Music Software User’s Manual

by
William Buxton

Structured Sound Synthesis Project
Computer Systems Research Group
University of Toronto
Toronto, Ontario
Canade
M&S 141

C.S.R.G. Technical Note 22 °

June 24, 1881

ACKNOWLEDGEMENTS

This manual has benefited from. the input of virtually every person that has used the SS3P sys-
tem. If it is at all understandable, it is due to this input. The system itself owes a great deal to
Bill Reeves, Guy Fedorkow, Sanand Patel, Chris Retterath, Rob Pike, K. C. Smith, Ron Baecker
and Leslie MezeL In preparing this decumentation, Steve Hull, Martin Lamb, Leslie Gondor, Paul
Ziolo, Gayle Young, Susam: Frykberg, Bob Pritchard, James Montgomery, Wesley Lowe, Danny
Shoskes, and William Matihews have been of particular assisiance.

Finally, we would like to acknowledge the continued support of the Saocial Seciences and
Humanities Research Council of Canada which makes the work of the S33P possible.

e

TAR(L) UNTIY Progreammer’s Maaual TAR

tar = tap=2 archiyver

SYNOPSIS
tar [%2y | [name ...]

DESCRIPTION

rosaves anpd rastores files on maztase. Its actions are
1trolled by the key argument. The xey i1s a string of
haractars conteinlng at most one funcotion lettzr and pos:
bly one or more funciion modifiers. Other cerguments to t!
command are file or directory names soecifyiang which file:
ar2 to be damped or restored. In all cases, appearance ¢t
directory name refers to the files and (recursively) sub-
directories of that directory.

A

Tnz functioa vortion of the koey is specified by one of th:
following letters:

i The named files are written on the end of the tans
Thz o function implies this.

X The mamed files are extracted from the tave. If i
nar=2d file matehas & directory whos=2 contents had|
wWwritten onto the tape, this directory is
ccursively) extracted. The owner, modifization
2, aad mode are restorad (1f possible). If no
file argument is given, the entire content of the
tape 1s extracted. Note that if multiole entries
specifying the same file ar= on the tape, the last

one overwrites all earlier. ’

% The names of the specified files are listed each
Lim2 they occur on the tave. If a0 file argumant |
siven, all of the names on the tape are listed.

1 Th> named files are addad to the tape if =21ither t¥
are not already there or have been modified since
last put on the tape. i

l

C Create a new tane; writing begins on the basianias
of the tape instead of after the last file. Thais
comimaad imoliss r.

The following characters may be used in addition to the

letfer which selects the function desired.

Dynoey? This modifier selects the drive on which the ta:
is mounted. The default is 1.

o+

v Mormally tar does its work silently. The v (ver
hos2) ontion causes it to type the rame of each

i. INTRODUCTION

CONTENTS

2. TECHNICAL DETAILS -

2.1 Introduction .

» . -

2.2 Modes of Interaction

2.2.1 General
2.3 Graphics. .
2.4 Typing . .

2.4.1 General

5

. . - - -

e = & . - -

7

2.4.2 Special Characters = 7

2.4.3 Naming Conventions 7

2.4.4 Miscellaneous. 38
2.5 Cetting Started . < « .+ < o o
2.8 Documentation Conventions . .

3. MUSIC COMMANDS
3.1 CObjects .

3.1.1 Genera.l 10

3.1.2 Definition 10:.
3.1.2.1 bank 10
3.1.2.2 objed: 10

3.1.3 Auxiliary Commands 10:

3.1.3.1
3.2 Scores
3.2.1 General

pobj 10

11

3.2.2 Direct Specification 11 .

3.2.2.1
3.2.2.2
3.2.2.3

record 11
sced 12
scriva 13

3.2.3 Compositional Routines 13

3.2.3.1 makescore 13.
3.2.3.2 proed 14

3.2.4 Auxiliary Commands 14
3.2.4.1 cksize 15
3.2.4.2 dur 15
3,2.4.3 orch 18
3.2.4.4 prune 18
3.2.4.5 invert 18

L
o)

= (0 0~

IR RV AV VS A
Rl ol

[AV
o
—
>

iscale: 18
makaff™ 17
map -17
mix 18
mode 18
psceore 18
rand 20
reipos 22
retro. 22
rotate 22
scorch 23
sdelay 23
setchan 24
setvol 24
splice 28
transp 26

N P e

-1

-
QOO oo,

il

3.3

3.4

3.5

3.8

4.1
4.2

3.2.4.22 tscale 27
Performance . . e e e
3.28.1 conduct ”8
3.3.2 lsiplay <8
3.3.3 play 28
Funetions . . e
3.4.1 Definition 30

3.4.1.1 funced 230

3.4.2 Auxiliary Commands 30

3.4,2.1 finv 30
3.4.22 fretro 31
3.4.2.3 pfunc 31
Waveforms . . .
3.5.1 Definition 31
3.5.1.1 feconv: 31
3.5.1.2 waved 31
3.5.1.3 wavemix 32
3.5.1.4 wavesum 33

3.5.2 Auxiliary Commands. 35

3.5.2.1 pwave 35
3.5.2.2 wflist 35
3.5.2.3 wtioad 35
3.5.2.4 wfsave 38
Miscellanenus Music Commands
3.8.0.1 cleanup 25
3.6.1 pitch 38
3.8.2 swit 37
3.6.3 radio 37

4, UNIX COMMANDS . « « « « « « &

General
Commands .« . « -
42.1 cp 38

4,2.2 dle 38

4,2.3 gwsnap 38
4.2.4 ls 338

4,2.5 mail 38

4,2.8 mv 38

42.7 rm 38

4.2.8 whe 3%

4.2.9 write 39

5. REFERENCES: &

W
[IENEEN]

CONTENTS~

APPRENDIX A - A Tutorial on Editing Cbjects

1. INTRODUCTION .

2. ON ENTERINGOBJED . . . « « . .
AUDITIONINGANOBJECT . . +
WAVEFORM SELECTION - . . . « . . .

W

FUNCTION DEFINITION« .« .
'NAMING, SAVING AND RETRIEVING UBJECTS
FMQOBJECTS . . v « v v v ¢ « « .
MORE ON AUDITIONING MODES . . .
10. COMPARING OBJECTS . . . « « « .
11, VOSIM AND WAVESHAPING
12. ADDITIVE SYNTHESIS AND BANK
13. REFERENCES . . . ¢« « « o ¢ « &
APPENDIX B - A Tutorial Introduction to SCRIVA
L. INTRODUCTICN . . v + « « « « o &
2. GENERAL « . « .« « + ..
3. ABDINGNOTES . &« v v v v v « « »
3.1 Generalo
32 Ludwig . . . « . « . .
33 Roll v« v « v v v o0
WHY DID IT SOUND LIKE:TEAT? & . .
MIX AND SPLICE . e .
DELETING MATERIAL « . . .
AN ASIDE: THE CONCEPT QF SCOPE . . .
SAVING MATERIAL.
ADDING BY READING . . « . « « «
10. ORCHESTRATION . . . « « « + « .+ &
11. SETTING VOLUME .
12, NAVIGATION v v .« + + « + .
13. TEMPORARY ESCAPE .

14, SUMMARY OF LIGET BUTTON FUNCTICNS
14,1 Column Ly EDITOR:
14.1.1 General 73
14.1.2 Notation 73
14.1.3 Display 73
1.4 Input 73
14.1.5 Join 74
14.1.6

Seore 74

© ® X oo

o G

CREATING NEW WAVEFORMS BY SPECTRUM . .

~1 -2
‘,.L

nl

-3~
Wwd

14.1.7 Key 75
14.1.8 MM 75
14.1.9 Page 75
142 Columm 2:MUSIC . . . « « v « « .
14.2.1 General 75
14.2.2 Object 75
14,2.3 Volumme 78
14.2.4 Channel 78
14.3 Column 3: SCOPE .
14.3.1 General 78
14.3.2 Whole Score 78
14.3.3 Circle 77
14.3.4 Collect 77
14.2.8 Clear 77
14.4 Columns 4 & 5: OPERATORS « . .
14.4.1 General 77
14.4.2 Add 77

14.4.3 Delete 7?7
14.4.4 Play 77
14.4,.5 Save 78
14,4.8 QOrchestrate 78
14.4 7 Scorchestrate 78
14.4.8 Set Volume 78
1¢.4.9 QUIT 78
APPENDIX C - A Tutorial Introduction te SCED
1. INTRODUCTION . . v v v v v & & & o« o
2. DIBCLAIMER:.
3. GETTING STARTED
4, SPECIFYING NOTES - the Append Command 'a’
5. LISTENING TC A SCORE - the Listen Command '’ . . .
8. ERROR MESSAGES e e e
7. LEAVING sced. - the Quit Command 'q’ .
8. PRINTING THE BUFFER CONTENTS - the Print Command ‘p’
9. PLAYING THE SCORE - More on the 'l" Command .
10. SCOPE - Consolidating a Concept
11. TEE CURRENT NOTE - 'Dot’ or*.’
12. MORE ON APPEND - Details on.Notes
12.1 Pitch/Fregquency - . . « + « « + +
12.2 Duration e
12.3 Object . .
12.4 Volume
125 Delay « v v v« v v e e e e e e e e e e s
12,8 Channel . . .« « « +© ¢ e v e 0 e e e e
12.7 RESES v v v v v e e e e e e e e e e .
13. SAVING SCORE FILES - The ’r‘v’riﬁevCommand Wo. .
14, READING SCORES FROM.A FILE - the Edit Command 'e’ .
15,

MORE ON NAMES - the File Command 'f' . . .« « « «

~1

W

78

77

18,
17,
18.
18.
20.
21.

30.

MI¥, SPLICE AND TEE JOIN MODE -. . e
DELETING NGTES - the Delete Cormmand 'd”
ON-LINE HELP - the Help Command 'k’ e
READING SCORES FROM A FTLE - the Read Command '’ .

rala sV

CONTRCLLING TEMPQ - the Metronome Command 'mm'’

MODIFYING ATTRIBUTES OF PREVIQUESLY SPECIFIED EVENTS .

21.1 The Change Command 'e’* . . . « . . .
21.2 Theset Commands « « . .

21.2.1 setfreg 102

21.2.2 setdur 103

21.2.3 setobj 105

21.2.4 setvol 1058

21.2.5 setdei 108

21.2.8 setchan 108

21.2.7 settime 107

. MORE ON SCOPE: Conditicnals » « « « « « o« « « « =
D SEARCHING v v v v e v e v e e

ESCAPING TO TEE SEELL - the !’ Command

. MOVING NOTES ARQUND - the Move Command 'm'
. COPYING SCORE MATERIAL - the Copy Command 't . .
. SCORCHESTRATION - the 'scorch’ Command
. REHEARSAL MARKINGS™ . . « . « « « . .

. MACROS

SUMMARYOE COMMANDS « « . .« « « « . &

-00 .)B -00 .LC oC

95

28
28
100

100
100
101

118
117

CONTENTS

APPENDIX D - A Tutorial Intredusztion to PRQOD

1. INTRCBUCTION e e e
2. THE USE QF PROD IN COMPOSITION .

3. PRODUCTICGNS

4, SCORE GENERATION AND PROD USAGE

5. NOTES . .

8. A NOTE ON TYPING . .

7. NON-TERMINALS

8. PARAMETER PASSING

g iE SCORETERMINAL

10. NON-DETERMINISTIC GRAMMARS
11, WEIGHTED PROBABILITIES

12 RANGES . . . « . v ¢ o« v v v
13. RECREATING RANDOM SCORES

14. RECURSIVE PRODUCTIONS

APPENDIX E - An Introduction to CONDUCT

1. TEE NATURE CF A CONDUCTABLE SCORE

2. CONDUCTABLE PARAMETERS

2.1 Cctave: . ., . e e e e e e
22Tempom........“.
2.3 Articulation
2.4 Amplitude .
2.5 J.A.\..huess
28 Cyele . . o 0 00 0L
2.7 On/0ff

3. TECHNIQUES. OF CONTROL

.1 General . . .
Z Direct Control . .
3.2.1 Switches 134
3.2.2 Continously Yariable Parameters 134
3.2.2.1 Typing 134
3.2.2.2 The La.:t-Typed’ Technique 134
3.2.2.3 Default Set 134
3.2.2.4 Dragging 134
- 3.3 Indirect Control .o
3.3.1 Triggers 135
3.3.1.1 Manual Triggers. 135
3.3.1.2 End of Score Triggers 138.

03"')

w
[}
n

s

(&4

3.3.2.1 Groups 137

3.3.2.2 Group Controt Transducers: 138

3.3.2.3 Negative Groups 139

3.4 Additional Performance Variabies
3.4.1 Score Selection 138

roupings of Continuously Variable Parameters

3.4.2 The Ratz Control 140

3.5 Concluding Comments on the Control Structure .

APPENDIX ¥ - User Defined Shell Commands .
APPENDIX G - Synthesizer Specifications .
APPENDIX H - SSSP PUBLICATIONS . MONOGRAPHS

77 ‘o AL

iser’s Manual

lgsd
r-ih
o
%)
jeal s
@]
)
@)
fe=iy
o
4
8
M
o

William Buxton

Structured Sound Synithesis Project
Computer Systems Research Group
University of Toronio
Toronto, Ontario
Canada
HAES 1471

A user manual for the music system developed by the SSSP is presented. The
various programs available are described, as are the various techniques and con-
ventions requirced in order to work creatively with the computer. Many of the pro-
grams available are graphics based, whose step-by-step use is rather straight-
forward. Basic documentation of all programs is given in the main body of the
mantal. Many of the larger program packages are documented in detail in the
appendices to this manual.

1. INTRODUCTION

This document is intended to serve as a. handbook for musicians using the
computer-music: system developed by the Structured Sound Synthesis Project of the
University of Toronto. As. such, its purpose is to document the entire system, as
opposed to serving as a manual for an individual program. The scope is broad theres-
fore, and includes a discussion of the various programs of the system, how they relate
to each other, as well as other pertinent issues. For those users who just want to find
out how a particular program works, this breadth will be more than they want or need.
For them, the combination of this Introducticn.and the Table of Centents will direct
them to the part of this manual relevant to their needs. In this re=gard, particular
attention should be paid to the appendices of this document, where tutorials for some
of the major programs can be found. For those who want to gain a broader understand-
ing of the SSSP system, we hope that the orginization of this manual provides a suitable
guide.

The SSSP system has been designed so as to provide a set of poweriul tools to com-
posers. The facility is not, however, a production studio for computer music. It exists
in a research and development environment, which means that it is not dedicated to
music-making activities. However, musicians are welcome, and serious work can be
undertaken. In the lab where the SSSP system is housed, one of the main research
interests is investigating ways of making the benefits of technology more accessible to
people who arc unfamiliar with computers. The music system is. in this regard, a case

The SSSP system has been designed so as Lo provide tools to facilitate the undertaking
of three main musical tasks:

1. Defining and editing a palette of.timbres to be uzed in a composition. This we call
object defintlion.
2. Defining musical structures, or scorgs, including the process of orchesirating the

oy

CHAPTER L

notes of the scores using the timbres defined during object definition.
3. Performing the composition, which may include conducéing or-interpreting the

scorss which have been cempesed,

Every cfiort has been madce to free the musician from technical worries, thereby ena-
bling concentration on the more important musical problems.

In thinking about the three activities outlined above, it is important for the musician to
realize that there is no need to make use of all of the available tools, or of any of them
in any particular order. One can concentrate on those programs which are of interest
or importance, and ignore the others until needed. Scores can be composed and audi-
tioned without ever explicitly snecifying the timbres with: which the notes are to be
played. Similarly, timbres can be invented and auditioned independently from any
score material.

