
T O W A R D S A C O M P R E H E N S I V E
USER INTERFACE M A N A G E M E N T S Y S T E M

W. Buxton, M. R. Lamb,
D. Sherman & K. C. Smith

Computer Systems Research Group
University o f Toronto

Toronto, Ontario
Canada MBS 1A4

ABSTRACT

A UIMS developed at the University o f Toronto Is presented.
The system has two maln components. The f i rs t is a se t o f
tools to support the deslgn and implementation of Interac-
t ive graphics programs. The second Is a run-time suppor t
package which handles Interact lons between the system
and the user (thlngs such as hit detect ion, event detect ion,
screen updates, and procedure invocation), and provides
faci l i t ies for logging user interact ions for later protocol
analysis.

The deslgn/Implementation tool Is a preprocessor, called
MENULAY, which permits the applications programmer to use
interact ive graphics technlques to design graphics menus
and their funct ional i ty. The output of this preprocessor Is
high-level code which can be compiled with application-
specif ic routines. User Interact ions with the result ing exe-
cutable module are then handled by the run-time support
package. The presentat ion works through an example from
design to execut ion In a s tep-by-s tep manner.

CR Categories and Subject Descriptors.- D.2.2 [So f twa re]
Tools and Techniques - User Inter faces; H.1.2 [Information
Systems] User/Machine Systems - Human Information Pro-
cessing; 1.3.4 [Computer Graphics] Graphics Utilities -
Sof tware Support; 1.3.6 [Computer Graphics] Methodology
and Techniques - Interact ive Techniques.

General Terms: Human-Computer Dialogue, Interact ion
Management.

Additional Keywords and Phrases: Dialogue Deslgn and
Specification, and Dialogue Run-Time Support.

I . INTRODUCTION

Traditionally, In teract ive graphical programs have been wr i t -
ten using conventional programming languages, low-level
tools, and of ten ad hoc techniques. The cost o f doing so
has been time, f rustrat ion, and quality o f end product.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© ACM 0-89791-109-1/83/007/0035 $00.75

A user in te r face management system (UIMS) is Intended to
reduce this cost. The object ive Is to f ree the applications
programmer from low-level details so as to be able to con-
cent ra te on higher appl icat ions-specif ic aspects o f the
user inter face. A UIMS typical ly consists of a package of
tools which support the implementation, debugging and
evaluation of interact ive human-computer dialogues.

An analogy can be drawn between a UIMS and a data base
management system (DBMS). The DBMS mediates between
programmer and data, enforcing a consistency of technique
among all programmers In accessing that data. It provides
portabi l i ty because only the lowest- level DBMS routines are
hardware-dependent. Similarly, the UIMS mediates between
the applications programmer and the input events,
encouraging a consis tency both o f graphical , layout
representat ion and of input processing mechanisms. 1

This paper presents a UIMS developed at the Computer Sys-
tems Research Group, University o f Toronto. The system
comprises a se t o f tools for designing and implementing
menu-based dialogues and for providing run-time support
for more general event-dr iven interact ive programs. The
module for designing/implementing menu-based dialogues
has the property o f permitting hand-wri t ten programs to be
integrated with code automatical ly synthesized from the
programmer's specif icat ions.

1.1 The Need for a UIMS

Our current understanding of human-computer Interaction Is
ext remely limited. We cannot s i t down and design an inter-
face for an application and know, a p r i o r i , how well it will
perform. We must accept st the outset , therefore, the
inevitable intertwining of specif icat ion, design, and imple-
mentation (Swartout & Balzer, 1982). Design then becomes
an i terat ive process, each iteration consisting of three
phases: design, implementat ion and evaluation (Buxton &
Sniderman, 1980). The motivation to develop improved tools
can there fore be seen as a desire to increase the number
of i terat ions that we can af ford to pass through in this loop.
The hoped-for consequence will be an improvement in the
quality of the user in ter faces which we produce.

The UIMS presented herein aids In the design end imp le-
mentat ion phases by providing the following se t o f tools: a
graphics package; sketch editors; a standardized graphics
communications protocol; table-dr iven run-time support o f
the user dialogue; and, most recent ly, a graphical layout and
interact ion specif icat ion preprocessor which generates C
language programs. Underway are the development ot ~
interaction analysis tools to aid in the evaluation phase of
the cycle.

1. This Is not to Imply that data-base management Is Independent of the
user Interface. Rather, the tools applied to each of t h e s e f r e e the
applications programmer so that their mutual Inf luence can be b e t t e r
taken Into considerat ion.

35

Each of the modules of the exist ing system has limitations.
However, when viewed together, the various pieces begin
to shed some light on what would comprise a comprehensive
se t of tools for the user in ter face designer. In presenting
our exper ience in a longitudinal way, it is hoped tha t we will
make some contribution towards the realization of such a
comprehensive se t o f tools.

