Lexical and Pragmatic Considerations of Input Structures

William Buxton
Computer Systems Research Group
University of Toronto
Toronto, Ontario
Canada M5S 144

Introduction

Increased access to computer-based tools has made
only too clear the deficiencies in our ability to produce
effective user interfaces [1]. Many of our current
problems are rooted in our lack of sufficiently powerful
theoriecs and methodologies. User interface design
remains more of a creative art than a hard science.

Following an age-old technique, the point of
departure for much recent work has been to attempt to
impose some structure on the problem domain. Perhaps
the most significant difference between this work and
carlier efforts is the weight placed on considerations fal-
ling outside the scope of conventional computer science.
The traditional problem-reduction paradigm is being re-
placed by a holistic approach which views the problem
as an integration of issues from computcr science, elec-
trical engineering, industrial design, cognitive psycholo-
gy, psychophysics, linguistics, and kinesthetics.

In the main body of this paper, we examine some of
the taxonomies which have been proposed and illustrate
how they can serve as useful structures for relating
studies in user interface problems. In so doing, we
attempt to augment the power of these structures by
developing their ability to take into account the effect of
gestural and positional factors on the overall effect of the
user interface.

Two Taxonomies

One structure for viewing the problem domain of
the user interface is provided by Foley and Van Dam
[12]. They describe the space in terms of the following
four layers:

& conceptual
e semantic
e syntactic
e lexical

The conceptual level incorporates the main concepts of
the system as secn by the user. Therefore, Foley and
Van Dam see it as being equivalent to the user model.
The semantic level incorporates the functionality of the
system: what can be expressed. The synractic level
defines the grammatical structure of the tokens used to
articulate a semantic concept. Finally, the /lexical
component defines the structure of these tokens,

One of the benefits of such a taxonomy is that it can
serve as the basis for systems analysis in the design
process. It also helps us categorize various user
interface studies so as to avoid “apples and bananas”
type of comparisons. For example, the studies of Led-
gard, Whiteside, Singer and Seymour [16] and Barnard,
Hammond, Morton and Long [3] both address issues at
the syntactic level. They can, therefore, be compared
{which is quite intercsting since they give highly contra-
dictory results’). On the other hand, by recognizing the
“keystroke” model of Card, Moran and Newell [7] as
addressing the lexical level, we have a good way of
understanding its limitations and comparing it to related
studies (such as Embley, Lan, Leinbaugh and Nagy,
[8]), or relating it to studies which address different lev-
els (such as the two studies in syntax mentioned above).

While the taxonomy presented by Foley and Van
Dam has proven to be a useful tool, our opinion is that it
has one major shortcoming. That is, the grain of the
lexical level is too coarse to permit the full benefit of the
model to be derived. As defined, the authors lump
together issues as diverse as:

e how tokens arc spelt (for example “add” vs “append”

6,3

vs “a” vs some graphical icon)

' Barnard er al invalidate Ledgard er al’s main thesis that the
syntax of natural language is necessarily the best suited for
command languages. They demonstrate cases where fixed-ficld
format is less prone to user error than the direct object — indirect
object syntax of natural language. A major problem of the paper
of Ledgard et af is that they did not test many of the interesting
cases and then drew conclusions that went beyond what their results
supported.

Computer Graphics * January 1983/31

e where items are placed spatially on the display (both
in terms of the layout and number of windows, and the
layout of data within those windows)

e where devices arc placed in the work station

e the type of physical gesture (as determined by the
transducer employed) used to articulate a token
(pointing with a joystick vs a lightpen vs a tablet vs a
mouse, for example)

These issues are sufficiently different to warrant
separate treatment. Grouping them under a single
heading has the danger of generating confusion compar-
able to that which could result if no difference was made
between the semantic and syntactic levels. Therefore,
taking our cue from work in language understanding
research in the Al community, we chose to subdivide Fo-
ley and Van Dam’s lexical level into the following two
components:

e lexical: issues having to do with spelling of tokens (i.e.,
the ordering of lexemes and the nature of the alphabet
used — symbolic or iconic, for example).

e pragmatic: issues of gesture, space and devices.