The systemr is quite modular, and each module mors-or-less stands on:its own. In addi-
tion, there is often more than one way of doing something, so the musician can use the
method that seems most appropriate. This is seen in score nctaticn, for example,
where the composer has the choice of working in common music notation (CMN) or
various alternative forms of graphic notation. This is illustrated in Figures 1 and 2.

€dtter Musie Scope Qpertbare
Notstiont Cmn Qb et dF _m_oai whole tcore add archestrate
Srepleyr ttsves Volumes 132 sircle delaete saorchestrete
Tnpubs R-.d:u. Channels | collect play tst volume
Jeim spbiqe’ ve
Scores m.oullieve cleur
Kert <
i 208
Page QuIT

Yad Qet 24 18:19:29 1879

Figure 1. Example of Comumon Music Notaliun

INTROBUCTION

Editor Husic Scope Opecviors
Netattoms Roll Objact df _fm_obi whole fcoras 1dd archestrete
Otsalayr taves Yoluma: 192 circlae deiste scorcheairate
Input: Resd Chennel: 1 eollact play 10t volume
Joiny tpllce tava
Score: m.ouk.zave claar
Kart <
fm 299
Page- IT

Wad Qct 24 18:18.84 1979

Figure 2. Example of “Piano-Roll'’ Notation

The rest of this document is intended to provide the user with a guide:to the resources
available. Following this Introduction, Chapter .Two presents some unavoidable non-
musical information relating to working with the system and using this document. A
description of the music commands is then prasented in Chapter Three. These com-
mands are grouped according to the tasks outlined above: working with objects, scores,
and performance. In addition, there are subsections on working with waveforms, func-
tivns, and other misceilaneous music commands. Chapter Four presents a brief
description of certain UNIX commands (i.e. commands not specifically for the music
system, but useful nevertheless). Finally, tutorials for major programs and other sup-
plementary information are presented in the appendices. This includes the technical
specifications of the synthesizer (Appendix G) and information on. how users may
create their owm commands by making aggregates of already existing ones (Appendix
F). Throughout, where more information is available, the source is indicated.

Those readers wishing to obtain more information about the SSSP system are referred
to the documents listed in the Refersnce section. of this manual, and to the list of SSSP
publicaticns and monograghs found in Appendix H. In particular, theose interested in

the system at Lhe programuming level ars referred to Buxton, Reeves, Patel, & 0'Dell
& S %

R

4 A

(1979); those interested in a general introduction to computer music arc referre
Buxton (1977). :

CHAPTER 1

At this point, the beginner not familiar with the system is liable to become
overwhelmed by the bullk of new information. This can, however, be avoided by trying
to relate everything to the three tasks outlined above. In addition, this document
should mot¢ be read sequentially the first time through. Rather, the beginner is
encouraged to start by looking only at the following key programs: o&jed {object
dafinition), scriva (scorc dcfinition), and play (performance). These are documented
in Appendix A, Appendix B and Chapter 3.3, respectively. As experience is gained, read
about other commands available and see how they can be used to your musical advan-
tage. '

o

One important point: an underly
P EEON ~
L™

ing principle of the systenris that all users contribute
to its betterment according o their ability., Therafors, any comments from users
regarding the system and.especially this document, are solicited. These should be
communicated by sending mail to music (see UNIX mail command in Chapter Four), or
verbally to the author. '

&
=3
e

Figure 3. The Working Environment

2. TECHNICAL DETAILS
2.1 Introduction :

This section is intended to provide the basic information required to make use of
the system. Information will be presented on how to get "logged in" (i.e. started), how
to read the documentation; and how to cope with other strange things which one does
net encounter in, for example, a string orchestra.

-4 -

TECHNICAL DETAILS

2.2 Modes of Interaetion
2.2.1 General

There are two main methods of interaction used in SSSP programs: interaction
using graphies based techniques and that based on typing on a keyboard. The working
environment is shown in Figure 3. The devices used in communicaing with the com-
puter are shown in Figure 4. Besides the CRT, on which information is displayed, there
is a drawing device known as a tabiet, both typewriter and piano type keyboards, a
touch sensitive panel called the touch:tablet, and two potentiometar-like devices called
sliders. In addition, there. are loudspeakers which enable the musician to hear the
soun;is generated by the synthesizer’ (Buxton, Fogels, Fedorkow, Sasaki, & Smith,
1978).

CRT
Slider
Box + %

Switches \'

Tracker

Cursor

\
\
Keyboard //)a
Tablet
Zlaviexr

Figure 4. Commounication Devices

In graphics programs, information is:displayed pictorially on the television-like CKT.
This has been illustrated in Figures 1 and 2.2 With such programs drawing and pointing
gestures can be used to define musical data and carry out various other tasks.

Typing, however; can play an important role in the composer-computer dialogue. Tor
example, typing:the following line would cause the score "minuet” to:be orchestrated
with the "timbre" sax:

orch miguel sax

{. The technical specifications of the synthesizer are surnmarized in Appendix G of this docurmant.
2. These images were generated by the program serivae, which is one of the main tools for defining scores.

-5-

CHAPTER @

As will be seen in Chapter Three, there are many such commands: Besides simply
offering an alternative mode of working, one of the prime reasons for using typed com-
mands is that there is only one graphics terminal on the system. On the other hand,
there are several alpha-numeric terminals (i.e. terminals only capable of outputting
text). Therefore, in order to allow as many peoplc as possible to use the system at
once, many functions are available using both the graphic and alpha-numeric medes.
Howcver, in order to protect the composcr from having to memorize two sets of com-
mands, there is only one name which applies fo both versions {graphical and non-
graphical) of a command. The system will automatically execute the correct version,
depending on which terminal is being used. For example, when calling the command
funced from the graphics terminal, you will get the graphics version; otherwise, you
will get the alpha-numeric one.

2.3 Graphics

Figure 5. The 4-Button Cursor

The CRT terminal used in the music system has much in common with a television
set in that it can presant graphical information as well as text. Thus, data and controls
can be spatially distributed on the screen, ofterr in a pictorial manner {(as has already
been seen in some of the preceding tigures). By displaying data in tbis way, it is sasy
for the operator-to see the current status of the system and carry cut transformaticos
on the data.

By coupling the CRT with the graphics tablet we can exploit the full potential of the
display. Tn this way, the tablet provides a means of pointing to, and interacting with,
the displayed data. The CRT cursor (which we shall henceforth refer to as the tracker)
can be made to follow; or érack the relative position of the tablet cursor. This is seenin
Figure 4, for example, where the cursor is positioned on the upper right-hand corner of
the tablet, and the tracker on the upper right-hand corner of the display. We can point

at anything which is displayed on the:screen and, for example, select commands from
the display in the same way you make selections [rom a menu.

Mounted on the cursor, which is shown in detail in Figure:5, are four: buttons. In the
remainder of this paper, they shall be referred to as the Z-button, and buttons 1-3.
When the tracker is placed in a particular position, different things can be made to
happen depending on which button is.pushed. Thus, if you select something from the
“menu’’ by pointing at it, depressing one button could signify that you want to play it,

-8 -

TECHNICAL DETAILS

and depressing another, that you want to save it..
2.4 Typing
2.4.1 Generzl

To communicate with: the computer — gven when using graphies programs - a
certain amount of typing is unavoidable. This section presents some important conven-
tions which are used when entering information wia the typewriter keyboard.

2.4.2 Special Characters

First, when typing, always finish by pressing the 'return’’ key. Otherwise, the
computer will never get your message: (Hitting "return’ literally "waices the computer
up” regarding your existence!)

Second, if you make a typing mistake, you can simply backspace over the erroneous
text (making use of the "backspace' or “BS" key), and retype from that point. If, on
the other hand, the entire line is in error - or not what you wanted -- you can erase it
by typing an "@" character. You may then type the line which you intended.

Third, if you want to abandon what you are doing (for example, kill some program
which you have invoked), you may do:so simply by hitiing the key labelled "RUBOUT"
{('DELETE"” on some terminals). This is especially useful when — and unfortunately it
does occasionally happen:-- your program “dies”. That:is, your program will oot
respond to any stimulus from you. Note that when this happens, you should send mail
to music explaining what program died, and under what circumstances. Hopefully we
will then be able to clear up the problem.

Finally, in the drastic situation that all else fails, and your program will not sven
respond to "RUBOUT", then there is the final resort of Lypin .
That is, the button labelled.”’CTRL" and the backslash key (\) should be pressed simul-
taneously.

[is}

Q
oo
2
~
u
[
=
m -
3,

Q
=
{Fﬁ
7
N

In summary, there are certain “"special’ characters/cuttons which yvou should know
about when typing. These are:

RETURN: Puslr at cnd of gvery line.

BS: (Back-Space) Erase previous character(s)..
@: Restart Current line.

RUBOUT: Kill current precesss,

CTL Backslash: Drastic killing of current process.

2.4.3 Namingz Conventis

One common reason for using the iypewriter keyboard is to specify names (for
scores or waweforms, for example). Names are important, and anything which you
create and want. to save should be given a unique new name. Unless vou really under-
stand how things work, saving material under the system-generated names may result
in that material being lost.

In naming material there are a few conventions.to remember. First, do notf use blank
spaces in names: The name "pretty__score' is fine; "pretty score” is not. Second, make
sure that your names are unique, For example, you may not have a score and a
waveform of the same name. Finally, since nooedy likes typing, keep your file namaes
as short as possible. In particular, keep your names to 13 characters or less.

CHAPTER 2

2.4.4 Miscellaneocus

Unlike your normal typewriter,. computer keyboards distinguish between the
character “1" {lower case "L} and the number "1" {one). Therefore, when you are
specifying numerical information, use the number "1" not the letter "1".

2.5 Getting Started

At this point, we shall give a summary of how to get started. With all but the graph-
ics terminal, the first thing to do is push the red bullon moualed o the little black
"Dmitri” box which is found:beside the display. The question

Service?

will then be printed by the system, to which you should respond by typing the number
"45" (without the quotes). On the graphics terminal, the first thing to do is to hit the
key labelled "retuen”. In boll cases the computer will respond by outputing the
prompt:

login:

In respeonss you should type your user"1D"”. As always, lerminate your line of typing by
pushing the "return” key. The computer will then ask you for your "password", which is
like a key to protect the privacy of your files. After typing your password {which will
not appear on the screen), the system should respond with the "%" symbol This indi-
cates the system’s readiness to receive commands from you (cne of those described in
Chapter Three). . Note that the "%" character mray be preceded by some messages to
you, one of which might be "you have mail”. I, for example, vou do -have malil -~ just
type "mail” to read your messages. (See the description. of the "mail” command in
Chapter Four for more details.)

2.8 Dccumentation Conventions

There are several different commands described in this manual. These commands
can be executed when and only when you receive the prompt: "%" from the computer.
That is, the computer types a "%" character to indicate its willingness to accept a com-
mand. Cnece you have received the "%"” prompt by the computer, you can invoke {ie.
cause to be executed) any of the commands described in this manual via the following
general procedurs: simply type the command name, which is then sometimes follecwed
by one or more. additional "words" or character strings called "arguments”. If there
are no arguments, cnz simply types ke command name as in the following example:

who

which will give a list of all users currently working on the system. In general, the for-
mat for commands is as follows:

command argument! argument?2 argument3 ...

whiers lhe "argumeats” communicate additional information when required by the
command. An cxample of o command which takes cne argument is:

play assr
where "play” commands the system to perform the score "ussr’. [For =ase and clarity
of presentation we will now introduce a convention to be used in the documentation as

regards command arguments. In the description of 2 command, arguments will be
shown enclosed by two possible types of brackets: < > and []. The first pair is used to

-9 -

TECHENICAL DETAILS

indicate an argument which must be included with the command. An example would be
the play command, whose simplest usage is:

play <scorename>

where the command must be followed by the name of a score.

The square brackets ("[" and "]") are used to indicate an optional argument which may
or may not be included with the command. Again, we can use the "play”’ command as
an example: '

play [tempo] <scorename>

where we can provide an optional argument to indicate the tempo of performance. It is
seen, therefore, that thesc two types of brackets provide a quick method of determin-
ing which arguments need and need not be specifed with a command.

One comumon use of the commands described in this document is to take some existing
musical material, transform it, and save the result. In many cases, the composer may
want to replace the original material: with the new, transformed version. This case is
rather straightforward, as can be shown with an example:

retro fred

Here we use the command 7eérs to make a new versicn of the score "[red” which is the
retrograde of its original self. In this.case, the original version is lost, and we are left
with only the new, transformed, version. This is not what we always want, however,
Working from the same example, we can examine the other case: where the composer
wants to create a new (transformed) score, while still keeping the original:

retro fred : derf

Here we have a new score called "derf", which is a retrograde version of "fred" (which is
preserved in its original form). In this example, we see one-important convention used
in the commands described in this manual. That is, the name of any:new score being
ereated is always preceeded by a colon (:). The colon simply indicates that the next
argument is the name to be given to-the new data being created. Combining ww‘* we
have stated concerning both. bracke’cq and the use of the colon, we see that the usage
of the refro command in the above example can be summarizad as {oliows:

retro <scorename> [":" newscore] .
where "scorename’ is the name of the original scors and "newscore'” is the (opticnall
specified) name of the new scora. Note that you do mot typc the quotcs around the
colon. These indicate that the colon must be typed sxactly as it appears

3

Finally, there is the question of the order of the arguments in. the command's
sequence. We fesl that the.user should be freed of the burden of having {o remember
the order in which multiple arguments must be specified. Therefore, in most com-
mands, the order of argument specification is unimportant (except for colon preceed-
ing the optional "newname"” — c.i. above). Therefore, the afircts of the following exam-
ples (one of which we have already seen) are exactly the same:

retro fred : derf

and

CHAPTER 2
retro: derf fred

Any exceptions which require special:ordering arz peointsd out in the documentation.
Note that the exceptions "make sense” and therefore remembering them is far less of
a memory burden than memorizing the argument orders.) Again, if the documentation
seems unclear or inadeguale, send mail Lo music so thal subseguent users need not
suffer the same frustrations as you.

3. MUSIC COMMANDS
3.1 Objects
3.1.1 Genersl

Programs in this catsgory enable the user to define a personal palette of timhres.
For our purposes, we use the term object to describe a set of timbral characteristics.
Each object defined has a name defined by the user. This is analogous to defining and
naming instrumental timbres such as "Aute”, "trumpel”, ele. As will be seen in Appen-
dix A, the waveforms and functions making up an object also have names, and the user
must be conscientious of giving new names to these elements when they are defined.
There are various methods and modes of defining objects; however any object can be
used in the orchestration of any note..

3.1.2 Definition

3.1.2.1 bank is an exiension of objed. It is a command which allows the specification,
modification, and testing of objects which are defined according to the technigue of
additive synthesis. With dank, the user may hand sketch {or type) time-varying func-
tions afecting the amplitude (and frequency) of up to 16 partials. Figurc § is an cxam-
ple taken from bant showing a set of functions.controlling the amplitudes of a.set of
harmonics over time.. Detailed usage of the command is presented in Appendix 4.

3.1.2.2 objed is -the command to activate the cbject "ecdifor”; that is; an cnvircnment
for defining, modifving, and auditioning objecis, or timbres: In order to aid the user in
the editing process, the program allows the user to audition objects at different
pitches, amplitudes, and durations. The abjed program enables the musician to define
objects using differsnt techniques of sound synthesis. The:modes currently supported
include: fixed waveform, frequency modulation (FM), waveshaping (non-linear distor-
tion), and VOSIM. (voice simulation). .(The command bank:is used to specify objects
according to the technique of additive synthesis.) Fortunately, one does not have to
understand the details of the techniques in order to use the programs: On enfering the
program, the user is presented with the fized waveform mode, which is the most sim-
ple to use, What appears on the screen is shown in Figure ¥. One can expilore simply by
pointing., For example, pointing at the comumand play on.the display swill enable the
sound to be heard. Pointing at the "potsntiometer” labelled "frequency” permits the
pitch to be changed, and saon. Usage:

objed

More detailed information on odjed can be found in Appendix A of this manual.
3.1.3 Auxiliary Commands -

3.1.3.1 pobj is & sirnple program which enables the listing of an object’s data on-a ter-
minal. The data are listed in alpha-numeric (rather than graphic) form. Usage:

pobj <objectname>

where "objectname” is the name of some valid object.