1.2 U of T UIMS Structure

In its current s ta te, our UIMS consists of two main modules.
The f i rs t Is a preprocessor which enables the program
designer, using interact ive graphics techniques, to design
and speci fy the graphical layout and funct ional i ty o f menu-
based user in ter faces. It is with this module tha t the appli-
cations programmer establ ishes the relationships between
what the user sees, does, and hears, and the application-
specif ic semantics underlying the program being imple-
mented.

The second main module is the run-time support package. It
handles things such as event and hit detect ion, procedure
invocation, and updating the display - all according to the
schema specif ied using the preprocessor. An important
aspect o f this implementation is that the code execu ted by
the run-time module can be generated automatical ly (com-
plete with comments) from the data specif ied to the prepro-
cessor.

The applicability o f the current implementation of the
preprocessor is rest r ic ted to menu-based interaction.
Within this domain, however, it is quite f lexible, and sup-
ports various types of displays (colour or monochrome) and
sound output. The run-time support package is more gen-
eral and does not depend upon the preprocessor. It Is
designed for supporting event-dr iven so f tware and e
var ie ty of input devices. These two packages do not stand
alone. They are jus t two components in a more general "ki t"
of prototyping tools to support I terat ive and experimental
programming (Deutsh & Taft, 1980). In discussing these
tools, we find it useful to distinguish between genera/
design tools and programmers' packaged units.

The general design tools faci l i tate the speci f icat ion of
graphical information and functional relationships, the wr i t -
ing of appl icat ion-specif ic code and the debugging of suc-
cessive versions of applications programs. Many of these
tools are standard components in modern operating sys-
tems. Besides the two modules mentioned above, our

2 inventory o f such tools includes: (1) the UNIX operating
system, with its highly sophist icated command interpreter ,
C language compiler, hierarchical fi le system and many utili-
t ies; (2) the GPAC device- independent graphics package
(Reeves, 1976); (;3) routines to save and ret r ieve pictures
stored as standard format metafi les; (4) t e x t editors; (5)
graphical sketch editors; and (B) in teract ive symbolic
debuggers.

Programmers' packaged units are ready-made modules
which can be integrated into applications so f tware . They
are documented and tes ted bui lding-blocks. They are gen-
erally packaged versions of blocks of code which are
observed to be reccuring and of general util ity. Our library
of such modules, therefore, is continually expanding.
Representat ive of such packaged units are: (1)specia l ized
iconic cursors which can be used as meaningful tracking
symbols; (2) d i rectory windows which permit graphical user
re ference to any file o f a given type; (3) a graphical poten-
t iometer with a "knob" which the user can "slide" up and
down to change the value of a program parameter; (4) a
graphical piano keyboard which audibly plays the notes
pointed to; (5) routines to manipulate l ightbuttons within the
above menu-driven system (e.g, to flasih deact ivate and
highlight individual menu items); and (6) an audio support
package, which drives a digital sound synthesizer (Buxton,
Fogels, Fedorkow, Sasaki & Smith, 1078). Many of these

2. UNIX is a t r a d e m a r k o f Bel l L a b o r a t o r i e s .

modules will be I l lustrated In examples which fol low.

2. EVOLUTION OF OUR UIMS

Our UIMS has evolved over several years, In parallel with the
development o f innovative so f tware for graphics applica-
tions, it is implemented in the C programming language on a
PDP-11/45, which was acquired in 1975 and runs UNIX ver -
sion 6.

First came GPAC, a device- independent graphics package
(Reeves, I g75), onto which success ive ly higher levels were
built. Interact ion techniques, specialized cursors and direc-
tory windows fol lowed, in 1976-78. As part o f the Structure
Sound Synthesis Project, the table-driven run-time support
package of the UIMS was put together in 19zg. Finally, in
1982, MENULAY, the graphical menu layout and funct ion
specif icat ion preprocessor was built.

2.1 Table-driven run-time support system

With the development o f a number o f menu-based interac-
t ive programs in the late lgTO's, it became apparent that
the user in ter faces all had a large number of common
features, but that each programmer implemented them with
a "personal" touch. So personal, in fact , tha t the code was
dif f icult for others to understand or support. Accordingly,
we began to develop a more uniform methodology which not
only captured the best ideas of these various approaches,
but also made them available in a ful ly-documented and
wel l -supported environment. The basis o f our new metho-
dology was an external ly-control led, table-dr iven system
which supported event-dr iven interact ions. The program-
mer supplied the system with the appl icat ions-specif ic rou-
t ines and Information about what types of events were
act ive when, and what and how such events were to e f f ec t
the program's behaviour. At run-time, then, responses to
user interact ions (such as event and hit detect ion, display
updates, and procedure invocation) were handled by this
package.