To illustrate the distinction, in the Keystroke model the
number of key pushes would be a function of the lexical
structure while the homing time and pointing time would
be a function of pragmatics.

Factoring out these two levels helps us focus on the
fact that the issues affecting cach are different, as is
their influence on the overall effect of the user interface.
This is illustrated in examples which are presented later
in this paper.

[t should be pointed out that our isolation of what
we have called pragmatic issues is not especially original.
We see a similar view in the Command Language
Grammar of Moran [18], which is the second main
taxonomy which we present. Moran represents the
domain of the user interface in terms of three
components, each of which is sub-divided into two levels.
These are as follows:

e Conceptual Component

= task level
—semantic level

¢ Communication Component

—syntactic level
—interaction level

e Physical Component

—spatial level

—device level

The task level encompasses the set of tasks which the
user brings to the system and for which it is intended to
serve as a tool. The semantic level lays out the
conceptual entities of the system and the conceptual
operations upon them. As with the Foley and Van Dam

32/Computer Graphics e January 1983

model, the syntactic level then incorporates the structure
of the language within which the semantic level is
embedded. The interaction level relates the user’s phy-
sical actions to the conventions of the interactions in the
dialogue. The spatial level then encompasses issues
related to how information is laid out on the display,
while the device level covers issues such as what types of
devices are used and their properties (for example, the
effect on user performance if the locator used is a mouse
vs an isometric joystick vs step-keys). (A representative
discussion of such issues can be found in Card, English
and Burr, [5].)

One subtle but important emphasis in Moran’s
paper is on the point that it is the effect of the user
interface as a whole (that is, all levels combined) which
constitutes the user’s model. The other main difference
of his taxonomy, when compared (o that of Foley and
Van Dam, is his emphasis on the importance of the phy-
sical component. A shortcoming, however, lies in the
absence of a slot which encapsulates the lexical level as
we have defined it above. Like the lexical level (as
defined by Foley and Van Dam), the interaction level of
Moran appears a little too broad in scope when
compared to the other levels in the taxonomy.

Pragmatics

In examining the two studies discussed above, one
quickly recognizes that the effect of the pragmatic level
on the user interface, and therefore on the user model, is
given very little attention. Moran, for example, points
out that the physical component exists and that it is
important, but does not discuss it further. Foley and
Van Dam bury these issues within the lexical level. Our
main thesis is that since the primary level of contact with
an interactive system is at the level of pragmatics, this
level has one of the strongest effects on the user’s
perception of the system. Consequently, the models
which we adopt in order to specify, design, implement,
compare and evaluate interactive systems must be suffi-
ciently rich to capture and communicate the system’s
properties at this level. This is clearly not the case with
most models, and this should be cause for concern. To
illustrate this, let us examine a few case studies which
relate the effect of pragmatics to:

e pencil-and-paper tests of query languages
e ease of use with respect to action language grammars
e device independence

Pencil-and-Paper Tests

As an aid to the design of effective data base query
languages, Reisner [19] has proposed the use of pencil-
and-paper tests. Subjects were taught a query language
in a class-room environment and then tested as to their

ability to formulate and understand queries. Different
control groups were taught different languages. By
comparing the test results of the different groups, Reis-
ner drew conclusions as to the relative “goodness” of
structure and ease of learning of the different languages.
She then made the argument that the technique could be
used to find weaknesses in new languages before they are
implemented, thereby shortening their development cy-
cle.

While the paper makes some important points, it
has a serious defect in that it does not point out the limi-
tations of the technique. The approach does tell us
something about the cognitive burden involved in the
learning of a query language. But it docs not tell us
everything. In particular, the technique is totally inca-
pable of taking into account the effect that the means
and medium of doing something has on our ability to
remember how to do it. To paraphrase McLuhan, the
medium does affect the message.