-10 -

/ \
]
.
-
3. N
[
9
19
it
L2
13
14
15
16
3
' t) 1 . .
(22] (zee 1. (e8! pLAY
T T ‘

{ i DEFTNE A

‘ i .k] % AMPLLTUDE! » ' bank o5Taet

! < [x DRAW tinh poihi model ¥ ’

{1] P ! % WANES OFF =

{ : I * SRID QFF =

PITCH /0L METRONOME = SINGLE EDIT = SAYE

{ <ARYE
i = LEVEL L =
= SINGLE = x TEST MOTE = : = WORKING OBJECTS =
? gxIT |

Figure 6. Additive Synthesis using 'bank’

3.2 Scores
3.2.1 General

There are various methods of generating scores. The available programs fall into
two main categories: programs within:which each note (and its attributes) ar= directly
specified by the user, and programs which use compositional procedures to "generate”
aspects of the score. In addition. new: scores may be constructed by combining two or
morse previously defined (sub)-scores.y’

3.2.2 Direct Specitfication

3.2.2.1 record is a program which allows scores:to be created by having the computer
record what is played on the piano-type keyboard, th clavier, The command is
invoked by typing:

record

3. It iz important to note that regardlesy of how a score i3 created {using CMN, random procedures, graphie
notation, ete.), all scores are in the same internal format and therefore compatable (for mixng, ete.).
Thus, a sccre created using serive can be edited using the program sced. All scoresignd score programs
are compatible.

CHAPTER 3

WAVEFORMS FUNCTIONS

pv slne }.___ dafaulb_freq
i
B dafautt_anv

RN I
LO—=D

mICro<

pLAY
1 i
Lasg La_L.[(20 df_F wf ___Ob j SAVE
FIXED WAVEFORM dr Tmodd
- =
COMPARE) df Lot bl
2 NOTE MODE = df_yosim_ob)
f < STNGLE s df wa_ob1
PITCH YOL DURATION | gxqT
+ WORKING CBIECTS =

Figure 7, 0BJED: Fixed Waveform Mode

This command requires no. arguments. Cnce record is invoksad, you will be asked to
identify where you ars woriking (upstairs or downstairs), in order for the system to
knew which clavier it should be monitoring. The system will then prompt you to switch
to the appropriate "conducting” or "Lsi” terminal. This is the terminal on which ail
subsequent messages from the racord command will appear:

The use of the program is straightforward, the options being explicitly given to you on
the terminal. Simply, you may play on the clavier, and have what you performed
played back (more than once if desired). You have the aopticn of saving what ycu have
played, re-recording it, or of playing something new. If yocu chooss to save material,
the program asks you for the name by which you would like the score to be krown.
Several difsrent scores may be generated in one "record” session, sach of which may
te jully polyphonic (up to 18 veices), and of an arbitrary number of notes, The scores
thus generated may be subsequently edited or modifed using any of the commands
found in this manual. To exit the program, switch back Lo your original terminal and
depresy the "RUBOUT” bullon.

3.2.2.2 sced like scriva, is.a score editor; that is, an environment in which a composer

can specify and medify the data making up a musical score. Unlike sced, the environ-
ment provided by sced i3 alphanumeric, rather than graphics based. Therafors, Lhe

MUSIC COMMANDS

program can be used from any terminal, graphics or ctherwise,.

sced is based on the UNIX text editor (Kernighan, 1975b} which is called ed. That is, the
commands. and working methods are very similar; if you can use one, you can use the
other. Usage for invoking the prozram is:

sced [scorenarne]
whera scorename (optionally) specifies the name of the score to be edited. If the score
indicated by the scorename argument exists in the composer’s current directery, it is
automatically loaded into the program.

4 detailed tutorial explaining the program's use is given in Appendix C of this manual.
A summary of the program’s main commands is given telow:

. print current note.

.= print current note's numbper.

a add notes to score after current nota.

i add notes to score in front of curent note (insert).
i listen: play score on synthesizer..

£ print file (score) name.

h help: ask anytime.

c change the current nnte. -
<int> absclute or'relative change of current note..
w write {ie. save) score..

D print current note's data on screen.

q quit editor.

[er] make next note the current note: and list it.

e edit a score.

d delete indicated note(s).

$ move to last note.

I<emd> tempcrary escape to shell.

r read score and append after the current note.
t copy note(s}.

m maove notes.

mm examine or define meironome marking.

lm switeh reset mede for interrupted listen.

jm switch the join mode between mix and splice.

3.2.2.3 scriva is:an editor for scores. It is a graphics program that allows you to add,
delete, view, play, etc,, notes in a score. The program allows scores to be edited and
notated using various forms of notation, including CMN and "piano-roll" nntation. Fig-
ures 1 and 2, which were taken from scriva, illustrate two different ways of notating the
same musical material. Figures 8 and 9 give two other examples of scriva's notaticnal
flexibility. Usage:

gseriva

Additional information on the use of scrive can be found in Appendix B of this manual.
3.2,3 Compositional Routines

3.2.3.1 makescore makes a score of a specified number of notes. All notes are pitched
at a4 and have a duration-of a quarter note. The command is useful in combination
with other commands such:as map or rand. Usage is:

e

maiescore <number of notes> [scorename] |

Bl e R R ne ek AR e ey
. S e O e H
d sese Hz’: 4
:| %
‘ 3
:
; |
¢
3 :
: o
A i
s L
: ;
A +
: 4
3 :
4
A i
i B
1. N
" &
¢ o
: S T— :
o = e
: N AT Y A A O — = 8
3 H X
i Time ;
5 3
o
q
i 3
o e g T I e T W N TP

gditor fusie Scope Operstors

Netattiont Ama. Objecty df fwf _ob) whole icore add archestratas

Otapleyr Llinesr Yolumes 192 circle dalate tcorchestrate

lrout: . Resd Channel: 1 collact play tet voluma

Joiny tollics 1ave

Scoret m.oub.reve claar

e 224

Page QuUIT

Wod Qct 24 18:24:3d 1979

1

Figure 8. Envelope Notation in Cartesian Space

where the number of noles is specified as an integer. If the optional specification of
the name for the created score is omitted, then the new scors is named "m.out’”.

3.2.3.2 prod is a program for composing scorss which permits randoem processes to te
used in making dercisions about the musical structuras. An interesting aspect of the

This is in contrast to many pregrams which through-compese a work from beginning t
end. The resuit is that relationships among structures at diferent points in the scor
can be easily defined. In addition, recceuring material only needs to be specified once.

Prod is tased on a linguistic model, that of formal grammars. In order to obtain a
detailed tutorial-on how to make use of the program, the reader is referred to Appen-
dix D of this manual. One thing to note in passing, is that random selection features of
the program need not be used. Prod:con be a useful (ool strmply for ussernbling com-
pleted scores out of pre-composed fragments. In either case, it provides an clegant
means of specifying athe structural "recipe” of a composition.

5.2.4 Auxiliary Commands.

MUSIC COMMAND

o4 S5 S K X XX
PRGNS G EON KO 4 L O N AO I K &I 61

FANAAIAZAAIRAIARE €@ QL 9 24 44

obj.drone

gcbﬁ
A
g

E€ditor Hustc Scose OncruLors

Notattion: Obj. Object: obf,.dronmn whole scors add ' archustrats
i Otsplayy tiaves Volume: 15§ circlas delate N tcarchestrate
ITnput: Read Chanmnei: 1 colleat play tet volume
Joinm mix B 1ave
Scorer 1aveld, clasr
Xart <
M 32 l
Page . QUIT
“rt Nov 2 99:14:31 1979

Figure 9. Notation.Highlighting Orchestration

3.2.4.1 eck=ize is a utility routine which summarizes the amount of space takem-up by -
objects, scores, functions, and waveforms for any score. Aside from interest’s sake,
thc only use of this command has to do with the conducé. program. - In order to get
optimal resource utilization, the first statistic given: "Number of Core Table Entries”, is
important. This'number is the value that ideally should be input to the first questlon
posed by conduct, "Sym Cnt?". The usage is:

cksize <scorename>

where 'scorename” is. the name of a valid score, including a "file folder”. {See the com-
mand makefF.)

v '/

3.2.4.2 dur is a: ulility comraand which will give the duration of a score when per-
formed at a specified metronome marking. The usage is:

dur <score> [mm] -
where "score” is the name of the score whose duration is to be found, and "mm" is the

metronome marking. If the metronome marking is omitted, then mm=60 is assumead.
The score duration is given in both beats (quarter-notes) and minutes and seconds.

<15 -

CHAPTER 3

3.2.4.3 orch enables the user Lo orchestrate a:score with one (and only one)} of the
objects which he has defined. Usage:

orch <objectname> <oldscore> [newscore]

where "objectname” is the name of the object with which the score "oldscore” is to be
orchestrated. The new orchestrated score can be optionally placed in a new score file,
thus leaving oldscore unchanged. More sophisticated tools for orchestration can be
found in each of scriva and sced.

3.2.4.4 prune Unfortunately, the number of voices available at any one time is limited.
This is due to the fact that the SSSP symthesizer-has only 18 sound generators. There-
fore, the maximum number of voices that can ever be performed.simultanevusly is 186.
Furthermore, since some techniques of sound synthesis utilize more than onc oscilla-
tor per voice (fm and waveshaping both require: two oscillators per voice), the user is
often limited to 8 or fewer voices. Sometimes this is frustrating; however, the com-
poser should simply accept the limitations of working with resources more comparable
to a chamber ensemble than to a symphony orchestra.

The prune command is provided tc enable the composer to strip out of the score those
notes which cannot be played by the synthesizer. Simply, the command goes through
the indicated score and ensures that there are never more than a specified number of
voices playing at one time. Excess notes are deleted, or "pruned” from the score.
Usage of the commanad is as follows:

prune <scors> [maxvoices] [":" newscore]

where maxvoices indicates the maximum density (if unspecified 18 is assumed), and
newscore is the name of the new "pruned” score. If newscore is omitted, the pruned
version is saved in score. Note: the prume command does not alter the timing of your
ccmposition; it merely cuts down on its size.

3.2.4.5 invert enablss yow:to create an inverted version.of a score; That is, every
interval is inverted in direction. The first note ofithe score remains the samea. Usags:

invert <score>

or
invert <cldscore> [':" newscors]

3.2.4.5 iscale is a command that enables you to scale the intervals in a score. That ig,
you can compress or expand the- size of the score’'s pitch intarvals., The effect of the
command can be seen if we take a three nots score as an example. Let us say that the
second note is an octave above the first, and the third note is a major second below the
second (e.g. a4 --a5 - g5). If we scale this score by .5 (1/2), the new score will consist of
a tri-tone {augmented fourth) rise followed by & semi-tone fall (a3 - d4# - d4, in the
above example). Simplest usage is as follows:

israle <smore> <factor>

Where "score” is the name: of a valid score and "factor” is numerical value (4, .5, 3.4,
etc.) by which the intervals ars to be scaled.

Note that a negative scaling factor is perfectly legal. With a little thought, thersfors,
we see that the effect of using iscale with a scaling factor of "-1" is the same thing as
inversion. Thus, the following two examples are musically identical: ' ;

- 16 -

MUSIC COMMANDS

iscale fred -1 .
and
invert fred

In the above examples, the actual intervals of the original score would be changed. If
one wants o create a new scorc which is a scaled version of a preserved old score, this
is also possible. Usage in this case is as follows: -

iscale <oldscore> [":" newscore] <factor>

Where factor is as above, ""oldscore” is the original score and "newscore’ is the name
for the new scaled version of "oldscore’,

3.2.4.7 makeff is a command which lets you group several scores together into a sin-
gle “file-folder.” The purpose in so doing is to enahle them to be shipped to the conduct
program under a single name, rather: than repeatedly typing the name of each score.
The command usage is as follows:

makefl <file~fclder name>

The command then prompts you as to how to proceed. Typing '‘h" at any time will pro-
vide help in the form of on-line documentation. In general, the command allows you to
add and delete scorz names to be included in the file folder. If there already exists a
file-folder of the:name specified as the argument to the command, that file-folder will
be edited; otherwise, a new fle-folder will be created under the new name. Note that
the name of all file-folders mus? cnd in the letters "' ff;’" furthermore, scores being used
by the conduct system must not end in “£."

3.2.4.8 map is a command to transfer characteristics of one score onto a second
score. Thus, for example, we can cause the sequence of notes making up one score to
assume the pitches of the sequence of notes of ancther score. The scare whose charac-
teristics are being copied: is referred to as the paiferm score. The score which is
assuming these new characteristics is called the transformed score. The process of
having one score assume characteristics of another we call mapping.

Various parameters can be.mapped from one scors to another: pitch.{i.e. frequency),
note durations, entry delays (thus rhythm), amplitude, and timbre. In the mapping
process, the number of notes in the transformed:score does not change. and only those
characteristics being assumed from the pattern score are changed. The user specifies
which characteristics are to be mapped. If there are fewer notes in the transformed
score than the pattern score, then the pattern simply does.not complete, since no new
notes are generated. On the other hand if the transformed score is longer than the
pattern, then the time pattern will repeat until the end of the transformed score is
reached. Usage of the commands is as follows:

Note that the crder of the pattern and transformed scores is important in this com-
mand. If the name of the new score is not specified, the new score will overwrite the
original version of the transformed score. The: characteristic flags are cne or mors
arguments specifying what characteristics of the pattern score are to be mapped.
Each flag consists of a minus sign ("-") followed by a single character. The flags and
Ltheir meanings are as follows:

CHAPTER 3

FLAG MEANING

-p map pitch

-r map rhythm (entry delay)

-d map duraticn

-¢ map time (rhythm & duration)
-a map amplitude

-0 map objects

An example of the use of the command is as follows:
map mel beat -p: complete

which maps the pitch structure of score "mel” anto score "beat” and stores the newly
created score under the name of "complste.”

3.2.4.9 mix is used toc mix several scores together. I assumes that all the scores start
at the same time. (However, the command sdelay can be used to get around this limi-
tation.) The scores to be mixed appear as arguments to the program. The orchestra-
tion of the scores being mixed is maintained. An-example of the uss of this program is:

mix sl 32 3

where "sl1” to "s3" are the names of the scores tp be mizxed. The new mixed scores in
this case is stored in the score "m.out”. There is no practical limit on the number of
scores that can be mixed together. The only real constraint is to remember that the
synthesizer is currently only capable of playing a maximum of 18 simultaneosus voices.

Carrying on from the previous example, the user may specify the name of the new
score, as in the following example:

mix s1 s2 53 : paly -

where "poly” is the name of the new:score. In summary, the usage of the mix com-
mand is:

mix <scorel> <score2> ... <secoren> [nawscora]

Cautionary notezIf there previously existed a score m.out before calling this command,
it will be overwritten (i.e. lost) if the new score is not explicitly named: Finally, the two
score editors sced and scriva both provide more flexibie mixing facilities.

3.2.4.10 mode is a command to enable you tc change the mode of a score, That is, it
gnables you to change the mode of a score from the major to the harmonic or melodic
minor, for example. {A brief disclamer: mode has no musical intelligence, so it.works
more like a musical "sieve’.) In fact, the command lets you change the mode of any
score to any of the common modes (such as the twelve "church” modes), or to any
mode of your own invention. The notes of the score being transformed need not even
“at" with the frequencies of the notes of the piano; they will be treated as if they had
the frequency of-the closest pitch. Thus, one of the spin-off uses of this command is to
convert a score whose notas fall anywhere in the frequency domain to one whose notes
fall on one of the 12 pitch classes of the diatonic scale.