The present package, an extension of that developed in
lgTg, is primarily or iented towards screen and menu-based
systems. It is capable of supporting event-dr iven interac-
tions that go well beyond simple l ight-button select ion
(examples are: Buxton, Sniderman, Reeves, Patel &
Baecker, 1978; and Buxton, Patel, Reeves & Baecker,
1082). The tables used by the system have nine user-
specif ied fields per entry. These fields include:

the name of a user-speci f ied procedure which is to be
invoked upon the detect ion of a speci f ied input event ;

the input event which is to tr igger that procedure;

f ields to contain (variable) parameters of that procedure;

the x and y hit area for procedures tr iggered by pointing
events;

any t e x t (or the name o f a graphics file containing a picture)
to be displayed;

the x and y co-ordinates of the item to be displayed;

the item's size and colour.

The system also supports dummy table entr ies for set t ing
various parameters, such as whether subsequent hi t -areas
are to have boxes drawn around them or not. As well, it pro-
vides for funct ions to be invoked in special cases arising in
menu-based systems: (1) if the user misses all of the light-
buttons, (2) when entering or (3) when exit ing from the
menu.

Finally,the package provides easy- to -use routines for
set t ing-up and switching among the menus, or "sta¼es" o f
the appl icat ion-defined system.

While this package was of value, it was still a tedious task
to speci fy the data which made up the tables. This was
especial ly t rue during the early stages of development,
when the graphic design, funct ional i ty, and syn tax of the

36

user in ter face were continually being revised due to exper i -
mentation. ConSequently, we were motivated to develop
another tool which would faci l i tate the specif icat ion and
modification of these data. The result was the preproces-
sor, MENULAY, described in the nex t sect ion.

3. MENULAY AND MAKEMENU

3.1 Concept

The preprocessor which serves as the f ron t end of our
UIMS is known as MENULAY. The package is designed to
enable the user in ter face designer (who is not necessar i ly
the applications programmer) to speci fy rapidly and natur-
ally the graphical and functiona! relationships within and
among the displays making up a menu-based system.
Specif ications made using the package are conver ted into
the C programming language and compiled through the use
of a companion program MAKEMENU. The resulting code can
be linked with appl icat ion-specif ic routines.

MENULAY enables the designer to define user in ter faces
which are made up of networks of menus. These may be
st ructured in a hierarchic manner, or in an arbi t rary fashion.
Furthermore, the method of interacting with these menus is
open, and up to the designer. A prime object ive of the tool
is to minimize the bias imposed by the path of least res is-
tance, which may favour one interaction technique over
another. MENULAY is a product o f i tself. It there fore gives
the user inter face designer a feel for the nature of the
interaction sequences being specif ied, while at the same
time indicates the range of tools available.

3.2 Functional Flow

The entire sequence as se t out in Figure 1 can be per-
formed by the

Jcreale =Lctures (DRAt/ o r HAFWIT)I

MEN~ULAY

$1'
Jchanae ~ . ze~ end c o L o u r t , a~mLmn f u n c l L o n t ~

$
6Lore tn menu s p e c t f L c e L ~ o n f t L e l

$
MAKEMENU

creale C prosrams for I
t a b l e - d r i v e n menu s v s l e n i

$
~om~te and runJ

the applications designer. This conversion is performed by
MENULAY's companion program, MAKEMENU. The programs
generated from MENULAY's compact specif icat ion f i les are
syntact ical ly correct , complete and internally documented
with liberal comments. They are designed for compilation
with the same table-driven support system on which MENU-
LAY i tsel f is built. Because these programs are in C, how-
ever, they can be adapted when required by using a t e x t
editor. Where necessary, these changes can be recorded
automatically, and rep#ated whenever the menu speci f ica-
tion fi les are changed ~.

Where the applications designer speci f ies names of
appl icat ion-specif ic functions, the programs generated by
MAKEMENU contain unresolved external re ferences
("hooks"). By writ ing funct ions with the required names and
referencing the appropriate file names when MAKEMENU is
called, the applications programmer can add any amount of
appl icat ion-specif ic programming to the layout and
sequence Information specif ied by the designer. The two
sets o f code (computer-generated and programmer-
authored) are completely compatible, and can share global
variable names, external function references, and so on.

Work is present ly underway on a decompiler which will be
able to reverse the MAKEMENU process. This decompiler,
called UNEMEKAM, will conver t a C program which makes use
of the table-driven menu so f tware into a menu specif icat ion
fi le which can be edited graphically using MENULAY.

3.4 Command Hierarchy

MENULAY has one main command level, containing seven
basic commands. These are layout, s ize, colour, funct ion,
get save, t ryout and ex i t These are i l lustrated in Figure 2.

~ w
P l e a s e p o t n t Lo t h e b u r e t t e

~t l t
t o add a d rop of' a c i d

saved [h f t L e " t lE~r=LLoh' .