Issucs of syntax arc not independent of pragmatics,
but pencil-and-paper tests cannot take such
dependencies into account. For example, consider the
role of “muscle memory™ in recalling how to perform
various tasks. The strength of its influence can be scen
in my ability to type quite effectively, even though [am
incapable of telling you where the various characters are
on my QWERTY keyboard, or in my ability to open a
lock whose combination I cannot recite. Yet, this effect
will never show up in a pencil-and-paper test. Another
example is scen in the technique’s inability to take into
account the contribution that appropriate fecdback and
help mechanisms can provide in developing mnemonics
and other memory and learning aids.

We are not trying to claim that such pencil-and-
paper tests are not of use (although Barnard er al, [3],
point out some important dangers in using such
techniques). We are simply trying to illustrate some of
their limitations, and demonstrate that lack of adequate
emphasis on pragmatics can result in readers {and
authors) drawing false or misleading conclusions from
their work. Furthcrmore, we conjecturc that if
pragmatics were isolated as a separate level in a taxono-
my such as that of Foley and Van Dam, they would be
less likely to be ignored.

Complexity and Chunking

In another study, Reisner [20] makes an important
contribution by showing how the analysis ol the
grammar of the “action language” of an interactive
system can provide valuable metrics for predicting the
case of use and proneness to error of that system. Thus,
an 1mportant tool for system design, analysis and
comparison is introduced.

The basis of the technique is that the complexity of
the grammar is a good metric for the cognitive burden of
learning and using the system. Grammar complexity is

measured in terms of number of productions and produc-
tion iength. There is a problem, however, which limits
our ability to reap the full benefits of the technique.
This has to do with the technique’s current inability to
take into account what we call chunking. By this we
mean the phenomenon where two or more actions fusc
together into a single gesture (in a manncr analogous to
the formation of a compound word in language). In
many cases, the cognitive burden of the resulting
aggregate may be the equivalent of a single token. 1In
terms of formal language theory, a non-terminal when
effected by an appropriate compound gesture may carry
the cognitive burden of a single terminal.

Such chunking may be cither scquential, parallel or
both. Sequentially, it should be recognized that some
actions have different degrees of closure than others.
For example, take two cvents, cach of which is to be
triggered by the change of state of a switch. Il a foot-
switch similar to the high/low beam switch in some cars
is used, the down action of a down/up gesture triggers
cach event. The point to note is that there is no
kinesthetic connection between the gesturc that triggers
one event and that which triggers the other. Each ac-
tion is complete in itself and, as with driving a car, the
operator is free to initiate other actions before changing
the state of the switch again.

On the other hand, the same binary function could
be controlled by a foot pedal which functions like the
sustain pedal of a piano, In this case, one state change
occurs on depression, a second on releasc. Here, the
point to recognize is that the second action is a direct
conscquent of its predecessor. The syntax is implicit,
and the cognitive burden of remembering what to do
after the first action is minimal.

There are many cases where this type ol kinesthetic
connectivity can be bound to a sequence of tokens which
are logically connected. One example given by Buxton
[4] is in selecting an item from a graphics menu and
“dragging” it into position in a work space. A button-
down action (while pointing at an item) ““picks it up.”
For as long as the button is depressed, the item tracks
the motion of the pointing device. When the button is
relecased, the item is anchored in its current position.
Hence, the interface is designed to force the user to
follow proper syntax: select then position. There is no
possibility for syntactic error, and cognitive resources are
not consumed in trying to remember “what do 1 do
next?’. Thus, by recognizing and exploiting such cases,
interfaces can be constructed which are “natural” and
easy to learn,

There is a similar type of chunking which can take
place when two or more gestures are articulated at one
time. Again we can take an example from driving a car,
where in changing gears the actions on the clutch,
accelerator and gear-shift reinforce onc another and are
coordinated into a single gesture. Choosing appropriate
gestures for such coordinated actions can accelerate
their bonding into what the user thinks of as a single act,

Computer Graphics ¢ January 1983/33

thereby frecing up cognitive resources to be applied to
more important tasks. What we are arguing here is that
by matching appropriate gestures with tasks, we can
help render complex skills routine and gain benefits
similar to those seen at different level in Card, Moran
and Newell [6].