The usage of the-command is as follows:

mode <score> <mode> <final> [newscors]

-18 -

MUSIC COMMANDS

where the score argument indicates the score to be transfocrmed, and the optional
newscore argument indicates the name of the.new transformed score if it is to be
different than that indicated by the score argument.

The mode argument indicates the mode to which the indicated score is to be
transformed. You can specify the mode in a variety of ways:. These are as follows:

» By a Roman numeral (I through XII), indicating the Authentic {(odd) and Plagal (even)
church modes.

» By an Arabic numeral (1-7) indicating the degree in a major scale on which the
equivalent 7-note mode would begin.

+ "-m", indicating that the: mode is the melodic minor {ascending).
+ "-h" indicating that the mode is the harmonic minor,

« "-d", indicating that you wish to define your own mode. On using this option, the
program will prompt you how to specify the mode.

Finally, the argument called final must be specified in order to indicate the final (or
tonic) of the score to be transformed. This is simply indicated by typing the pitch
class. Examples of legal final specifications are: c#, ab {(Note lower case "B" is used for
flat), d, ete.

3.2.4.11 pscore prints the contents of the given:score on the terminal. For each note
it gives the frequency, amplitude, duration, time to next note and cbject. An example
of its usage is:

pscore <3coranamsa>

where scorename is the name of a valid score. [f the score is more.than a couple of
notes long, chances are its listing will not it on the screen at once. Therefore, it is
often useful to print the scere out page-by-page..This is done as in the following exam-
ple:

pscore fred | p
or

pscors fed ~ p

R X

where " p" and " p" both indicale paging, (Note that the character can always be
used as a synonym for 'I'.) To get the next page. just press "RETURN". To stop the
printing, type the RUBOUT character. .

More than one scors may be printed out with this command., Usage is as above sxcept
that any number of score mames may be given. An example of this type of usage would
be: :

pscore fred charley joe

which would print the scores "fred"”, "charley"” and "joe” in the order given.

If you want a printout of the score on the line-printer rather than on your terminal,
usage is: .

pscore <scorename> | lpr

Note that in this case, it is important that the ! lpr” be the last arguments. If you are
printing multiple scores out on the line printer, it may be desirable to start each score

- 19 -

CHAPTER 3.

on a fresh page.. For this purpose, the "~f" flag is used. It will cause a formfeed on the
printer before printing out the scores {ollowing the flag in the command line. The form
feeding can be disabled {the default state) by including a second "-f" flag in the com-
mand line after the names of all the scores that are to be separated. Usage in this
case would be as follows:

pscore -f jazz madrigal -f fugue | lpr

This would cause lhe scores jazz and:madrigal to be printed on fresh pages, but with
the score fugue following immediately without a formfeed.

A feature of interest to programmers only is the verbose mode of ocutput. When this
mode is invoked by the appearance of a "'-v" flag in the command line, all scores up to
the next occurence of a "-v" in the command line or the end of the command line itself
will be printed cut along with the contents of their symbol tables. The "-v' flag may
appear any number of times in a command line.and sach occurence has the efiect of
switching the state of verbesity. For example, the following command will print out the
score frank with its symbol table and the score fred without it.

pscore -v-frank -v fred

Note that the same effect (albeit with the scores in the other order) could have been
achieved by the command.:

pscore fred -v irank

When in verbose mode the score printout of object names is accompanied by the
object's symbol table index.

3.2.4.12 rand is: 2 command to randormize, within user defined limits, a specified
parameter of all'the notes in a score. This command allows a user to specify a “ten-
dency" within which the compuler will select, according Lo random chance, values for a
specified note characteristic. In the simplest case an attribute may be randomized
relative to its current value. Usage is then:

rand <score>:<flag> <range>

where <score> is the name:of an existing score and <flag> indicates which atiribute is
to be randomized. The fiag.may be one of the following:

-f (frequency)

-v (volume)

-d {duralion)

-r {rhythm or entry delay)

-t {(timing: duration and delay).

The <range> argument gives the range of values above or below the current value in
which the attribute may fall affer randomization. An example which illustrates this
type of usage is:

rand fred -v 20

which results in a new version of the score "fred” where the respective dynamic levels
of all the notes have been re-set to some new value that differs from the old by no more
than than twenty units (or about one dynamic marking). The original score may be
preserved by giving a new name to the randomized version through the colon (i)

-20-

MUSIC COMMANDS
argument as follows:
rand fred -d 1/4 : newfred

where "fred” remains unchanged and .'newfred” is the name under which the random-
ized version of "fred” is saved. Note that the range is given as a beat ratic that limits
the note durations in "newfred” to differ no more than a quarter note’s duration from
the corresponding durations in "fred".

The randomization can be made to occcur about some value other than the current
value of an atiribute. In this case the usage is:

rand <score>:<flag> [center] <range> ["!" newscore]

where "center” is the value about which the randomizatiorn is to occur. An example of
this type of usage is:

rand fred -f 440 220 : jos":

with the result that the new score "joe” has the: same orchestration, volume and time
relationships as "fred”, but is composed of notes with random frequencies lying some-
where in the range of 220 Hz (440 minus 220) to 880 Hz (440 plus 220).

In the above examples, the center and range were given as constants (i.e. a specific
numerical value: 20, 1/4, etc.) that did not vary over the course of the score, but they
may also be given in terms of time-varying functions (defined using funced or objed).
This way a dynamic, rather than constant, value:may serve as the center or range (or
both). The function is first scaled such that the function's duration matches the
score’s duration and then the function’s values, .which range from 0 to 1, ars adjusted
to the range of values which a particular attribute may assume. :

When time-valued characteristics are being randomized, the center and/or range
values may be given either as beat ratios (1/4, 1, 1/8) or as functions. In applying
functions to time attributes, the interpretation of function.contours by the program is
basically logarithmic. A function value of .53 corresponds.to a whole note, and each
increase (or decrease) of .0625 of the function value corresponds to & twofold increase
(or decrease) of the time value: A function value of zero, however, is taken literally,
rather than being considered equal to 1/256. Thus, any of the possible values that a
duration or entry delay may assume can be represented by a function..

Since zero is a legal value for the range, the randomization may be confined to portions
of a score. This is achieved by defining a function whose value is zero at points where
no randemization is desired and which assumes some other value where randomization
is to oceur. Using this function as the range argument will then cause randomization
to occur only where the function value:is non-zero.

Finally, the above examples would produce scores where the randomization is said to
be "linear”, that is, the values obtained are spread evenly over the allowed range (as is
defined by the center and range). An alternative exists whereby the user may specify
that the random values are to be distribuled "normally”. This meeans thal the values
would "cluster” about the center in the form of the familiar bell-shaped curve. Usage
is then as follows:

rand <score> <flag> [distribution] [center] <range> [newscore]
where "distribution” is one -of the flags -l (linear) or -n (normal). If normal distribution

is desired, strictly speaking, the center and range arguments are actually interpreted
to be the mean and variance, respectively, of the distribution. If unspecified, the

-21

CEAPTER 3

distribution is assumed linear,

3.2.4.13 relpos is a utility program which allows the composer to determine when,
relative to the duration of an entire score, a particular event occurs. It is of particular
use when defining functions which are:to be used to affect some aspect of a score (such
as in controlling dynamics using setvol). That is, it helps determine the relative posi-
tion of reference points in the score which may be of use in designing such functions.

The user must specify to the program the event whose position is to be determined,
and the name of the score in which it occurs. The event is identified by iis ncte
number (i.e. 1 for the first, 2 for the second, ...). The program prints out a fraction
which indicates how much of the score has elapsed before the indicated note begins.
The program also provides the ability to determine the proportion of the scors which
remains following the start of the indicated note (that is, the inverse of the fraction
normally output by the command). This is accomplished by preceeding the note
number by a minus (-) sign. Finding the relative position of the 8th note of "minuet”
would, therefore, be as {ollows:

reipos 8 fred

while finding the portion of the score following the same note would be obtained by typ-
ing

relpos -9 fred.

3.2.4.14 retrov is a command which enables you to produce a retrograde version of a
score. [ts usage.is asg follows:

retro <oldscore> " newscore]

Wherc "oldscorc” is the name of a valid score which you want in retrograde. If a second
name is specified, the new retrograde:scores will be given the name '"newscore”. Other-
wise the original score is made retrograde, retaining its original name.

3.2.4.15 rotate permits the values of one or more note paramcter to be shificd, or
rotated, with respect to the rest of the score. For example, the frequencies could be
rotated by one, causing the second note to assume the pitch of the first, the third that
of the second, efc., with the first assuming the frequency of the last. Thus, the piteh
sequence "'C, D, E, I would ‘become "F,; C, D, E,". .

Parameters can be rotatad. by more than one step, and can shift in either direciion.
Thus, rotating the sequence "C, D, E, F' by 3 would result in "D, E, F, C". The same
result could have been achieved in this example.by a rotation of -1. In all of the exam-
ples seen thus far, only the piteh/frequency parameter was afected. I the original
dursation of a note was a quarternote, 3o it remains,.

Rotation can be-applied to any and all parameters. Rotating all parameters by -1, for
example, would have the same effect: as detaching the first note, and splicing it onto
the end of the scaore. One can, however, rotate parameters together, such as duration
and entry-delay, or amplitude, duration, and orchestration.

The simple usage of the command is to type its name:
rotate -
The program will then ask you, in a conversational manner; for the features which you

want to rotate. Alternatively, all (or some) of the details can be specified in the com-
mand line, thereby avoiding an otherwise verbose dialogue. The detailed usage is:

.22.

MUSIC COMMANDS
rotate [score] [parm list] [degree] [":" new score]

where degree is the magnitude of the shift (either positive or negative), and "parm list"
is the list of parameters to.be rotated. This list may contain any or all of the following
values:

FLAG MEANING

-freq frequency

-yol volume

-obj object (orchestration)

-chan output channel

-dur note duration

-rhy entry delays {rhythm)

-time same as -dur and -rhy combined

When used in the command line, the "flag” for each parameter must be preceeded by 2
minus sign (-), as shown. The default assumed is'that all parameters are to be rotated.

3.2.4.18 scorch enables you to "scorchestrate” a score with another "sub-score’., That
is to say, instead of orchestrating the.notes of a score with an object, you do so with a
score. For example, if we have a "master"” score consisting of a 3-note motif as well as
a "sub” score consisting of a major triad (any spelling and root), then, scorchestrating
the master score with the sub score will result in a new score which is a sequence of 3
triads whose rhythm and root notes are the same as the 3 notes of the master score.
Usage of the command is as follows:

scorch <master-score> <sub-score> ["* newscore]

where the arguments are explained above. If no.target score is specified, the mastar-
score is modified: to the new version. NOTE: unlike most commands, the ordering of the
arguments to the scorch command is important; namely, the master-score’s name
must preceed the sub-score’'s in the argument list. This is because beth arguments are
scores, and the program cannol. read your mind as Lo whicls is which, The placement of
the {(optional) ncw scorc argumecnt is cpen, as long as it is precesded by a colon.

For those still confused as to what scorchestration reaily is, see Appendix D where it is
explained in the context of sced.

3.2.4.17 sdelay is a "kludge” program. It is used to place a rest at the start of a score.
Therefore, when that score is mixed with ancther (using the miz command), its
entrance will be delayed by the duration of the rest at the beginning. (This type of
mixing is usually better performed using sced rather than sdelay and miz.) Usage:

sdelay <oldscore> <delay> [":"' newscore|

where delay is a fraction specifying the duration of the rest. An example of the
command’'s usage, defining a delay of a thirty-second note is:

sdelay original 1/32 : modified

wherc "original” and "modified” are the names used for the original and new scores,
respectively. Note that durations are based on a 1/4 note as having a duration of one
"weat”, and the number of beats-per-second determined—by the metronome marking.
Finally, note that the same eflect can be gained with more control in both sced and
scriva.

CHAPTER 3

3.2.4.18 setchan enables you to set the outputb channel for an entire score. If you
have, for example, a scors made up of four 'parts’ or "sub-scores”, you can use
"setchan” to assign each "part” {o an-independant channel.before merging the "parts”
into the master scere, Usage is as follows:

setchan <scorename> <channel>

Where "score” iy a valid score name, and "channel” is an integer (1 to 4) indicating one
of the 4 channels of the synthesizer.

3.2.4.19 setvol is a command to {re-)set or adjust the volume of the notes in a score.
There are two ways in which this command can be used. {1} Score note volumes can be
set to new, absolute, values specified by the user. This we refer Lo as alsolule mode.
(2) Score note volumes can be adjusted up or down a specified amount from their
current values. This we call relative mode. As will be seen below, the command allows
the user to specify values -~ in both rclative and absolute modes -- either as a constant,
which has the same effect on the score from beginning to end, or in terms of a function
whose value changes through the course of the score. Thus, in the former case, all
volumes of a score can be set to some uniform value (absolute mode), or turned "up”
cr "down" by some uniformramount (relative mode). In the latter case. note volumes in
a score can be set to follow some contour such as a crescendo-decrescendo (absoclute
mode), or in relative mode;, we can adjust the volume of different parts of the score
"up” or "down" by differing amounts. Each alternative is explained with examples
below,

In setting volumes to a constant value in absolute mode, the usage of the setvol com-
mand is as follows:

sctvol <scorcnamc> <volume> [":"' newscore]

where "“scorename” is.the name of a valid score whose volume is to be adjusted, and the
"volume" argument is an integer in the range of 0 (min) to 255 (max), specifying the
volume to which the notes are to be set. (Note: a value of 0 is maudible, 190 is about
mf, and a change of about 20 is equivalent to a change of one dynamic: marking.) In the
following example:

setwnl jazz 255 : tooloud

we have made a."clone"” of the score "jazz” whose notes are all set to the maxdmum
volume (255).

In order to effect a relative:change, that is uniformly turn the volume of a score "up" or
"down" by a specified amount, the command is as follows:

setvol <scorename> <offset> [":" newscore]

The "offset” argument specifies the amount and direction that cach note’s volumse is to
be adjusted. It is specified as a signed integer (such as . "+20" or "-10"), within the
range of O - 265, The offset is simply-added to the volume: setting of each note in the
score. The result is that the relationship of the amplitudes among ‘the notes of the
score remains the same; the volume is simply altered up or down. The following exam-
ple

setvol jazz -20

reduces the note volumes of the score "jazz" by about one dynamic marking.

- 24 -

MUSIC COMMANDS

To summarize to this point, if the numerical argument to the sefvol command ig pre-
ceeded by a plus {(+) or minus (-) sign, it is interpreted as an offset in relative mode.
Otherwise, it is considered an ""absolute” amplitude value.

Returning to absolute mode, if we want to set the note volumes to follow some contour,
we can use a time-varying function. A function can be used to define the amplitude
"envelope” of a score, just as it can be used to define the envelope of a single note. Any
function {such as those defined using funced or objed) will do. Usage in this mode is:

setvol <scorename> <function-name> [newscore]

How then are the amplitude values derived from the function? First, the function is
"stretched” so that its base exarctly fits the overall duration of the score, Then, for the
start of each note in the scors we see where we are with respect to the ovesrall score
duration, and find ocut what the instantaneous value is at the corresponding pointin the
function. Thus, if we are at the middle of the score, we find the "y" value for the func-
tion half-way aleng its base: The range of functicn values are considered as being pro-
portional to the range of possible amplitude values (0 - 255). Thus, if the instantaneous
value of the function is .5, the note volume becomes 127 (255 times:.5). Similarly, a
function value of-1 results in a volumessetting of 255. Thus, in the following example:

setvoel jazz invee

if "jazz" is a score, and "invee” is: a function having the shape of an inverted "V" (start
at 0, reach 1. at midpeint, drop to 0 by end), then the score will fade in {rom noolhing,
reach maximum volume by the middle, then fade out by the end. Note that in this
example the first and lasl. ooles will be inaudible (their volumes being 0), so to get
more of a cresecendo effect, the start and end points should be about .5, rather than .