ILayouL

s~ze

IcoLour

Ifuncl Lor~

clear

Re~,

I L rvouL

exll I

Figure 1. A typical Sequence for Construct ing an Interac-
t ive Dialogue

applications designer in an interact ive graphics environ-
ment. A graphics tablet and four-but ton puck are used for
all input to MENULAY (except for such character-or iented
input as the typing of the names of appl icat ion-specif ic
funct ions tcr be called upon hit detect ion). The MAKEMENU
program creat ion and compilation options are also specif ied
graphically.

3.3 Automatic Code Generation

MENULAY's elegance lies in the automatic conversion into C
language programs of the graphical in ter face specif ied by

Figure 2. MENULAY Commands

Layout allows the designer to create tex tua l items (e.g.,
light but tons) on the screen; add pictures either taken
from the system library of graphical icons or created by
the user with a sketch editor; change the position of any
item; and delete items from the screen (see Figure 3).

Size enables the designer to change the scale of any item
on the screen, either by "sliding the knob" on a graphical
potent iometer or by typing in a scale factor , as shown in

3. Hand-coding changes to MAKEMENU output obviously causes problems In
"unmaking" menus. Using the facil ity Is a concession to reality= the
s ta te -o f - the-ar t does not ye t permit us to make a totally comprehensive
UIMS.

37

Figure 4.

Co/our al lows one to s p e c i f y (or change) t h e co lour o f any
i tem on t h e e n d - u s e r ' s s c r e e n (see F igure 5). This is
i n d e p e n d e n t o f t he dev i ce on wh ich t h e des igne r Is us ing
MENULAY; t h e h igh - reso lu t i on d i sp lay we mos t commonly
use, fo r examp le , does no t s u p p o r t co lour g raph ics .

LAYOUT
OONE

[]
~---BLUE

¢>

F igure 3. MENULAY - Lay ing Out t h e Disp lay Graph ics

d I
I

r ~

F igure 4. MENULAY - Chang ing t h e Size o f an I tem (t he
s t a n d) w i th a Graphica l P o t e n t i o m e t e r

Function enab les t he des igne r t o s p e c i f y w h a t wil l happen
when t he e n d - u s e r po in ts to l ight bu t t ons . The l ight b u t -
t ons may be t e x t or p i c tu res . The des igne r may also
s p e c i f y a f unc t i on to be i n v o k e d i f t he use r a c t i v a t e s an
inpu t e v e n t w i t h o u t po in t ing to a n y one l ight bu t t on , in
addi t ion, i t is poss ib le to s p e c i f y f u n c t i o n s to be ca l led
w h e n t h e menu be ing des igned is e n t e r e d and e x i t e d .
This is shown in F igure 6.

The f unc t i on names may be t a k e n f rom MENULAY's l i b ra ry
o f u t i l i t y f u n c t i o n s or be w r i t t e n b y t h e app l i ca t ions

F igure 5. MENULAY - Ass ign ing Co lours to t h e I tems on t h e
Sc reen

p rogrammer b e f o r e compi la t ion o f t h e program. The w r i t -
ing o f t h e s e f u n c t i o n s is done e n t i r e l y I n d e p e n d e n t l y o f
(and e i t he r b e f o r e or a f t e r) t h e c rea t i on o f t h e menu
spec i f i ca t i on f i le w i th MENULAY.

Function also a l lows programs o f up to 50 c h a r a c t e r s -
such as s h o r t pr in t s t a t e m e n t s - to be t y p e d d i r e c t l y
into MENULAY. MAKEMENU t a k e s ca re o f c rea t i ng a n e w
f unc t i on name fo r t h e f u n c t i o n tab le to enab le t h e code
t y p e d in by t h e use r to be loaded.

PLease po~nf , t o t h e b u r e t t e

t o add a d r o p of" s o l d

S
[]

T D o s t L i o n c u r s o r and LYoe F u n c L t o n name I

Figure 6. MENULAY - Ass ign ing Funct ion Names to t h e Ac t i ve
I tems (L i g h t - B u t t o n s)

Get (and save) al low t h e user to r e t r i e v e f rom (and s t o r e
in to) a menu spec i f i ca t i on f i le t h e deta i ls o f t h e l a y o u t
and f unc t i ona l re la t i onsh ips wh ich t h e des igne r has
spec i f i ed . The menu spec i f i ca t i on f i le is e x t r e m e l y com-
p a c t and is t hus a v e r y e f f i c i e n t s t o r a g e fo rma t . Each
i tem o f t h e menu s c r e e n is r e f e r e n c e d by x and y co -

38

ordinates, hit area, size, colour, function, t e x t (If a t e x -
tual item) or standard graphics format fi le name (if a
graphical icon).

Tryout gives the user the opportuni ty to invoke rnakemenu,
the code generation program, by specifying graphically
the options and fi les he wishes to access (see Figure 7).