In summary, there are three main points which we
wish to make with this example:

e there is an important interplay between the syntactic-
lexical levels and the pragmatic level

e that this interplay can be exploited to reduce the
cognitive burden of learning and using a system

e that this cannot be accomplished without a better
understanding of pragmatic issues such as chunking
and closure.

Pragmatics and Device Independence

We began by declaring the importance of being able
to incorporate pragmatic issues into the models which we
use to specify, design, compare and evaluate systems.
The examples which followed then illustrated some of
the reasons for this belief. When we view the CORE
proposal [13, 14] from this perspective, however, we see
several problems. The basis of how the CORE system
approaches input is to deal with user actions in terms of
abstractions, or logical devices (such as “locators™ and
“valuators”). The intention is to facilitate software
portability. If all “locators,” for example, utilized a
common protocol, then user A (who only had a mouse)
could easily implement software developed by B (who
only had a tablet). From the application programmer’s
petspective, this is a valuable feature. However, for the
purposes of specifying systems from the user’s point of
view, these abstractions are of very limited benefit. As
Baecker [2] has pointed out, the effectiveness of a partic-
ular user interface is often due to the use of a particular
device, and that effectiveness will be lost if that device
were replaced by some other of the same logical class.
For example, we have a system [10] whose interface
depends on the simultaneous manipulation of four
joysticks. Now in spite of tablets and joysticks both be-
ing “locator” devices, it is clear that they are not
interchangeable in this situation. We cannot simultane-
ously manipulate four tablets. Thus, for the full poten-
tial of device independence to be realized, such pragmat-
ic considerations must be incorporated into our overall
specification model so that appropriate equivalencies can
be determined in a methodological way. (That is, in
specifying a generic device, we must also include the
required pragmatic attributes. But to do so, we must
develop a taxonomy of such attributes, just as we have
developed a taxonomy of virtual devices.)

34/Computer Graphies © January 1983

A Taxonomy of Devices

In view of the preceding discussion, we have
attempted to develop a taxonomy which helps isolate
relevant characteristics of input devices. The tableau
shown in Figure 1 summarizes this effort in a two dimen-
sional representation. The remainder of this section
presents the details and motivation for this tableau’s
organization.

Figure 1. Tableau of Continuous Input Devices

Number of Dimensions

1 2 3

o e P

| [
1 |
Rouary Par | Stiding Pat Tabar LightPen | Fastick I foystick Meshanieal
{ ——f g + ——— ——
£
- Touch Tebler | Touk Seteen Touch Sensitiae
Q
A |
= | I
Q !
%3] 1
Comtinuoss | Treadmill Mouss Trackball Trackball Meckzmcst
2 Rotany Pat Thumbukee! " sMeckzmacit
=
o 2 L L R
g4 -
= TASA TASA
a. Ferirarat XY Pad Touch Sensine
1
|
: I
i
N Tarque Pressure tsametric
é\ Sersing Pad Jogsuck
£
. |
A |
y |

To begin with, the tableau deals only with continu-
ous hand-controlled devices. (Pedals, for example, are
not included for simplicity’s sake.) Therefore the first
(but implicit) questions in our structure are:

e continuous vs discrete?
e agent of control (hand, foot, voice, ...)?

The table is divided into a matrix whose rows and
columns delimit

e what is being sensed (position, motion or pressure),
and

e the number of dimensions being sensed (1, 2 or 3),

respectively. These primary partitions of the matrix are
delimited by solid lines. Hence, both the rotary and
sliding potentiometer fall into the box associated with
one-dimensional position-sensitive devices (top left-hand
corner).