Functions can also be used in relative mode, to specify varying degrees of volume
adjustment during the course of a score. In this case, the "y" value of the function at
the point corresponding to:the start of a note is:used to determine the relative offset,
rather than the absolute velume as was previously seen. In this case, we have a slight
problem, in that.the function must be able to express a change sither up or down. In
relative mode, therefore, we must treat the function as having a positive side and a
negative side. The situation is just like that seen with the function affecting pitch in
objects, which can specify a glissando both up and down from the notated pitch. Using
functions in relative mode: in setvol, we interpret the middle "y" value (.3} as being
zero, or no offset. The range of the upper half of the function (.5 to 1.) is interpretted
as covering the range of allowable positive offsets (O to 253). The range of the lower
half of the function (.5 to 0.} is interpretted as covering the range of allowable negative
offsets (0 to -255). Thus, a.function remaining at..5 means no change. The further the
function value rises above .3, the more the volume is increased. The further the func-
tion descends below .3, the more the volume is turned dowmn:

We know if a function is to be interpreted in relative or absoclute terms by whether it is
preceeded by a '+’ or ’-’ sign or not. (Normally, use '+' in relative mode. The effect of
the '~' is to use the inversion of the function.} The following is an example of using a
function in relative mode:

setvol jazz +curve

Finally, there are two additional points to make concerning the command. First, it can
be used to avoid the distortion due to overloading. That is; if the soumnd distorts, turn
the velume {of the notes) down. Second, the command rand is rather useful as a com-
plement to setvol, as a means of introducing random variation into the score dynamics.

-25.

CHAPTER 3

3.2.4.20 splice is used to "splice” several scores together in sequence. That is, they
are strung together one after the other, The scores to be spliced are passed to the pro-
gram as its arguments. The user may also (optionally) specily the name of Lthe new
scores being created. (If the name of the new score is left unspecified, the new score is
named "m.out” by default.) In splicing scores together, all aspects of the component
scores (such as orchestration) remain intact. An example of the use of this command
is:

splice si s2 s3

where "s1” to "s3" are the scores to be spliced. In this case, the new score is
unspecified, and is named, therefore, "m.out”. The next example illustrates how the
composer may specify the name of the new "composite” score being created:

splice s1 31 sl s2

In this case, we are creating a new score "s2" which is made up of three repetitions of
the score "sl". Notice that-it is perfectly legal to splice a score onto.itself in order to
obtain a repeat (often saving tedicous duplication of data specification). Second,
remember that the name of the new score must:be preceeded by a colon (:"). We can
summarize the usage of the splice command as follows:

1,1

splice <scorel> <score2> ... <scoren> [":" newscore]

There is no real limit on the number of scores which may be spliced together. One cau-
tionary note, however; in crealing a new score, any previously existing score of that
name is overwritten, and consequently lost. Protection: if you want to save the old ver-
sion of the file, choose another mame, or rename the old fite (for example m.out) using
the UNIX mv command (see Chaptsr Four).

3.2.4.21 transp is a command to transpose a score. In its simplest form, the user
need only indicate which score is to be transposed, and to what pitch. The degree of
the transposition can be specified in two ways: by giving the pitch on which the tran-
sposed score is to start, or, by specifying how far (up or down) the score is to be tran-
sposed. For fairly obvious reasons we call these cbsolufe and relafive transposition,
respectively.

In absolute transposition, the new start note can be specified either as a pitch (in the
form c3, ad#, dBb, etc.) or as a frequeney (eg., 440, 325.5, etc.). Usage in this case is:

transp <score> <startfreg>

Where "score’ is a valid score and "startfreq” is the start note of the new score,
specified as described as above,

In relative muode; the user can specify-how far a score is o be transposed up or down in
terms of either semi-tones:or Herz. When specifying a relative change in semi-tonss,
the value specifying the degree of transposition is made up of three components: a sign
(+ or -) indicating direction, a number indicating the number of semitones, and the
letter 's’ indicating "semi-tone”. An example of transposing the score "fugue’ up a
major third {4 semi-tones) would be:

{ransp fugue +4s
Notice that there are no spaces between the sign, number, and 's'. The number which

indicates the degree of transposition need not be an integer. Thus, the efect of the fol-
lowing example would be to transpose the score "lower” down a quarier-tone.

-28 .

MUSIC COMMANDS
transp lower -.5s

If the 's’ is omitted in relative mode, the number:indicates the number of Herz that the
score is to be shifted up or down. Using this feature, the composer should keep in
mind that the score will no:longer be "in tune”. (Why? Because frequency intervals can
correspond to different pitch intervals.) That may, however, be just what you wanti

As with other commands, the original version of the score may be kept intact by the
provision of an additional argument which specifies the name of the new, transposed
score., Usage then has the form:

transp <oldscore> <where-to> [":" newscore]

Where "oldscore" is the unaltered original score, "newscore’ is the name cf a new ver-
sion of "oldscore’, and "where-to” indictes where "oldscore is transposed to (in either
relative or absolute terms).

3.2.4.22 tscale is a command which enables you to "compress' (i.e. diminish) or
" "expand” (Le. augment) the time-scale of a composition. In its simplest form, tscale
causes all time: values of the score to he scaled. Therefore, note durations ars
adjusted, as is the score duration (and hence, tempo). Usage in this case is:

tscale <score> <factor>
Where "score” is the name of a valid score, and."factor” is the factor (a value such as
".5", "2.25", "3", ete.) by which time is to be scaled. In the above example, the actual
durations of "score” are altered. If you want to preserve the old version of score as
well as create a new scaled.version, you can use the following construct:

tscale <oldscore> <factor> [newscore]

Where '"oldscore” is the original version of the score (which is preserved), and
"newscore’ is the name for the new (scaled) score to be created.

A particular feature of "tscale” is that it allows.you to scale note durations indepen-
dently of score duration (and vice versa). For example, it enables you to change arti-
culation (staccato or legato), without affecting tempo (i.e. by scaling note durations
only). Usage in this case is:

tscale [flag] <score> <factor>
or

tscale [Aag] <oldscore> <factor> [":" newscore]
Where "(old/new)scors" and "factor” are as above, but we have a new argument "flag’.
The "flag” iz simply one of the two following arguments; “-s, meaning that you want to
afiect only score duraticn, and “-n', meaning you want to: affect only note durations.
Example usages ars:

tscale duet 4. .

tscale 4 duet

tscale -3 duet 4

tscale duet stacduet-n .5

CHAPTER 3

tscale duet 6.1 -n

With regard to scores, tscale can be used to change tempo; however, remember that we
are modifying the time scale of the score and therefore the "entry delay” between
notes; that is, the period of tizne between the start of one note, and the start of the fol-
lowing one. Thus, to double the tempo of a score (twice as fast = half as long), you
scale score duration by a hall.

Finally, note that the scaling factor need not be.a positive number. A scaling factor of
-1, for example, has the same efiect as the command retro.

3.3 Performance

F) Pt
S A d
interpret,

3.3.1 eonduct is a program which cnables the user to or

which have been previously composed.: Usage is:.
conduct

You will then be asked to identify where you are working {upstairs or downstairs). Your
response ensures thal the proper transducers are connected to the machine.. Once
this is done, the system will prompt you to switch to the conducting terminal, or "work
station”. The first question which is asked at the:conduct terminal is

Sym Cnt:

Normally, you can ignore this gquestion and just type RETURN. (If, however, you are
having troubles making your score fit-into the system, see the documentation for the
command cksize to fnd an alternative way to raspond.) The conducting station then
prompts you to type in the name of any scores to be conducted. When all scores to ke
conducted have:been specified, push:the "RETURN" button on the terminal, without
typing anything else on theiline. You will then be able to begin conducting. Appendix E
of this document gives a detailed description of the conduct. system.

Also see the command makeff to speed-up the specification of scores to the conduct
system.

NQTE: periodically the scresn cursor will not track the tablet puck. In such cases try
the following., First, push the bution on the terminal keyboard labelled "EOME". This
will usually do the trick. Failing that, push the little button on the underside of the
upper right hand side of the tablet.

3.3.2 lsiplay is a program .for playing scores. It has esxactly the same usage as piay.
The difierence between the two programs is that lsipiay performs the scors completaly
on the a private computer. As a result, it takes about 20 seconds longer from the time
that the command is typed until the music is hear. The benefit is that the timing is
unaffected by other users on the system, as is often the case with plaw

3.3.3 play is used to play scores. The main argument which must be specified ig the
name of the score to be played. In this case, the usage is:

play <scorename>
Where <scorename> is simply the name of a previosly defined score. If more than one
score name is specified, the scores are spliced together and played sequentially in the
order given. An example of such usage would be::

lay start middle last
J

where "start”, "'middle”, and "last” are three previously composed scores,

-28 -

MUSIC COMMANDS

There are several optional arguments:which may be specified to piay.. One allows con-
trol over the tempo of the performance, another automatically starts the audio tape-
recorder in order to record the perfermance, ancther makes sure that all waveforms
nesded by the score are loaded into the synthesizer, and the last allows the scores to
be ""mixed” before playing. These optional arguments may be used together or alone.

The optional tempo argument is expressed as a metronome: marking, just as in regular
music notation. It is written as a positive whole:number, such as "60" or "120", which
indicates the number of quarter notes per minute. An example of the.use of the tempo
option is as follows:

play 80 concerto

When left unspecified, the tempo assumed is "8Q". When more than one score is being
played, a different tempo argument may be specified for each. The rule is that a
metronome marking remains in effect until a new one is encountered (just as in regu-
lar musical paractice). 4n example of.this type of usage would be:

play normal 20 slowpartl slowpart2 200 fastpart
where the score “normal” would be played at mm 80, "slowpartl"” and "slowpartl” at
mm 20, and "fastpart’ at mm 200,

When two or more scores are given to play, they need not be spliced and played in
sequence. If a sequence of score names appears enclosed in curly brackets {{" and
1"}, then those scores will be mized together, ail starting at a common point in time.
This is illustrated in the following example: .

play 120 {sopranoc alto tenor bassi

As a result, scores can be composed in layers but auditioned together. In addition, a
combination of mixing and splicing can be specified tor the scores listed. This is shown
below:

play intro {sop alt ten bass| coda

In this case, the mixed scores will follow the score "intro”, and "coda” will follow the
longest of the mixed scores. - Note that the effect of the mixing and splicing is not per-
& 5 -3 &
manent, and no new scors is created.. This you must do using miz, spiice, or sced, for

examule,

The waveforms required by your score are noi always in the synthesizer. You can
always put thenr in using the command wfload, but play provides a more convenient
way. [f an additional argument -w' is specified, then all required waveforms are locadsd
pefore the performance begins. An example of this usage is

play -w 120 mywave

In order to have the performance recorded, a special argument, '-r", is specified, as in
the following example: '

play -r concerto

See also the command lsipiay.

.29 -

CHAPTER 3

3.4 Functions
3.4.1 Definition .

3.4.1.1 funced enables the user to edit {(define, delete, modify, efc.) stored fumnctions.
Usage:

funced

Nete: funced is an example of a command for which there-are two versions: one: using
graphics, the other conventional alphe-numeric techniques. Therefore, if you are
logged on at a graphics terminal you will get the former; otherwise, the latter. If you
want to over-ride this feature {i.e. use the alpa-numeric version on the graphics termi-
nal, or wice versa), prefix the command with "“t"' (typed).or '‘g’’ (graphics), respec-
tively.

In using tfunced:.the range of a function {(i.e. the.domain of Y values) can be selected to
suit the convenience of the user, depending upon the function's intended use. The
domains (modes) currently available and their respective possible Y vaiues are:

MODE CODE HANGE

normal n 0. to +1.
bipolar b -1, to +1.
chromatic ¢ -12. to +12. {semitones)
volume v 0. to 255.

The current mode is always indicted by the prompt character ('n’ for normal, for
example). To change the mode, enter the appropriate code (which is the frst letter of
the desired mode). Regardless of the:mode that a function was originally defined in, it
can be listed in any mode by changing into that mode befcre typing 'p’ for 'print’. As
an example, the: following sequence of commands would define a function that would
play a musical evenl a perfecl [ifth (7 semitones) above its original value:

Type command ('h’ for help)
n: c
c:a
Type number of segments: 1
Type initial ¥ value (range: -12. to 12.): +7
seg L

rel dor: 1

Y Value: from 7.00to: 7
crw newfunc
cr b
b Punection name: newfune.

Number of Segments: 1

Segment data:.

1. Rel. Dur: 1.00 © Y Value: from 0.58 to 0.58

b q
Type x to exit
7%

3.4.2 Auxiliary Commands -

3.4.2.1 finv is a command to invert, or flip a function "upside-down': It is of use, for
example, in cases where you want the loudness of one object to fall when that of
another rises, and vice versa. Usage is:

MUSIC COMMANDS

R - e b

finv <function®> ["" newfunction}
where "function” is the name of the function to.be inverted, and 'newfunction” is the
optional name of the inverted result.

3.4.2.2 fretro iz a command to cause'a function to be reversed in time. It is one way,
for example, to generate envelopes which will give the same: type of eflect as playing an
audio tape backwards. Usage is:.

fretro <function> [":" newfunction]
where "function” is the name: of the function to be reversed, and "newfunction” is the
optional name of the reversed function.

3.4.2.3 pfunc is a command to list the data of afunction on an ordinary terminal. The
command permits the function to be printed in units which are appropriate to the
user's needs. To do so, amoptional flag can be specified which indicates the mode in
which the function is to be listed. Usage:

pfunc <function name> {mode]

The legal mode arguments are as follows:

FLAG MEANING
-n normal {0 to 1)
-b bipolar (-1 to 1)
- chromsatic (semitones)
- volume units (0 -

When left unspecified, functions values are expressed within the interval 0 to 1. Note
Lhat the mode (ag does nobl cause any change in the function itself, just how it is
notated. As an example, the following would list the function "gliss” in terms of pitch
change by semifone.

1=
llJ
O

pfunc

3.5 Waveforms
3.5.1 Definition

3.5.1.1 feomv: The normal way to define a waveform is by defining its spectrum; or by
drawing its waveshape, for which the programs waved, wavesum, and objed are pro-
vided. The fconv command provides an alternate facility of drawing waveforms --albeit
in a round-about manner. What the command does is convert a funciion file into a
waveform file having the same shapeu Thus, the waveform is drawn using the function
editor (see the command funced), and then canverted into a waveform using fconw
The resulting waveform can then be loaded into the synthesizer using the command
wrioad. Usage:

fconv <function name> [":" wavename]
If a name for the newly created waveform is not given, the waveform assumes the name

of the functicn, and the coriginal function is lost.

3.5.1.2 waved is an editor to enable the definition of waveforms. Waveforms may be
°p°c“f1 ed by interactively defining their spectrum, or by drawing their waveshape. Fig-
ure 10 1111,1str Les the deﬁmhon of a waveform by specifying the rslative amplitudes of

o
=
]

CHAPTER 3

T framrmy
Y it
—
rrrrrr ot T e T T T T T T T T T T
4
QONE
i 1]
G Gzl =TAPE RECORDER OFFx
CALCULATE
’ #SYNTHESIZER CFFe
lst HARMC voLUME

Figure 10. Defining a Waveform by its Spectral Content

its first 18 partials. The waveform defined may be auditioned in waved, loaded into the
synthesizer, and.saved for future usze. Usags:
waved

3.5.1.3 wavemix:is a command which enables a waveform to be created by mixing
together two or more previously defined waveforms. The user has the option of hearing
the results during mixing. The command's arguments are the names of the waveforms
to be mixed. For each, a number can:be specified which gives the "weight' of that wave
in the mix. Any positive number can be used. [f no number is given, one (1) is
assumed. The weight, if specified. must follow the waveform:name. Usage is:

wavemix <wavenarme [weight]>... <" newname> [-]

If the '-I' lag is included, mixing occurs interactively using the synthesizer. For exam-
ple, the following would mix the waveforms "fred" and "matilda” in a 2:1 balance:

wavemix fred 2 matilda : together

The weight of matilda is implicitly one, and the result will be saved under the name

- 32 -

MUSIC COMMANDS

"together"”, If the new waveform name:is omitted, a prompt is given.