OPTIONS

+

[Graphic Wonderl IS~iwrlt (coLour}l

F - ~ I PILOTs tm J

COMPUTER-GENERATED COMMAND STRING

F ~
m a k e m e n u t L t r a ~ ; .on

D

Figure7. MENULAY - Generating 'C' Code to Implement
Specified Inter face (by Invoking MAKEMENU)

Once the program has been compiled, tryout then runs It
for the user.

Exit is used to ex i t the program. The user is given a new
menu with "YES" and "NO" options to confirm tha t he does
indeed wish to exit .

MENULAY has levels o f use: "novice" and "expert " . In
novice mode, only the basic commands (as se t out above)
are accessible. All input Is done through one button on the
cursor puck, and instruct ions are given at various points in
the program. In expert mode, the other three buttons on the
puck can be used to perform special functions (e.g.,
displaying a grid while positioning items; flipping from one
menus of pictures or colours to another; assigning a func-
tion name which is identical to the t e x t in the menu item),
and fewer Instructional diagnostics are displayed. The sys-
tem maintains on disk a profi le for each user (a fi le called
"userpro"), initially tagging each person as "novice" and
upgrading them based on exper ience with the system and
on specif ic request. 4

From any point within MENULAY (excep t during layout, where
typing t e x t causes the creation of light buttons containing
the t e x t typed), the user can access the UNIX shell (com-
mand in terpreter) by typing at the terminal. (When this hap-
pens, the MENULAY screen fades and the user's scroller is
reset to the full screen until the user returns to MENULAY.)
This means that the full range of terminal-based commands
can be accessed instant ly wi thout leaving MENULAY. For
example, any calculations which the designer wishes to
make in the course of the graphical layout specif icat ion can
be made by invoking the on-line desk calculator. Similarly,
the applications designer who is also a programmer may
compose a function by invoking the t e x t editor. Or the
designer may send the programmer comments about the
implementation by electronic mail before there 's a chance
to fo rge t them.

3.6 Applications

MENULAY has already been used to const ruc t the user
in ter face for each of the following programs: (1) MENULAY
itself ; (2) the DRAW sketch editor, which is used to gen-
erate l ight-button graphics; (3) a computer-assisted
instruction (CAI) pro_gram which teaches children about
birds and their nes tsb (see Figure 8);

ISELECT-A-BEAKI

i c e d - c r e e k Ins * Lop ;h i n t L-pu~pooe

Lel~ ;ns L~secL-ca Lch i nk P~'obLhS

r r u c t - e l t t n s hammePtns

PQLr~E Lg ~.he beck you n n t , your b; ,d Lo f~lvl.

I f yOt~ ttlHl~* i lmrl ~,01fomtttlft, pc.Lnk to EXPLA~[N.

Figure 8. Beak Selection Sequence from 'Land Birds and
Their Nests'

and (4) a graphical piano keyboard and musical notation edi-
tor (Kuzmich, In preparation: see Figure g).

c

, A d jo- J # d " ~

I NOTATING I ~

Figure 9. 'Melody Manipulations' music notation editor and
teaching tool

It can be u~sed to assemble, In minutes, sequences of
f rames for CAI in virtually any area of instruction where
graphics is helpful. It has also proven useful for laying out

5. " Land Birds and The i r N e s t s " , d e s i g n e d b y Young N a t u r a l i s t F o u n d a t i o n ,
To ron to , C a n a d a , and p r o g r a m m e d b y CSRG (In p r e s s) ,

39

f igures such as Figure 1 of this paper. Appendix I presents
a walk-through of a CAI example.

It is notable that since graphical Icons for the user's screen
are re ferenced by file name, these pictures can be changed
wi thout even having to recompile the applications program.
Thus, a program could be fully const ructed by an applica-
t ions designer who is not a graphic art ist , and an ar t is t
brought in later to revise the pictures.

4. UNIFORMITY AND PORTABILITY

It is important that a UIMS be portable In a number o f
senses. The system described sat is f ies these cr i ter ia
theoret ical ly and we are in the process of proving its por ta-
bility in practice.

4.1 Output Device Independence

At the most primitive level, a user in ter face management
system must support a number o f d i f fe rent output devices
with d i f ferent character is t ics. In the case of MENULAY and
MAKEMENU, for example, the device independence is
achieved by using the GPAC graphics package with such
varied devices as a high-resolution vector display with 1B
intensi ty levels and a low-resolut ion 16-colour raster
display. The run-time support package (wi thout MENULAY as
of yet) has also been made to run on various alphanumeric
terminals.