Note that the primary rows and columns of the
matrix are sub-divided, as indicated by the dotted lines.
The sub-columns exist to isolate devices whose control
motion is roughly similar. These groupings can be seen
in examining the two-dimensional devices. Here the
tableau implies that tablets and mice utilize similar
types of hand control and that this control is different
from that shared in using a light-pen or touch-screen.
Furthermore, it is shown that joysticks and trackballs
share a common control motion which is, in turn,
different than the other sub-classes of two-dimensional
devices.

The rows for position and motion sensing dcvices
are subdivided in order to differentiate between trans-
ducers which sensc potential via mechanical vs touch-
sensitive means. Thus, we sce that the light-pen and
touch-screen are closcly related, except that the light-
pen employs a mechanical transducer. Similarly, we
scc that trackball and TASA touch-pad” provide
comparable signals from comparable gestures (the 4" by
4" dimensions of the TASA device compare toa 3 1/2"
diameter trackball).

The tableau is useful for many purposes by virtue of
the structure which it imposes on the domain of input
devices. First, it helps in finding appropriate
cquivalences. This is important in terms of dealing with
some of the problems which arosc in our discussion of
device independence. For example, we saw a case
where four tablets would not be suitable lor replacing
four joysticks. By using the tableau, we sce that [our
trackballs will probably do.

The tableau makes it casy to relate different devices
in terms of metaphor. For cxample, a tablet is to a
mouse what a joystick is to a trackball. Furthermore, if
the taxonomy defined by the tableau can suggest new
transducers in a manner analogous 1o the periodic table
of Mendelcev predicting new clements, then we can have
more confidence in its underlying premises. We make
this claim for the tableau and cite the “torque sensing”
one-dimensional pressure-sensitive transducer as an
example. To our knowledge, no such device exists com-
mercially. Nevertheless it is a potentially useful device,
an approximation of which has been demonstrated by
Herot and Weinzaphel [15].

Finally, the tableau is useful in helping quantify the
generality of various physical devices. In cascs where
the work station is limited to one or two input devices,
then it is often in the user’s interest to choose the least
constraining devices. For this reason, many people
claim that tablets are the preferred device since they can
emulate many of the other transducers (as is demonstrat-
ed by Lvans, Tanner and Wein, [9]). The tablcau is
uscful in determining the degree of this gencrality by
“filling in” the squares which can be adequately covered
by the tablet.

Before leaving the topic of the tableau, it is worth
commenting on why a primary criterion for grouping
devices was whether they were sensitive to position, mo-
tion or pressure. The reason is that what is sensed has a
very strong effect on the nature of the dialogues that the
system can support with any degree of fluency. As an
example, let us compare how the user interface of an
instrumentation console can be affected by the choice of
whether motion or position scnsitive transducers are
used. For such consoles, onc design philosophy follows
the traditional model! that for every function there should
be a device. Onc of the rationales behind this approach
is to avoid the use of “‘modes”™ which result when a single
device must serve for more than one function. Another
philosophy takes the point of view that the number of

devices required in a console nced only be in the order of
the control bandwidth of the human operator. Here,
the rationale is that careful design can minimize the
“mode” problem, and that the resulting simple consoles
are more cost-effective and less prone to breakdown
{(since they have fewer devices).

One consequence of the sccond philosophy is that
the same transducer must be made to control different
functions, or parameters, at different times. This
context switching introduces something known as the
nulling problem. The point which we are going to make
is that this problem can be completely avoided if the
transducer in question is motion rather than position
sensitive. Let us see why.

Imagine that you have a sliding potentiometer
which controls parameter A, Both the potentiometer
and the parameter arc at their minimum values. You
then raise A to its maximum value by pushing up the
position of the potentiometer’s handle. You now want
to change the value of parameter B. Before you can do
so using the same potentiometer, the handle of the
potentiometer must be repositioned to a position
corresponding to the current value of parameter B, The
necessity of having to perform this normalizing function
is the nulling problem.