Wavemiz can be called with no arguments in the command line. In such cases, the
waves to be mixed and their weights can be specified interactively. Changes can be
made and the composite waveform auditioned before it is saved. In this mode, wave
mixing proceeds in a manner similar to ed and sced. Typing 'a’ enters 'append’ mode,
where new waves can be added or the weights of existing waves changed. All user com-
mands are prompted for interactively: Other commands allow changing the frequency
of the test note and geting a listing of current waves and their weights..

3.5.1.4 wavesum: is a command to generate waveforms by algebraically summing a set
of weighted partials or harmonics, This is to say that the user may create a new
waveform by specifying the relative amplitude of each harmonic. The program may be
used in two different modes: (1) in the manner of most of the other music commands,
with all the information neccessary for the synthesis of the new waveform given in the
same line as the command, or (2) in:an interactive mode. The latter means that the
user will give information in response to prompts given: by the program. The two
modes may alsc be mixed, where the user may give some information in the command
line, then give the remaining information interactively. An.example of the frst type of
usage is:

wavesum 1.5 .4 .8 .1 : strange

which results in a new waveform "strange’”” that was the result of the summing of 5 par-
tials. The relative amplitudes of the partials are given in order of ascending partial
number as decimal numbers in the range of 0 to:1. In the above example, partial 1 has
a relative amplitude of 1, partial 2 one of .5, partial 3 one of .4, partial 4 one of .8 and
partial 3 one of . 1. If the new waveform is not explicitly named through the colon (i)
argument, it is saved under the name "wave.cut”. If a file named ’"wave.oui” was
already in existence, it is lost and the new waveform iakes its place.

The same result as the above example could te cobtained in interactive mode: The
program’'s prompts and the user responses are given below just as:they would have
appeared on the terminal's screen. (In.the example, anything typed after a "%" or "
character is typed by the user, everything else is output from the computer.)

% wavesum
Type waveform name: strange

Enter highest:partial number: 5

h for help
Partial 1
rel. amp.: 1
Partial 2
rel. amp.: .5
" Partial 3
.rel amp.: .4
Partial 4
h rel, amp.: .8
Partial 5
rel amp.: .1
b

The final "%" is the: signal that the program has finished and that the computer is again
ready to accept commands.. An advantage of the.interactive mode of input is the:"h" or
help command, which gives the user an idea of what to do. Typing an 'h' instead cf a

-33 -

CHAPTER 3
relative amplitude value elicits the following response from the program:
rel. amp.: h

Relative amplitudes are values from 0. to 1.
Use 0 to indicate absence of a particular partial

after which the program again prompts for the relative amplitude of the currsnt par-
tial. As is indicated by the help response, zero is used to allow for the absence of a par-
ticular partial. This is neccessary, as the program expects the relative amplitudes of
ail partials to be given explicitly. When in interactive mode, if a relative amplitude
value oulside lhe legal range is given; the program ignores it and prompts for a legal
value.

The waveform used In the:above examples is the sine wave; however, the user may
specify an alternative '""source" waveform in the command line (including one previ-
ously defined by wavesum!).. Usage is then as follows:

wavesum [source wave] [rel amp [ral amp]] [: target]

where [source wave] is an optional waveform to be used instead of the sine wave. The
source wave may be any of: the standard waveforms (those loaded by default by
wfload), the current waveforms (those currently in the synthesizer bufers) or any
waveform file in the uger's direclory,

)

In the above =2xamples, it is assumed that all the partials start in phase, that is, eac
component waveform is assumed to have begun at the same point in time as any other.
It is possible to 'stagger’ the waveforms by specifying their starting phase as well as
their relative amplitudes. By phase we mean the point along the full cycle of a given
partial at which: that partial is starting. By convention, a.phase is given in terms of
degrees, with 380 degrees being one full cycle of the wave, 180 dagrees being half of a
cycle and so on. Phase is specifiad in the command line by following the reiative ampli-
tude with the phase, as an integer number from 0 Lo 380, followed immediately by a
comma (with no:space between the phase and the comma). The phass is optional and
thus may be omitted for any partial (the default phase being zero degrees). The follow-
ing example lluslrates lhis lype of usage, with partials 1 and 4 starting 80 degraes out
of phase.

wavesum. .3 80, .8 .8 .3 90, : staggered

Nots that a comma follows the phase of partial 4 even though it is the:last partial. The
comma indicates to the program that the preceding number is a phase and does noi
act as a separator of arguments or as punctuation. In order to have thes program
interactively prompt for the phase of each partial, the -p flag must be given in the com-
mand line. Thus if the user desired to have the program prompl for complele informa-
tion about the waveform (target fle name, number of partials, relative amplitudes and
phases) he would give the command as follows:

wavesum -p

The program would then prompt for:all of the above informaticn as in the following
example:

% wavesum -p:
Type waveform name: single

Enter highest partial number: 1

<134 -

MUSIC COMMANDS

h for help
Partial 1
rel. amp.: 1
phase: 30
%

The help command may also be giver in response to a prompt for the phase of a par-
tial, in which case the program would respond by giving the expected value for a phase.

By way of conclusion, the user is encouraged to first experiment with the waveform
synthesis facilities of o0bjed and only then attempt to make serious use of wavasum.
Rach of the two programs have their advantages and disadvantages: wavesum may be
used at any terminal, while objed is only available at the Graphic Wonder terminal and
does nol allow phase:specification. However, wavesum lacks objed's ability for real-
time playing of the waveform being synthesized.

3.5.2 &11'-7'|119ry Commandsg -

(8-

3.5.2.1 pwave is-a command which enables the user to have the numerical daca cf any
waveform Lsted on his terminal. Usage is as follows:

pwave <wavename>

3.5.2.2 wflist is a simple command which enables the user to list the names. of ail
waveforms currently loaded in lhe symihesizer, Usage is:

whist

The waveform names are listed on the user’'s terminal.

3.5.2.3 wfload is a command to enable waveforms to be:loaded into the SSSP syn-
thesizer. The waveforms loaded may either be user specified, or come from the stan-
dard library. In the former case, the user must specify the name of the waveform and
the buffer (number 1 - 8) in which it should be placed. The waveform pravicusly held in
that buffer is overwritten. In this case, use of the command can be summarized . as fol-
lows:

wfload <buffer#> <waveform name>

The sercond use of the command is to restore the "official” or "library” waveforms Lo
the synthesizer. This would be done in order to restore things to normal when many
waveforms have besn changed (using waved, for, exampie). Another reason o use
wfload in this way would be in the event thal the synthesizer has been powered down,
thereby causing-all the waveforms i
thing you play sounding like noise — although with some of the music people write ...}
Usage in the "restoration” case is simply:

o be lost. (This case ig easily detected by avery-

wicad

While the above should be an adequate description for most users, wficad is a mors
powerful command than has been indicated. The following; therefore, goes intoc more
detail (detail which may be superfluous for mast users).. To begin with, the formal
definition of the command's usage is as {oliows:

wfload [waveform source] {1} [2] [3].... 8]

-95 .

CHAPTER 3
this argument are:

"-3'* which indicates that the waveform(s) to be loaded originate from the stan-
dard library. This is the default mode,. and the source when the waveform
source argument is omitted. This mode is particularly useful in. (re)initializing
the synthesizer to the "normal' state. The optional numeric arguments (1-8) are
provided to enable the user to selectively specify which of the standard
waveforms are to be loaded. Thus, one can reinitialize some of the waveforms,
while leaving cthers in their' current state; however, the default case (no
numeric arguments provided) results in ail waveforms being loaded.

"-¢” which indicates that the waveform(s) to be loaded are from among the
"current” wavelorms; that is, those waveforms which are supposedly already
loaded in the sgyntheasizer’'s buffers. The wvaluc of this cption is in restoring
waveforms when the synthesizer’'s waveform buffers have been inadvertantly
arased {due tc thc dcvice being powered down, for example). As with the "-s”
option, waves can be selectively loaded through the use of the numeric argu-

ments. Omitting the numeric arguments: causes all current waveforms to be
loaded.

user defined waveform: in this case, the source argument is the name of a valid
waveform file in a user's current directory (such as one created using tha com-
mand waved) In this case, the named waveform will be loaded into the syn-
thesizer buffer indicated by the first numeric argument (1-8). In this mode, this
argument must be provided, in:order that the command know the desired desti-
nation of the waveform. Any subsequent numeric arguments will be ignored.

3.5.2.4 wfsave enables the: user to save a personal copy of any of the waveforms
currently loaded in the synthesizer's memory. This is of particular use in cases where
a previous user has left a useful waveform in one.of the synthesizer’'s bufiers. In order
to determine what waveforms are loaded in what buffers, the user need only use the
command wjlist or the object aditor (0djed,). Usage of the command is as follows:

wisave <buffer#>
3.6 Miscellaneous:Music Commands

3.8.0.1 cleanup is a command which should be ignored by novice users. It is a utility
to cleanup-files in a directory which are not used by a particular score. The program
would he used when a directory is intended to hold the flles utilized by one score, and
one score only. Typically, in the course of composition filles accumulate which in the
end are not used. For house-keeping purposes, we want tc get rid of the unused fles,
but not those needed. To do so, call the cormmand as follows:

cleanup
It will then aslk for the name of the score. Once given, the program reads into memory

all files used by that score. It then prompts you to delete {using "rm") all files in the
directery. Once .done, those used by the score are writien cut [resh.

3.6.1 piteh is a simple command to give the piich of a given fregquency cor the fre-
guency of a given pitch. Usage: .

piteh <pileh or frequeacy’

With the command, frequency is specified in c.p.s: (hz}, and pitch as "a4", "cd#", ete.

-3 -

MUSIC COMMANDS

3.6.2 swit iz a utility not generally required by the average user. It allows the user to
specify that a particular work staiion, -~ that is a slider box, terminal, tablet, clavier
combination — be connected {or "switched") to the LS1/11. The program is called while
working on the 11/45, before moving to a work station to work with an 1.8l-based pro-
gram (such as conduct). This function is normally buil into most SSSP programs, so
need seldom be used by theuser. Usage is:

swit <location>

where "location” indicates the desired work station. Currently valid arguments are "u”
for upstairs (the main lab), and "d" for downstairs (room 105).

3.6.3 radio is used to control the radic (FM, of course) that is hooked up to the distri-
bution network. This program takes one argument which may be the volume (betwsen 0
and 83), "on' which turns the radio onto the defaull volume of 32, and "of” which turns
the radic off. The argument may also specify what statiorr you want to listen te. Sta-
tions currently available are: che, cjrt; chum, and ql07. Exampies of usage are:

radio on
radio off
radio cbe

radio 32

4.1 General

In the SSSP system, o&jecés scores, fumciioms, and wguegforms are all stored as
what we call jfiles. When you ars working on the system, all the files which you cr=ate
are placed in your personal dirzctory, which can be thought of as a drawer in a filing
cabinet. Many of the commands: described briedy below enable you to do useful things
with the flles (scores, objects, ste.) in your directory. These include: commands such
as copy {cp}, remove (rm)..

There are a few general comments which can.be made with respect to the commands
given below. First, UNIX allows you to abbreviate file names. To do so, the character '
is used. It matches any sequence of characters. . Therefore, if the command

rm <flcname>
causes a file to be deleted, then
rm *

means remaove all files, since '* matches zll file names. Or the other hand, 'n*e' would
have deleted all .files with names beginning with 'n' and ending with 'e’. Another point
is that the character '™’ can be used as a synonym for '{’. Finally, it is possible to keep
material for one composition in a separate directory from that of ancther. Ussrs may
make their own directores, and move. files from one to another, Understandable:infor-
mation on all of .these UNIX related operations is available in the deccument UNIX for
Beginners (Kernighan, 1975a). (Copies are available in the CSRG main office.)

.97

CHAPTER 4

4.2 Commands
4.2.1 cp is a function to create a new file which is a copy of an old one. The original
version is unaffected. Usage:

cp <oldfie> <newdle>

4.2.2 file is a useful command which enables you to find out the type (e.g. score,
object, function,.ete.) of any file in your directory. Usage is as follows:

file <fillename>

Note that you may ask for the type of more than one file at a time, as is shown.in the
following example:

file fred joe charles
If you want:to get the type for all files in your directory. simply type as follows:

file *

4.2.3 gwsnap is a command which enables you to get a "snap-shot” or 'plot” of the
image currently: on the graphic-wonder display. The copy is plotted on the versatec
printer/plotter. Usage is:

gwsnap | opr -vp -t

Note: First, the order of the arguments is important for this command. Second, you
normally would want to invoke this command from a terminal nther than the graphic-
wonder, so that the command line is not also reproduced. Finally, the process is very
expensive in terms of system load and paper costs. The command, therefore, should
be used with great reservation.

4.2.4 15 is a command to enable you to list all of the files in your directory. Usage:
Is

If you want the files listed in columns:(so that they will ail fit on the screen, for exam-
ple), simply type as follows:

Is|ec

4.2.5 mail is a command to enable you to send.and receive "mail" to and froor other
users of theo system. Wherr mail has been sent, the receiver is notified that there is a
message. [t is alsc a handy means of sending reminders to yourseli. Sending mail to
the user "music” is the official way to report problems which are encountered irr wori-
ing with the system. Mail may be saved, and is-stored in.a speecial fle in your home
directory called méoz:

To send mail:

mail <username>
your message {one or more lines)
fetri d]

To read mail when prompted at logon time

-138 -

: UNIX COMMANDS
mail
or
mail | p
To read old mail.
cat mbox
or
cat mbox | p

In the examples, including.”| p" in the command stresam means page-by-page cutput.
To get the next page push the RETURN key. To abort the printing, hit RUBOUT.

4.2.6 mv is'a command to:enable the contents of a file to be "moved" from one file to
another. [Essentially, this constitutes re-naming a file. Note the difference from cp,
since the old fileis deleted. Usage:

my <oldfile> <newfile>

4.2.7 rm is a command which enables you to "remove” (i.e. delete) a file from your
directory. Usage:

rm <fillename>

4.2.8 who is a command which snables you to discover who else is currently working
on the computer. Just type the caommand and the names of all peoplercurrently logged
. id J L . ol J 5

on will appear on your terminal.

4.2.9 write is similar to 7uail in that.it allows messages to be sent to other users. It
differs in two ways. First, the receiver of the message must be logged on to the system
at the time of writing. Second; the receiver may write to you in response so as te
enable you to carry on a “telephone call" like dialogue. Instead of talking, you com-
municate by typing messages to one: ancther. The messages are not saved. Usage is
the same as mail

-39 -

CHAPTER 4

5. HEFERENCES

Buxton, W. (1877). A Composer’s Introduction to Computer Muzic. /nierfece 8: 57-
72.

-—-—~— (1978). Design Issues in the Foundation of a Computer-Based Tool for Music
Composition. Technical Repori:CSRG-97. Toronto: University of Toronto.

Buxton, W. & Fedorkow, G. (1978). The Struclured Sound Syulhesis Project (SSSF):
an Introduction. Y'echAnical Heport CSR(:-32. Toronto: University of Toronto.