4.2 Input Device Independence

The UIMS must also be able to support a l ternat ive input
techniques. The primary input device used in MENULAY at
present is a graphics tablet with a four-button=puck and
the typewr i te r keyboard. A set o f Allison s l idersUare also
used, but are only available through pre-programmed pack-
ages. Other pointing devices (such as mice, l ight-pens, or
touch-screens) could be used in place of the tab let with the
provision of the appropriate GPAC device driver. The run-
time support package, however, can be driven by virtual ly
any event-generat ing device that has a GPAC driver.

4.3 Language Independence

At a fur ther level of portabil i ty, the UIMS should be s t ruc-
tured to faci l i tate the ability to generate code in d i f fe rent
programming languages. The output of MENULAY is a
metacode which is t ranslated into high-level language by
MAKEMENU. To output code In a d i f fe rent language would
involve rewrit ing this program and providing run-time sup-
port in a compatible format.

4.4 Machine Independence

At a higher degree of portabil i ty is the capaci ty to t rans fer
a system such as MENULAY either to a more powerful
machine than the PDP-11/45 (e.g., a VAX-11/ZBO) or a less
powerful one (e.g. an APPLE microcomputer).

As has been noted, MENULAY and MAKEMENU are wr i t ten in C
(a standardized language which is relat ively portable) and
use GPAC, a device- independent graphics package (which
is i tsel f wr i t ten in C). Provided the necessary hardware
drivers are available, GPAC and thus MENULAY/MAKEMENU
could be t ransfer red at reasonable cost to any system
which will support UNIX and C.

4.5 Applications Program Portabil ity

In cont ras t with MENULAY, the applications programs gen-
erated by MAKEMENU can be ported even to systems which
do not support UNIX. With a cross-compiler and a basic
graphics package, for example, applications programs such
as computer-assisted instruction frames could be compiled
to- run on many microcomputers.

6. This device Is a continuous bel t sl ider. It is a treadmll(wi th a g by 1.5 cm
surface exposed which Is used as a mot ion-sensi t ive Input dev ice. The
rnechanlcal sect ion was deveEoped by Allison Research Inc., 2.817 Erlca
Place, Nashville, Tenn. 37204 . The electronics used here were
developed In house,

5. COMPARISON WITH OTHER SYSTEMS

Other UIMSs do exist , and have had an influence on the evo-
lution of our system. The most distinguishing feature of
MENULAY is Its natural way of Integrating graphical design
specif icat ion with human-wri t ten applications programming.
By way of comparison, we review brief ly three systems:
TRW's FLAIR; Olsen's automatic code generation design; and
Kasik's TIGER.

45.1 FLAIR

FLAIR (Functional Language Art iculated Interact ive
Resource) (Wong & Reid, lg82) , Is a user in ter face dialogue
design tool which enables a system designer to cons t ruc t
graphically a user dialogue for an applications program. It is
largely driven by voice Input and incorporates t e x t picture
construct ion and editing (at the graphical primitive level) as
well as dynamic frame layout. Its high-level features
include the ability to define and control a menu hierarchy,
graph and map generation, an on-line calculator and rela-
tional data base access for graphical ent i ty s torage and
retr ieval.

FLAIR is more advanced than MENULAY in its use of multiple
input techniques and in its ability to permit the applications
designer to speci fy a wide range of end user Interact ions.
However, we are in the process of extending MENULAY's
capabilit ies to permit the specif icat ion of a much wider
range of user interact ions.

FLAIR contains a powerful se t of internal uti l i t ies, but
appears to be rather limiting in its Integration with
appl icat ion-specif ic code. FLAIR is a language and package
unto i tself, with no apparent "hooks" into other programming
languages. This suggests that if the FLAIR "language" does
not permit the applications programmer to program a certain
algorithm conveniently, then that algorithm will be inacces-
sible. MENULAY, on the other hand, creates menu speci f ica-
tion fi les that are conver ted into ful ly-documented C pro-
grams which, as noted earlier, are automatical ly integrated
with any code the programmer may have wr i t ten for the
specif ic application.

=5.20lsen's Model for Automatic Code Generation

Olsen (1082) describes research into the automatic genera-
tion of in teract ive graphical systems to faci l i tate fas te r and
cheaper generation of interact ive user in ter faces. This
work has not ye t progressed beyond the design stage.

Olsen points out the useful distinction between these
design of the application program inter face and thes wr i t -
ing of the program itself. He observes that it is the design
aspect of the program creation which is suited to automatic
program generation. This is because of the high cos t in time
and e f fo r t o f hand-coding and the increased reliabil ity o f
automatical ly generated sof tware .

Olsen envisages the use of Pascal procedure definit ions for
the character izat ion of in teract ive commands in the applica-
tions program. We feel that MENULAY is a signif icant
improvement over this idea in that the command menus and
interact ion relationships are speci f ied in the very way in
which the end user will in teract with the applications pro-
gram, I.e. by pointing. Olsen does not address the possibil i ty
of having the specif icat ion technique use the same devices
and inter faces as those the end-user will ult imately face.

