10). The spi-
derweb makes it easy to spot the

A, atemg. 4

E { N"Z_g"\

/
AN \’L &
= I N
— ;'// .
IA(.
S=NeWlias

]

\ll/

M

—h

Figure 10. Tracing of Coordinates of Events Recording a
User's Session

points at which the user is being forced to repeatedly make

41

Volume 17, Number 3 July 1983

hand motions that are uncomfortable or excessively long.

To function properly, the dribble flle data must be recorded
at every user input. This implies that the recording be done
at the level of event recognition, and that the information
always be available unless the programmer has specified
otherwise. To do so, however, requires special support in
the event-detection mechanism of the graphics package
used. Furthermore, the event recognition routines them-
selves should be able to function in a mode which permits
input from sources other than the physical input devices.
The stored data files should be able to be used as the
source of input events.

6.2 Window Management

MENULAY presently generates code which operates within a
single window on the screen. While multiple frames or levels
within a program can be created very easily, multiple win-
dows can not.

It is intended to expand the capabilities of the table-driven
menu system (and therefore of MENULAY) to permit the
designation of multiple windows by the applications
designer. Windows would have attributed to them specific
cursor tracking symbols, background colours, and input
events. As at present, specific light buttons (text or graph-
ical) will be locatable at any place within a particular win-
dow.

7. ACKNOWLEDGEMENTS

MENULAY and MAKEMENU are the highest level of a user
interface management system which is built on years of
work at the Computer Systems Research Group. We ack-
nowledge with thanks the contributions of Ron Baecker and
Leslie Mezel, former directors of the Dynamic Graphics Pro-
ject; Bill Reeves, author of the GPAC graphics package; and
other major contributors to our inventory of graphical tools
and techniques: Tom Duff, Greg Hil, Tom Horsley, Sanand
Patel, Rob Pike, David Tilbrook, Mike Tilson and Martin Tuori.

We also gratefully acknowledge the helpful comments made
by the referees and by Dave Kasik.

Interactive graphics research at the Computer Systems
Research Group has been funded for many years by the
National Sciences and Engineering Research Council, and
more recently by the Social Sciences and Humanities
Research Council.

8. REFERENCES

Buxton, W., Fogels, A., Fedorkow, G., Sasaki, L. & Smith, K. C.
(1978). An Introduction to the SSSP Digital Syn-
thesizer. Computer Music Journal 2(4), 28 - 38.

Buxton, W., Patel, S., Reeves, W. & Baecker, R. (1982).
Objed and the Design of Timbral Resourcas. Com-
puter Music Journal 6(2), 32 - 44.

Buxton, W., Sniderman, R., Reeves, W., Patel, S. & Baecker,
R. (1978). The Evolution of the SSSP Score Editing
Tools. Computer Music Journal 3(4), 14 - 25.

Buxton, W. & Sniderman, R. (1980). Iteration and the Design
of the Human-Computer Interface. Proceedings of
the 13th Annual Meeting of the Human Factors Asso-
ciation of Canada, pp 72 ~ 81.

Deutsh, L & Taft, E. A. (1980). Requirements for an Experi-
mental Programming Environment. Technical Report
CSL-80-10, XEROX PARC.

Kasik, D. (1982). A User Interface Management System.
Computer Graphics, 16(3), 99 - 106.

Kuzmich, N. (in preparation). Melody Manipulations. Music

Computer Graphics

Dept., Faculty of Education, University of Toronto.

Olson, D. (1983). Automatic Generatlon of Interactive Sys-
tems, Computer Graphics 17(1), 63 - 67.

Reeves, W. (1975). A Device-Iindependent Interactive
Graphics Package M.Sc. Thesis, Dept. of Computer
Science, University of Toronto.

Swartout, W & Balzer, R. (1982). An Inevitable Intertwining
of Specification and Implementation. Communica~
tions of the ACM 25(7), 438 - 440.

Wong, Peter C.S., and Eric R. Reid (1982). FLAIR - User
Interface Dialog Design Tool, Computer Graphics,
16(3), 87 - 98.

APPENDIX 1: A Walkthrough of a CAl application

The following is a brief account of an applications
designer's use of MENULAY to create a lesson to help teach
chemistry titration. The time taken in this instance was less
than ten minutes.

The designer begins by typing "draw" to invoke the DRAW
program and then uses the graphics tablet to input free-
hand pictures of a burette, a beaker and a stand. Each pic-
ture is scaled down in size by pointing to the command
"SIZE" and then sliding the "knob" on the displayed poten-
tiometer (like that in Figure 4). The "knob' is slid by posi~
tioning the cursor over it and holding down the main button
on the cursor puck while sliding it up or down. Each picture
is stored in a disk file (by pointing to the command "SAVE",
and typing in or pointing to the file name).

Next, MENULAY is invoked (by selecting "EXIT" and then
"MENULAY" from a new menu), whereupon an explanation is
displayed together with MENULAY's command menu. The
user selects "LAYOUT" and sees the newly created pictures
in a menu at the bottom of the screen. Selection of the
burette causes a copy of it to be tracked as the cursor. It
is anchored in the work area by pressing or releasing the
main button on the cursor puck (see Figure 3). The same is
done to the beaker and the stand. Typing at the keyboard
causes that text to be displayed at the current cursor posi~
tion. Any item in the work area (whether text or graphics)
can be repositioned by pointing to it and dragging it to a new
position, again anchoring it either by releasing the button or,
if it was released immediately upon pointing, by pressing the
button again.

To change the scale of any item, the user selects "SIZE" in
the main menu (displayed in Figure 2), selects the item, and
then changes its size, again with a graphical potentiometer
(see Figure 4). To set or change the colour of any item, the
user selects "COLOUR' in the main menu and chooses a tint
from the menu at the bottom of the screen. This tint is
tracked (as shown in Figure 5) until another tint is selected.
Any items pointed to are assigned the currently tracked
colour. The colour of each item is displayed next to the item
if the hardware device does not support colour graphics.

The designer specifies that the function named drip is to be
invoked when the end-user points to the burette (by
selecting "FUNCTION", selecting the burette, and typing
"drip": see Figure 6). The entire set of interface specifica-
tions is now stored in a file (by pointing to "SAVE' and typing
a file name.

Finally, the user selects “"TRYOUT' and then chooses Spiwrit
(a colour raster screen) as the display device (see Figure
7) and references "drip.c’, an application-specific C source
file. This causes the interaction specifications to be
automatically converted into C language programs which are
compiled and linked with the application-specific code. The
resulting binary file is then executed (see Figure 11).

42

Volume 17, Number 3

July 1983

Please point to the burette

to add a drop of acid

N

Wow! It changed colour!

Figure 11. Running the Titration Simulation

Here Is the source code for the drip routine - the only code
which the programmer had to write:

#include "/u0/dave/master/menuglobalh”
#define beaker plicture("beaker");
Int drops O;

dripQ

{
type("Added a drop of liquid...");
sound(DRIPPING);
drops = drops + 1;

if(drops == 3)

§
type ("Wow! It changed colourl®);
resetcolour{peaker, PINK);
sound(BUZZING);