Buxton, W., Fogels, E. A, Fedorkow, G., Sasaki, L., & Smith, ¥ C. (1978). An:Intro-
duction to the SSSP Digital Synthesizer. Compuier Husic Journal 2.1: 28-38.

Buxton, W., Reeves, S., Patel, 3., & O’'Dell, T. (1979). SSSP Programmer's MHanual.
Unpublished manuscript, University of Toronto.

Kernighan, B. W. (1875a). UN{X for Beginners. Unpublished manuscript, Bell
Laboratories, Murray Hill, N. J.

e {1975b). 4 Tutorial Iniroduction to- the UNIX Text Editor. Unpublished
manuscript, Bell Laboratories, Murray Hill, N. J.

Ritchie, D. & Thompsen, XK. (1874). The UNIX Time-Sharing System. Communica-
tions of the ACM 17: 3585-375.

- 40 -

A Tutorial on Editing Cbjects
APPENDIX A - A Tutorial on Editing Obiects

1. INTRODUCTION

One musically potent feature of the S3SP system enables composers to "mix" their
own palette of timbres. Rather than orchestrating notes with pre-setiinstruments, the
composer has the option {as opposed tc obligation) of defining a personal lexicon of
timbres. In the SSSP system, these user-defined timbres are called objects. Like a
conventional instrument, each object is identified by a name (such as "flute”, "gong”,
or "fred”"), and is characterized by a distinctive timbre. Notes of different pitches,

urations, and loudness may zall be orchestrated by the same object. Nevertheless,
gach lmsLam.e ofia particular object will maintain:its composer -defined: characteristics.

We are accustomed to thinking of orchestrai instruments- as belonging to particular
families, such as "brass’, "woodwind”, or “percussion”. In each case, family member-
ship is determined by the way in which sound is generated. With the SSSP system, a

similar situation exists. Objects are characterized by family according to the sound
synthesis technique which they employ. There are five synthesis techniques available,
accordmc to which objects can be defined: fixed waveform, frequency modulation (FM),
vosim, waveshaping, and additive synthesis.

There are two main graphics-based programs for working with objects. The usage of
each is very similar. The first is called odjed, which is an acronym for "object editor™.
It allows objects of four of the five families to be created, compared, and modified. For
pragmatic and historical (rather than musical) rzasons, there is a separale program,
bank, for working with objects that use additive synthesis. Both programs are dis-
cussed in this tutorial, starting with o&jed.

While the remainder of this document attempts to provide a self-teaching guide to
these programs, it is -- of necessity -- incomplete. In many cases, experimentaticn and
careful n.on<ideration will provide the answers to specific questions. In.working through
the tutcrial, do all the suggestad exercises.. lf there are still problems, an experienced
user is your best-source of information.

2, ON ENTERING OBJED

On initial entry, cbjed assumes the state shown in Figure 1. Notice how the display is
divided. into five regions. Each serves a particular function. The main region,. which
necupies the upper two thirds of the screen, is where the actual object data being
edited is displayed. In the.example, this is a simple fixed.waveform object: Iis com-
ponents, all of which are graphically displayed, are: a waveform, a time varying func-
tion controlling pitch, and an envelope controlling the contour of the note's volume.

To the left, below the main region, is:an area containing data pertaining to the piteh,
volume, and duration at which the object being edited can-be auditioned. Remember,
however, that these values are not part of the object. They are simply conveniences for
exploring its behavior in differant contexts,

The centrai panel in the lower part of the screen contains various options which allow
the user to change the state of the. editing environment. Cptions available include
changing the object type and changing the way in which the edifed object can be audi-
tioned. »

The panel to the lower right is dedicated to the saving and retrieving of objects with a

minimum of effort. Finally, the elongated region along the botiom left edge iz a "win-
dow" which permits the composer to access the outside world without leaving objed.

To work with the: program, the user need only remember a simple stralegy which forms
the basis for all interactions: when you want to change something, ju t peint at the
diagram or word which represents it on the display, and depress the selection ("Z)

.4_,1 -

APPENDIX A

K [l wata) 'y .
WAVEFORMS FUNCTICNS
£ 2|
g L__\;,__/,:ina T [___.___. defaulb _fraq
L i _/ H ‘
£

R

Y~

<

iu. !{ \: defaul bt _snv

n !

z

+
PLAY
G4 1 O 1 @ AL PR Al ,
T T - ST _ T WA _ij SAVE
4 | df Sm_sb |
| l I * FIXED WAVEFORM » il
| [| CaneARE 3F Fof b} |
| IQ ! » NOTE MODE « df wesim okl
| i ;<} * SINGLE = - ’ dF _ne_obi i
' A 4 ;
PITCH VoL CURATION 1T
* WORKINE OBIECTS =

Figure 1. Objed on Initial Entry

button on the labiel's cursor. Any consequent options will then be presented, and the
same method of interaction is applied:to them.

We shall now cover the aspects of object editing, beginning with fized waveform obiects.
This lets ug begin with the simplest case, while building skills which can be used with

more comlex timbres.

3. AUDITIONING AN OBLECT

It is often useful to begin by auditioning the displayed object. This establishes a
frame of reference for future changes. The object is played by activating the word (or
light button} PLAY seen in the lower part of the work area. On so deoing, the sound is
immediately heard. Remember, though, that the object itself has no specific pitch,
duration, or maximum amplitude associated with it. These must be provided exter-
nally. When PLAY was activated, the sound had a pitch of A4, dynamiecs of about mf,

- 42 -

A Tutorial on Editing Objects

T m m o

<1+ * FI
COMP

< * No

4 * SI

PITCH VOL ° OQURATION extr

Figure 2. Graphical Pots for Performance Parameters

1 i

{16] {139] (43
— =~

y

PITCH VOL. OURATICN EXIT

Figure 3. Setting a Graphical Pot by Typing

and a duration of 1/4 note:at mm.= 80. Obviously it is desirable to be able to change
these values.so as to learn more - about the object’s behavior. This is the function of the
lower-left sub-panel seen in Figure 2. Here are seen three '"graphical potentiometers”,
one for each performance parameter. The value for each parameter is displayed
numerically in the boxes above, and.its relative value is seen by the position of the
potentiometer's:"handle”. The value of any pot can be changed by "dragging” its han-
dle up or down using the cursor. Alternatively, the user may point at the box above the
pot, activate the Z-buiton, and typc in a numecrical value. In this case, the tracking
symbol becomes: an icon of a terminal (as seen-in Figure 3), as a prompt that some-
thing must be typed.

4. WAVEFORM SELECTION

Let us now consider changing one-of the atiributes of the object itself. As a first
example, let us alter the waveform associated with the object. Pointing at the picture

-43 -

APPENDIX A

of the current waveform and.depressing the Z-button will cause the panel seen in Fig-
ure 4 to appear. -

siha
////"\\\\\\\\-,//;
Pl T sawtooth
N
A’ \‘N /
4 TN !
v N\, /
\ .
4 N, Lriandle
4 N
S 2
- l . ’//\
> v -~ \
N ,’
hY Z cogine
N /]
\‘\4\ /" ///_\‘
- \
sLnepe
-~ -~
SN A,
N
cuspislse
, ooNE
¢ /
S LMhe //\\
\
J/ ‘\m
rshdom
OEFINE 3Y 3PECTRUM
FINE 3Y ORAWIN ; TR
e s DAL s
il U e"wJ\m A
pLkad
*SYMTHESIZIER OFFs=. //\
d \ hY /
o
; *STNTHESIZER BUFFERS=x
i

Figure 4. Waveform Selection

A menu consisting of the eight waveforms currently loaded.in the synthesizer appears
down the right margin of this panel.! Selecting one of these waveforms with the cursor
will cause it to be copied into the grid in the main panel of the screen. We can then
activate the light-button DONE which will return us to the original panel of Figure 1.
The one difference will be that the selected waveform will be displayed in the place of
the original one, "sine”. This brings up an important point: the current state of the
object being edited is always clearly displayed, thersby eliminating any mental burden
of remembering its current. attributes.

1. The waveforms shown in the figure are the “standard” ones. As we shail see, these can be aitered by the

user. I the previous user has left non-standard waveforms in the synthesizer and you wish to restare
things to normal, use the command wslead (Chapter 3.5 of the Music Scftwars User's Manual).

- 44 -

A Tutorial on Editing Objects

EXERCISE I: Enter obdjed. Play the default object at different pitches, volumes, and
durations. Change these parameters by both "dragging” the potentiometers and by
typing. Now select different waveforms and hear how the timbre is afected by the
change. Be sure that you are comfortable using the cursor, and with switching back
and forth between the main and wavaform panels.

5. CREATING NEW WAVEFORMS BY SPECTRUM

If we want to define a new waveform, rather than use one of those in the synthesizer,
we can do so by specifying the new wavsform's spectrum. Again, we switch to the
waveform panel:. By activating the light-button DEFINE BY SPECTRUM. (Figure. 4}, a
third panel shown in Figure:3 appears.

Pl
] I
1 H N
| I p— [—
i)] t
1 H ') t 1 { 1 ["'_'—7‘
T O A B 1
O S 2 st s o Sy B S S s B e S Ry R S I S B S S SR S H S SO R H BN I N
J0NE
es | uLe “TAPE RECORGER OFF«
! i
| |
! 3
i ‘4 CALCULATE
] 1
i }
E | sSYNTHESIZER OFFz
LA |
- U,
st HARMC VOLUNE

‘Figure 5. Defining a Waveform:by Spectral Content .

What is seen in the work area is a bar-graph, where the height of the bars represent the

relative amplitude of the harmonics of @ sound. Harmonics:one through sixteen appear

- 45 -

APPENDIX A

from left to right. Any bar will jumnp to the height of the cursor when it passes over the
bar with the Z-button depressed. Thus, the amplitude of any harmonic can be dragged
up or down, just like the graphic potentiometers aiready seen. The sound that results
from these changes can be:heard as they are being made. Activate the light-button *
SYNTHESIZER OFF * and a 100 Hz steady state tone will be heard. The spectrum of this
tone will be altered as yow adjust harmonic levels. If you desire, you can also adjust
the pitch and overall amplitude of this stcady-state tone using the graphic potentiome-
ters in the lowerleft corner:of the display.

Once the sound has been adjusted to your satisfaction, the synthesizer can be turned
off the same way that it was turned on. In so doing, notice that the button currently
reads * SYNTHESIZER ON %; thereby indicating the current state of the system. We sese
then, that this light bution functions like a switch, allowing the synthesizer to be
turned on and off. This is an important point. It is a convention of objed that ail light
buttons enclosed in asterices (*) functicon as rotary switches. There may be mors than
2 "positions”, but rspeatzd probing will always cause you to cycle back to where you
started. We shall see muchimore of this later.

Once the waveform spectrum has been defined and the synthesizer furned off, activate
the button labelled CALCULATE. This will then cause two choices, FOURIER and CEEBY-
CHFV, to be presentad. Activate FOURIER (ignore the other buttons for now), and wait.
The system will calculate your new waveform. When done, it will be displayed on the
grid. (The waveform seen in Figure 8, for example, results {rom the spectrum seen
previously.)

Figure 8. Waveform Defined by Spectral Content

You are finished now, so activate the DONE button, which will return you to the coriginal
waveform panel..

There are two final points to consider. First, since you have created a new waveform,
you should give it a new name. (Notice that the new waveform still has the name of its
predecessor.) The name is changed iy the same . way as everything else: point at it and
depress the Z-buiton. You.will then be prompted to type in a new name of your own
choice,

The second point is that the new waveform must be loaded into the synthesizer. Only
sight waveforms fit in the synthesizer at once. These are the eight waveforms shown on
the right side of the menu. To put the new waveform in, one of the current ones must
be overwritten. . The program does not know which one you want to discard, so you
must do this yourself. Activate the button STCRE which is found in the lower centre
panel. You are then prompted to indicate where the waveform is to go. Do this in the
same way that you previously selected one of the waveforms in the right column. Hav-
ing done =0, the new waveform is loaded into the synthesizer and appears as cne of the

- 48 -

A Tutorial on Editing Objects

eight waveforms displayed in the column. You are now finished, so activate DONE and
return Lo the main panel.

EXERCISE 2: Define a new: waveform by spectrum. Turn the synthesizer on and off.
Become comfortable using smooth hand gestures to sketch.the contour of the harmon-
ics. Calculate, name, and save vour waveform. Verify that it sounds the same when
played from the main panel as it did when you defined it. Did you remember that the
pitch had to be adjusted for a fair comparisen?

4

5. FUNCTION DEFINITION

Change is cne:of the foundaticns of musical interest. In defining timbres, it is impor-
tant to be able to specify how parameters such as amplitude, pitch and spectrum vary
through the course of a sound. This is done by specifying a curve which defines how the
parameter risesmand falls through the sound’s duration. Such a contour is calied a

funciion.

defaull_any

-
44— A

CONE

ORAW (POINT MCDE)

HAKE
CHANGE NAME
3ET

Figure 7. Function Editor Sub-Menu

APPENDIX A

Fixed-waveform objects permit two such functions to be specified. One is used to con-
trol changes in' pitch or portamento. The other controls the sound's amplitude
"envelope”. They are shown in the upper right side of the work area. The default func-
tions assumed result in no change in pitch, and a simple attack-decay amplitude
envelope. Each may be redefined with as complex a function as desired. Let us see
how this can be accomplished.

Select the amplitude enveldpe with the curser. The function editing sub-menu will then
be displayed as seen in Figure 7. The function displayed in the work area is the one
which is currently afecting the parameter that you selected (in this case the object's
envelope). The function represents loudness (vertically) through time (horizontaly).
How long and how loud depends on.the volume and duration of the ncte which is
affected. by the function. Think of the highest poipnt of the grid as 100% of the note’s
amplitude, and the base of the grid as.0. Similarly, think of:ithe iefl margin as the start
of the note, and the right margin as the end.

Notice that the function has a name, “default_env’. Now we have two cnoices at this
point. Either we can just redefine the shape of this function, or we can make a com-
pletely new one.. The difference is subtle but important. It is rooted in the role of
names in the system. The:first point to understand is that the same function can be
used by many different objects. Among other things, this saves you from having to
redefline the same envelope for several similar timbres. The second thing to recognize
is that functions (all files for that matter) are referred to by name, not content. What
is the result of this? If yowchange the shape of a function without changing its name,
the change will carry through to every object which makas use of that function. That
may be what you want. If it is not, however, whal you should do is cr=ate a new funec-
tion with a new name. The change will then be lccalized to the current object. If thisis
all rather foggy, don’'t be too concerned. The examples and exercises which follow will
help to clarify things.

Let’s assume that we want to create a new function. The:way that this is done is to
“clone’” a new function from the current one. This is accomplished oy activating the
button MAKE (in the lower middle column}, and typing in the new name in response to
the prompt. You can now redefine the function's shape. Activate the DEFINE button.
The tracker wiil. become an icon of a quiil. indicating thai you are sxpected to draw.
Draw the function. from left-to-right, following the instructions appearing in the work
area. You draw using what are called "rubber-band lines”. The first thing you do is
"anchor'' the end of the rubber-band at the starting point cf the function. Do this by
positioning the cursor and.depressing and releasing button-1. Then, depress and hold
down the Z-button. The free end of the rubber-band will attach itsslf to the iracker,
stretching from the starting point. Iry this, moving your hand around the tablet till it
feels relaxed. The objective is to streich the rubber-band to the next peoint where you
would like it anchored. Once there, release the Z-button. The line is anchored and you
can proceed to define the next segment, again by depressing the Z-button and dragging
the line from the last anchor point. Continue until the function is defined to the right
margin of the grid. When done, depress button-3 to indicate that you are fnished. The
quill cur;or will disappear, and your functicn will be redrawn as the compuler under-
stood it.

Your function is now completely defined. If you are happy with it you may return to the
main panel (activate DONE), and hear the result. Alternatively, you may redefine the
function until you are:satisfied with it..