5.3 TIGER

Kasik (lg82) , describes a UIMS which, like our UIMS, takes
care of the bookkeeping associated with screen layout,
interrupt handling and the definition of in teract ive dialogue
sequences. This UIMS, called TIGER, has as Its core the
language TICCL, which permits the applications programmer
to concent ra te on the logical funct ions which he wishes to
perform rather than the physical, low-level s teps which
must be taken to accomplish the task.

40

TICCL can be used to describe algorithms which combine
graphical primitives in response to user interact ions as well
as to define user interact ion sequences. TICCL code
operates at a higher level than the Pascal code which is
used for the non-graphical portion of the applications pro-
gramming.

TICCL is useful as a mechanism for specifying user interac-
tion at a higher level than is o therwise available to Its
designers. Such a language combined with a higher level
package such as MENULAY would permit even more f lexibi l-
i ty in user in ter face prototyping. While TIGER does not
current ly Incorporate a module comparable to MENULAY,
TICCL Is a powerful language, and could support such a tool.

To the ex ten t TICCL is used for construct ing graphical primi-
t ives from user interact ions, it is more advanced than our
table-driven menu system for which MENULAY acts as
preprocesor. On the other hand, we feel that our program-
mers' packaged units, together with the f lexibi l i ty o f GPAC
and its integration into programmers' C code, provide a use-
ful al ternat ive se t of interaction response tools.

6. FUTURE DIRECTIONS

6.1 Protocol Analysis

The recording of sequential data about end-user Interac-
tions is essential to the evaluation of the interact ion tech-
niques used in an applications program. With a menu-driven
system based on cursor and tablet, this data consists of a
t ime-stamped record of each user input, recording the x and
y tablet co-ordinates of the cursor and the input even t
which was act ivated.

We are in the process of developing tools for the analysis
o f this data, s tored in a so-cal led "dribble fi le". As part o f
the process of developing the interact ion sequences for an
applications program, the designer will ask an end-user to
spend a session with the program. Af terwards the new
tools will faci l i tate the analysis of the "dribble f i le" for that
session in a number of ways. First, they will allow the
designer to "play back" the user interact ions in real time, so
as to get a feel for the f low of the user-computer dialogue.
Second, they will draw for the designer a "spiderweb" which
superimposes graphically all o f the hand motions of the user
in his interaction with the program (see Figure 10). The spi-
derweb makes it easy to spot the

Figure 10. Tracing of Coordinates of Events Recording a
User's Session

points at which the user is being forced to repeatedly make

hand motions tha t are uncomfortable or excess ive ly long.

To function properly, the dribble fi le data must be recorded
at every user input. This implies that the recording be done
at the level o f event recognition, and that the information
always be available unless the programmer has specif ied
otherwise. To do so, however, requires special support in
the event -detect ion mechanism of the graphics package
used. Furthermore, the event recognit ion routines them-
selves should be able to function in a mode which permits
input from sources other than the physical input devices.
The stored data fi les should be able to be used as the
source of input events.

6.2 Window Management

MENULAY present ly generates code which operates within a
single window on the screen. While multiple f rames or levels
within a program can be created very easily, multiple win -
dows can not.

It is intended to expand the capabilit ies of the table-driven
menu system (and there fore of MENULAY) to permit the
designation of multiple windows by the applications
designer. Windows would have at t r ibuted to them specif ic
cursor tracking symbols, background colours, and input
events. As at present, specif ic light buttons (t ex t or graph-
ical) will be Iocatable at any place within a particular win-
dow.

7. ACKNOWLEDGEMENTS

MENULAY and MAKEMENU are the highest level o f a user
in ter face management system which is built on years of
work at the Computer Systems Research Group. We ack-
nowledge with thanks the contributions of Ron Baecker and
Leslie Mezel, former directors of the Dynamic Graphics Pro-
jec t ; Bill Reeves, author of the GPAC graphics package; and
other major contr ibutors to our inventory of graphical tools
and techniques: Tom Duff, Greg Hill, Tom Horsley, Sanand
Patel, Rob Pike, David Tilbrook, Mike Tilson and Martin Tuori.

We also grateful ly acknowledge the helpful comments made
by the re ferees and by Dave Kasik.

Interact ive graphics research at the Computer Systems
Research Group has been funded for many years by the
National Sciences and Engineering Research Council, and
more recent ly by the Social Sciences and Humanities
Research Council.

8. REFERENCES

Buxton, W., Fogels, A., Fedorkow, G., Sasaki, L. & Smith, K. C.
(lg78) . An Introduction to the SSSP Digital Syn-
thesizer. Computer Mus ic Journal 2(4), 28 - 38.

Buxton, W., Patel, S., Reeves, W. & Baecker, R. (1982).
Objed and the Design of Timbral Resources. Com-
puter Mus ic Journal 6(2), 32 - 44.