Contrast the difficulty of performing the above
interaction using a position-scnsitive device with the case
of doing so using one which senses motion. If a thumb-
wheel or a treadmill-like device was used, the moment
that the transducer is connected to the parameter it can
be used to “push” the valuc up or “pull” it down.
Furthermore, the same transducer can be used to
simultancously change the value of a group of parame-
ters, all of whose instantaneous values are different,

Horizontal vs Vertical Strata

The above example brings up one important point:
the different levels of the taxonomies of Foley and Van
Dam or of Moran are not orthogonal. By describing the
uscr interface in terms of a horizontal structure, it is very
casy to fall into the trap of believing that the cffect of
modifications at one level will be isolated. This is clear-
ly not truc as the above cxample demonstrated: the
choice of transducer type had a strong cffect on syntax.

The example is not isolated. [n fact, just as strong
an argument could be made for adopting a model based
on a vertical structure as the horizontal ones which we
have discussed. Models based on interaction techniques
such as those described in Martin [17] and Foley,
Wallace and Chan [11] are examples. With them, the
primary gestalt is the transaction, or interaction. The
user modcl is described in terms of the set and style of

® The TASA X-Y 360 is a 4" by 4" touch sensitive device which
gives 60 units of delta modulation in 4 inches of travel. The device
is available from TASA, 2346 Walsh Ave., Santa Clara CA, 95051.

Computer Graphics ¢ January 1983/35

the interactions which take place over time. Syntactic,
lexical and pragmatic questions become sub-issues.

Neither the horizontal or vertical view is “correct.”
The point is that both must be kept in mind during the
design process. A major challenge is to adapt our
models so that this is done in a well structured way,
That we still have problems in doing so can be seen in
Moran’s taxonomy. Much of the difficulty in under-
standing the model is due to problems in his approach in
integrating vertically oriented concepts (the interaction
level) into an otherwise horizontal structure.

In spite of such difficulties, both views must be
considered. This is an important cautionary bell to ring
given the current trend towards delegating personal
responsibilities according to horizontal stratification.
The design of a system’s data-base, for example, has a
very strong effect on the semantics of the interactions
that can be supported. If the computing environment is
selected by one person, the data-base managed by anoth-
er, the semantics or functional capability by another, and
the “user interface” by yet another, there is an inherent
danger that the decisions of one will adversely affect
another. This is not to say that such an organizational
structure cannot work. It is just imperative that we be
aware of the pitfalls so that they can be avoided. Deci-
sions made at all levels affect one another and af/ deci-
sions potentially have an effect on the user model.

Summary and Conclusions

Two taxonomies for describing the problem domain
of the user interface were described. In the discussion
it was pointed out that the outer levels of the strata,
those concerning lexical, spatial, and physical issues
were neglected. The notion of pragmatics was intro-
duced in order to facilitate focusing attention on these
issues. Several examples were then examined which
illustrated why this was important. In so doing, it was
seen that the power of various existing models could be
extended if we had a better understanding of pragmatic
issues. As a step towards such an understanding, a
taxonomy of hand controlled continuous input devices
was introduced. It was seen that this taxonomy made
some contribution towards addressing problems which
arose in the case studies. It was also seen, however, that
issues at this outer level of devices had a potentially
strong effect on the other levels of the system. Hence,
the danger of over-concentration on horizontal stratifica-
tion was pointed out,

The work reported has made some contribution to-
wards an understanding of the effect of issues which we
have called pragmatics. It is, however, a very small
step. While there is a great deal of work still to be done
right at the device level, perhaps the biggest challenge is
to develop a better understanding of the interplay among
the different levels in the strata of a system. When we
have devcloped a methodology which allows us to

36/Computer Graphics * January 1983

determine the gesturc that best suits the expression of a
particular concept, then we will be able to build the user
interfaces which today are only a dream.

Acknowledgements

The ideas presented in this paper have developed
over a period of time and owe much to discussions with
our students and colleagues. In particular, a great debt
is owed to Ron Baecker who was responsible for helping
formulate many of the ideas presented. In addition, we
would like to acknowledge the contribution of Alain
Fournier, Russel Kirsch, Eugene Fiume and Ralph Hill
in the intellectual development of the paper, and the
help of Monica Delange in the preparation of the
manuscript. Finally, we gratefully acknowledge the
financial support of the National Sciences and Engineer-
ing Research Council of Canada.

References

1. Baecker, R. Human-computer interactive systems: a
state-of-the-art review. In P. Kolers, E. Wrolftad
& H. Bouma, Eds., Processing of Visible Language
11, New York: Plenum, (1980), 423-444.

2. Baecker, R. Towards an effective characterization
of graphical interaction. In R. A. Guedj, P. Ten
Hagen, F. Hopgood, H. Tucker & D. Duce, Eds.,
Methodology of Interaction, Amsterdam: North-
Holland, (1980), 127-148.

3. Barnard, P., Hammond, N., Morton, J., and Long,
J. Consistency and compatibility in human-
computer dialogue. [International Journal of Man-
Machine Studies 15, (1981), 87-134.

4. Buxton, W. An informal study of selection-
positioning tasks. Proceedings of Graphics
Interface '82, Toronto, (1982), 323-328,

5. Card, S., English, W., and Burr, B. Evaluation of
mouse, rate-controlled isometric joystick, step keys,

and text keys for text selection on a CRT.
Ergonomics 8, (1978), 601-613,

6. Card, S., Moran, T., and Newell, A. Computer text
cditing: an information-processing analysis of a
routine cognitive skill. Cognitive Psychology 12,
(1980),32-74.

7. Card, S., Moran, T., and Newell, A. The keystroke-
level model for user performance time with
interactive systems. Communications of the ACM
23,7 (1980), 396-410.

8. Embley, D., Lan, M., Leinbaugh, D., and Nagy, G.
A procedure for predicting program editor
performance from the user’s point of view. /Inrer-
national Journal of Man-Machine Studies 10,
(1978), 639-650.

12.

19.

20.

Evans, K., Tanner, P., and Wein, M. Tablet-based
valuators that provide one, two, or three degrees of
freedom. Computer Graphics 15, 3 (1981), 91-97.

Fedorkow, G., Buxton, W., and Smith, K. C. A
computer controlled sound distribution system for
the performance of eclectroacoustic music.
Computer Music Journal 2, 3 (1978), 33-42.

Foley, J., Wallace, V., and Chan, P. The human fac-
tors of interaction techniques. Technical Report
GWU-IIST-81-03, Washington: The George Wash-
ington University, Institute for Information Science
and Technology, (1981).

Foley, J. and Van Dam, A. Fundamentals of
Interactive Computer Graphics. Reading, MA:
Addison Wesley, (1982).

GSPC. Status Report of the Graphics Standards
Planning Committce. Computer Graphics 11,
(1977).

GSPC. Status Report of the Graphics Standards
Committee. Computer Graphics 13, 3 (1979).

Herot, C. and Weinzaphel, G. Onc-point touch
input of vector information for computer displays.
Computer Graphics 12, 3 (1978), 210-216.

Ledgard, H., Whiteside, J., Singer, A., and
Seymour, W. The natural language of interactive
systems. Comvymunications of the ACM 23, 10
{1980), 556-563.

Martin, J. Design of Man-Computer Dialogues.
Engelwood Cliffs, NJ: Prentice-Hall, (1973).

Moran, T. The command language grammar: a
representation for the user interface of interactive
computer systems. International Journal of Man-
Machine Studies 15, (1981), 3-50.

Reisner, P. Use of psychological experimentation as
an aid to development of a query language. [EEE
Transactions on Software Engineering 3, 3 (1977),
218-229.

Reisner, P. Formal grammar and human factors
design of an interactive graphics system. [EEE
Transactions on Software Engineering 7, 2 (1981),
229-240.

Computer Graphics ¢ January 1983/37