Buxton, W., Sniderman, R., Reeves, W., Patel, S. & Baecker,
R. (lg78) . The Evolution of the SSSP Score Editing
Tools. Computer Mus ic Journal 3(4), 14 - 25.

Buxton, W. & Sniderman, R. (1080). I terat ion and the Design
of the Human-Computer Interface. Proceedings o f
the 13th Annual Meet ing o f the Human Factors Asso-
c ia t ion o f Canada, pp 72 - 81.

Deutsh, L & Taft, E. A. (1980). Requirements for an Experi-
mental Programming Environment. Technical Report
CSL-80- I O, XEROX PARC.

Kasik, D. (1982). A User In ter face Management System.
Computer Graphics, 16(3), 90 - 106.

Kuzmich, N. (in preparation). Melody Manipulations. Music

41

Dept., Faculty o f Education, Unlverslty o f Toronto.

Olson, D. (1983). Automatic Generation of Interact ive Sys-
tems, Computer Graphics 17(1), ~53 -/57.

Reeves, W. (1975) . A Device-Independent Interactive
Graphics Package M.Sc. Thesis, Dept. o f Computer
Science, University o f Toronto.

Swartout, W & Balzer, R. (1982). An Inevitable Intertwining
of Specif ication and Implementation. Communica-
t ions of the ACM 25(7), 438 - 440.

Wong, Peter C.S., and Eric R. Reid (1082). FLAIR - User
Inter face Dialog Design Tool, Computer Graphics,
16 (3) , 87 - 98.

APPENDIX 1: A Walkthrough of a CAI application

The following is a br ief account of an applications
designer's use of MENULAY to create a lesson to help teach
chemistry t i t rat ion. The time taken in this instance was less
than ten minutes.

The designer begins by typing "draw" to invoke the DRAW
program and then uses the graphics tablet to input f ree -
hand pictures of e buret te, a beaker and a stand. Each pic-
ture is scaled down in size by pointing to the command
"SIZE" and then sliding the "knob" on the displayed poten-
t iometer (like that in Figure 4). The "knob" is slid by posi-
tioning the cursor over it and holding down the main button
on the cursor puck while sliding it up or down. Each picture
is s tored in a disk file (by pointing to the command "SAVE",
and typing in or pointing to the file name).

Next, MENULAY is invoked (by select ing "EXIT" and then
"MENULAY" from a new menu), whereupon an explanation is
displayed together with MENULAY's command menu. The
user se lects "LAYOUT" and sees the newly created pictures
in a menu at the bottom of the screen. Selection of the
buret te causes a copy of it to be t racked as the cursor. It
is anchored in the work area by pressing or releasing the
main button on the cursor puck (see Figure 3). The same is
done to the beaker and the stand. Typing at the keyboard
causes that t e x t to be displayed at the current cursor posi-
t ion. Any item in the work area (whether t e x t or graphics)
can be reposit ioned by pointing to it and dragging it to a new
position, again anchoring it ei ther by releasing the button or,
if it was released immediately upon pointing, by pressing the
button again.

To change the scale of any item, the user se lects "SIZE" in
the main menu (displayed in Figure 2), se lects the item, and
then changes its size, again with a graphical potent iometer
(see Figure 4). To se t or change the colour of any item, the
user se lects "COLOUR" in the main menu and chooses a t int
from the menu at the bottom of the screen. This t int is
t racked (as shown in Figure 5) until another t int is selected.
Any items pointed to are assigned the current ly t racked
colour. The colour of each item is displayed nex t to the Item
if the hardware device does not support colour graphics.

The designer speci f ies tha t the funct ion named clrip is to be
invoked when the end-user points to the buret te (by
select ing "FUNCTION", select ing the buret te, and typing
"drip": see Figure 6). The ent ire se t o f in ter face speci f ica-
tions is now stored in a file (by pointing to "SAVE" and typing
a fi le name.

Finally, the user se lects "TRYOUT" and then chooses Spiwrit
(a colour raster screen) as the display device (see Figure
7) and re ferences "drip.c", an appLication-specific C source
file. This causes the interact ion speci f icat ions to be
automatically conver ted into C language programs which are
compiled and linked with the appl icat ion-specif ic code. The
result ing binary file is then executed (see Figure 11).

PLease point, to the bureLt.e

~.o add a drop of" acLd

Y
Wow! I t chanBed coLour!

Figure 11. Running the Titration Simulation

Here Is the source code for the dr ip routine - the only code
which the programmer had to wr i te:

#Include "/uO/dave/mast er/menuglobal.h"
#define beaker plcture('1~eaker");
Int drops O;

drlPO

type("Added a drop of liquid...");
sound(DRIPPING);
drops = drops, + 1;

if(drops == 3)

type('~Now! It changed ook>url");
resetoolour(beaker, PINK);
sound(BUZZING);

42