2. The function should leck the sams when redrawn as it did whem you drew it. If it did not, here are 2 few
hints as to what might be wrong. First, you must draw leit-to right. Second, you must start at the left
margin and finish at the right one. Third, you should hit button-l at the start only once. Fourth, the
entire function should be drawn within the grid. I things didn't work:the first time, try agair. I things
still don't work, ask someone for help.

- 48 -

A Tutorial on Editing Objects

You may redefine the function controlling variations of pitch through time in the same
manner as just ssen for amphtude envelopes. There is one important point to note,
however. There is a difference in how the two are interpreted. The amplitude envelope
describes variations between 0 and the maximum amplitude. The pitch function
describes deviations from the specified pitch of the note. These may be in either direc-
tion, up or down.. Thus, the horizontal line going through the middie of the grid is inter-
preted as meaning "no pitch deviation”, the upper border represents. deviation of one
octave upwards, and the lower border one oclave down from notated pitch. Everything
else is linear in pitch so, for example, a quarter of the way up the grid. melles a change
of a tritone.

EYERCISE 3: Define a new envelope in the manner described and listen its effact,
Now draw the ratrograde of the same:envelope and hear the difference. t th dura
tion to be fairly:long and then define an snvelope that changes in steps like a stair-

case. Do the same thing for the pitch function. Make the functxon have four st gps: at
the notated pitch, an octave lower, an octave higher, and back to the original pitch.
Make a q1mple melody using a simple object. Try Lo synchronize changes in the two
functicns. Do not progress:until you are quite comfertable changing and dcﬁmng furnc-
tions and waveforms. Remember that you only have to change the funciion’'s name
when you want to make a new entity. as opposed to changing the shape of an ezisting
one.

7. NAMING, SAVIRIG AND RETRIEVING OBJECTS

Before an cbijzct can be: used outside of the context of the =diting
must be named, and then saved. An object’s current name appears |
lined box at the top of the environment control sub-panel (F’Lgure 8).

0
v
s
-
a.
i
o)
3

5
o
&
5]
(=}
o
S
~
G
[l
a
)

x FIXED WAVEFCRM x
COMPARE
= NOTE MODE =
< * SINGLE =
DURATION | gxrT

Figure 3. Editing rvu'onrnervt Contrel Sub-Panel

' Names can be changed the same way as anything else: you point at it, activate the Z-
button, and type in the new name in.response:to the prompt. Saving an object for
future use is equally straightforward: the light-button SAVE seen in the bottom right-
hand sub-panel {s activated: -

The same sub-panel also provides the mechanism for retmevmg previously defined
objects. The technique employed makes use of what we call a direciory window., The
d1rectory window is the rectangle ssen in the region. It functicns liks a window: which
has selective vision, allowing us to peer over the names of objects which are available

- 49 -

APPENDIX A

for retrieval. The names in the window are the names of these objects; and the name of
the object whiclrwe are currently looking at in detail is the object whose name appears
between the horizontal lines. This is the object being edited. A different object can be
selected by pointing at its name and depressing the Z-button. This will causes that
object to be displayed in the work area for purposes of editing or audition. Alterna-
tively, slider 2 can be used to "scroll” through the list of object names. The object
whose name appears between the horizontal lincs at the mement when the slider |
released is read inm.

a

An important option in this process has to do with the domain over which the window
looks. That is, the window will either let us view objects which have been defined and
stored on disk or those which are in primary memory having been worked on in the
current.session.:. {The difference will be made clear in Exercise 4, below.) Thus, while
only one object can be edited at a time, several "working” objects can be kept in pri-
mary memory during a work session.. Nothing need be saved unless it is desired for a
future session.

EXERCISE 4: Using what you have learned about envelopes and wavelorms, define,
name, and save three distinctive objects. Point to their names in the directory window
and verify that they are retrieved and displayed in the work area. Switch from * WORK-
ING OBJECTS * to * SAVED OBJECTS *, Notice that the only names now seen in the win-
dow are the ones which you saved. The additional objects which were seen in the *
WORKING OBJECTS * window ars system generated "default” objects and are not stored
in your directory. {Cnly one of these:default objects is of the type "Fixed Waveform',
which accounts for previcusly unseen information being displayed.if they are selected.)

1t you do not save an object, it will be-lost on termination of your work session. What if
you save an object called "sax", for example, and then make additional changes to it.
Do so. Then select one of your other three objects (just to get away: from "sax" for a
moment). Now, from among the warking objects re-select "sax' and notice that it is
the version most recently defined in the work session which is displayed. Now select
"sax' from among the saued objects and notice that the most recently saved version is
returned. Further experimentation will show that this "backup” version has become
the current "working” version of "sax’.

One final point worth noting is that all functions and waves associated with an object
are saved with it. They need not be explicitly saved individually. Now is a good time o
experiment: with:the effect of redefining the shape of a function which is used by more
than one object.

3. FM OBJECTS

You should now be comfortable with the basics required to work creafively with
objed. We can now begin to apply what has been.learned to objects which are timbraly
more complex and interesting. A.different object definition.mode can be set by activat-
ing the light-button FIXED WAVEFORM seen in the lower central panel (Figure 8). As a
result, the panel will switch to present the sat of object type options: Selecting "Fre-
quency Modulation" will result in the display appearing as seen in Figure 2. Note that
the panel is the same as that seen in Figurs 1, except that there are five additional ele-
ments in the working area. There is now a waveform displayed for both the carrier and
modulating waves. In addition, graphical potentiometers are provided to set both the
maximum index-of modulation and the c:m ratio. Finally, there is a third time-varying
function which contrels therevolution of the index of modulation.

It is not our purpose here to give a tutorial on FM synthesis. This can be obtained in a
SSSP handout, and more detailed information is available from Chowning (1973). We
can peint out, however, that working with FM: objects requires no techniques not
already seen with Fixed Waveform objects.

- 33 -

vvvvvvvv

WAVEFORMS" 1 FUNCTIONS:

TO—QA»> 0
J
[

X ~~0

QX

CQ
=
b
macroa<g

dafault_tnd

[sa__] b 10 O {
TA T T
| PLAY
-« -4 -4 .
500 ¢ e A
'] 1
(a4 1 188) (28~ : .
= = Tj df _fm ob] J SAVE %
F } I - _— 4P _us_obj
| ! | | ZOMPARE + 4f Im obj
i }\,] : i 2 NOTE HODE = ar _fwf _ob}
g l Fl | SINGLE = df _vestm_ob]|
| 3 ’ H
[oRITeH oL ouration | x1T ‘
J |
5
: * WCRKING GBIESTS =
H
1
|

Figure 9. Editing an FM Object

9. MORE ON AUDITIONING MODES

During an- editing sessioq, it is often desirable to be able to audition the object
repeatadly.. One:way to do this.is to activate the:* SINGLE * button at the botlom. of the
environment contrel panel - (Figure 8). The button will be renamed CYCLE, indicating
that when PLAY is activated: the soundi will play repeatedly until killed by the user,

The problem still exists, however, that all of our interactions with the object's data
take the two-part form: change a value, listen to the effect. What would often be mors
useful, when setting the index of maxmum modulation for-example, would be to emu-
late the: operation of an analogue. synthesizer. That is, it would be useful to turn.the
sound on in its steady state, and hear the effect of adjusting parameters while they are
being changed. (This is the: same thing which we:have seen when defining waveforms by
spectrum.) This- can be accomplished by activating the CYCLE button, which then
switches to STEADY. Activating PLAY will cause the object to sound, and the effect of

- 51 -

APPENDIX A

;
(ea ' : i
= m.out df _fm_ob]j SAvE
\ a
tue.m
l P df we _ob!
| srimasff 3 COMPARE . . af _fm _ob)
/ Lo * SCORE -UNLFORH ORCHESTRATLION o) 4f _fuf o5y
threa u SI{MGLE » df _vosim_sb|
|
j neTRonone scorss T | X7 |
>

Figure 10. Auditioning Objects in the Context of a Score

adjusting any of the graphic potentiometers ' (including those affecting pitch and
volume) will be heard immediately. When desired, we can return to the original SINGLE
mode by activating the button * STEADY ™.

In spite of the flexibility just seen'in auditioning an object, there is still one fundamen-
tal problem. The effect of hearing ‘an object in isolation is often {usuaily?) very
different than hearing it in some musical context. So far, we have only been able to
hear an object as a single note. This:.zan be altered by activating the * NOTE MQDE *
switch (Figure 8). The result will be that the button is renamed SCORE - UNIFORM
ORCEESTRATION, and the sub-panel contrelling note parameters is switched, as seen in
Figure 10. The box that appears is a "window" which looks out on all of the scores in
the composer's directory. it is similar to that already seen in retrieving objects. The
name of each score is listed in this window, and if there are more names than will ft,
slider 1. can be used to "scroll” through them. The point to note is this: when the PLAY
button is activatad, the scors whose name appears between the horizontal lines of the
window is performed. More important to our: purposes;, the scors is temporarily
orchestrated with the object currently being edited! Furthermore, the melironcme
marking controlling the tempo of the 'performance can be .controlled by adjusting the
graphical potentiometer beside the window. Finally, we can "rotate” the mode switch
one position further and change it to read SCORE - ORIGINAL QRCHESTRATION. In this
case, when the score is played it retains its original orchestration. However, all notes
orchestrated with the object whose name correspoends to that of the object: being
edited will be performed with the working copy of that object. :

10. COMPARING GINECTS

It is. often useful to be able to audition two or more objects in rapid succession for
purposes of comparison. There are problems in doing so with the technigues seen thus
far. First, it takes a couple seconds for an object’s data to be drawn on the display
when it is retrieved. Secend, the hand motion involved in travelling between the direc-
tory window and the PLAY bution slows things down. To overcome these problems,
another auditioning mode is provided in the ediling environment region. This is the
COMPARE bulton {Figure 8).

On activating COMPARE, almost everything on the display is erased. One main excep-
tion is the object directory window. In this mode, pointing at an object’s name in the
window will cause it to be: heard immedialely wilhoul any graphical display of the
data.

Ja
(@]

g
a
(o}
ocr
u

A Tutorial on Editin

WAVEFORMS FUNCTIONS
o / T
5 }7/_;_:0;‘\?10 z L default_fraq
g L A Hf
9|
E!/\ defaulbl_env
il
2 N

[ip)

___“.__-;__'

-
[
&t
I
L i
TXOW
Q.
1]
4
o
[
-
P2
L,
[¢)
3
3

N
)
[staady_on
& PLAY g
FORMANT NO18E
(448 1 (198] {28 | i
- - - Save ‘
b ! ! f
b § : - VOSTH = i
! E i COMPARE' § 2f reslm_sbi
[4 | » MOTE HODE = I af s _ob)
f g a * SINGLE * i 67 _Fm_obi
PITSH voL OURATION ExIT
* WORKING OBIECTS. =

Pigure 11. Editing Yosim Objects

There are a few points to note about COMPARE. First, for fast comparison the objects
in question must be in working memory. That is, they must have been read in to the
program during the current session and, therefors, appear in the * WORKING OBJECES =
window. Second; when finished with COMPARE, the program is restored, displaying the
data of the last object auditicned.

11. VOSIM AND WAVESHAPING

The mode can be set to edit vosim and waveshaping cbjects in the same way: as M
was selected. Again, neither mode requires any working techniques not alrsady
encountered. The vosim panel is seen in Figure 11 and the waveshaping panel in Figurs
12. Kaegi and Tempelaars (1978) is a source for information on vosim.. Arfib (1878) and
Le Brun {1978) are sources for detailed information on waveshaping. Roads {1579)
gives a more readable tutorial on the subject.

-53-

APPENDIX A

)

WAVEFORMS FUNCTION

C

M- QP 0y
j/\)
b
F)

o
LN ——'Y
a
a
-+
a
€

-
L.,

3

@
A

staeady_oh

> AV~

MO«

[74_‘=wtaohh

.
v
i
-+ s { default_ind
s 3
| :
|
It
1
!
i
|
0157,
N ‘ , .
Luse | Ligg | (22 df _wes_obj save
x T !
‘g:] ’ ‘ e df resim_obj
{ I ! « WAVE SHAPING = _
i | i COMPARE ALz200]
x 4 | = NOTE MODE = df _Fm_obj
; i 4 = SINGLE = aF i by
e i
PITCH YOL OURATION exzT
x WORKING OBJECTS =

Figure 12, Editing Waveshaping Objects

12. ADDITIVE SYNTHESIS AND BANX

In order to edit objects according to the additive synthesis model a different pro-
gram must be used. It is called bank and its usage is very similar to objed. Here we
shall only point out differences and functions which have not yet been seen. A view of
the bank editing environment is seen in Figure 13. The program allows the
specification of a funciion to control the amplitude of each of up to:the first 15 bhar-
monics of a tone. The spectrum defined by the object in the figure has four sounding
partials. To (re)define the function controlling any partial, point at it and activate the
Z-button. The means:which is then used to specify the function depends on the:"tool”
selected in the lower centre panel. The default mode uses rubber-band lines as alresady
seen in objed. Typing. drawing free-hand curves, and retrieving previcusly stored {unec-
tions are available altermatives. For example, Figure 14 illusirates how pre-defined

- 54 -

7 z/ \
3
)
It
11
12
13
14
15
—+ N
o
+ 1] H
f 440 2 i 54 1 BLAY
T T
§ E OEFINE
‘ } :<l % AMPLITUGE « bank_gblect
i 4 ! s DRAW (by rubber band)
d = l « MAMES OFF
3 | 5 » GRID OFF »
i o o % SINBLE EDIT =
AITCH yoL METROMONE SINSLE ED cave
* LEYEL L o®
x SINGLE = * TEST HOTE = * WORKING OBJESTS =
i EXIT
1

Pigure 13. The BANX Editing Environment

functions are accessed. Here the window shows both the names and the shapes.of ke
functions in the user’s directory. The approach is a cross between the technique previ-
ously seen in selecting waveforms, and the use of directory windows.

Notice that the lower-left panel is slightly different from objed, but the meaning of the
repositioned butions should be obvious.

One nice thing about the program is that it allows you to view the functions from vari-
ous perspectives: Notice that near the 18th harmonic that there is a little box. Point
at this, depress the Z-button, and while holding it down, drag the "Z" axis of the func-
tions to a new position. Using this means, the spectrum seen two figures previcusly
can be viewed synchronized in time (as seen in Figure 15) and overlayed for tracing
(Figure 18). Notice in the last figure how a grid can be requested as an aid to drawing
functions. Regardless of how the functions are oriented.on the page, the grid will

APPENDIX A

attack _decay

réogdy_inid

T wiwarnv

default_anv

dafault_freq

wux\»,a +

ned Functions

"1
f
d
4
[¢]
£2
(6]
h

Figure 14. Selecting

always be positioned at the origin of the function being edited. The grid is reguested
using the swilch in the lower central region of the dispiay.

For each harmornie, dank also permits-a function to be defined which controls variation
of pitch over time. To do so the user must activate the * AMPLITUDE * switch in the
lower middle resgion. The frequency functions can then be edited in the same manner
as those controlling amplitude. Activating the same switch (which now reads *FRE-
QUENCY *) a second time will permit the amplitude and frequency functions tc be
viewed and edited simultaneously. This is seen in Figure 17,

In working with frequesncy functions it is often useful to specify the same fanction for
more than one partial. To do so, activate the button * SINGLE EDIT * which switches
you to * GROUP EDIT * mode. Then point at sach function which you want included in
the group. Depressing the Z-button over cach will cause an "arrowhead" merker to

- 38 -

A Tutorial on Editing Objects

RI:’_
/\\

'Y ENE R INT R g
\T

13
18
<
._;..
Figare 15. Functions Synchronized irx Time
T~ |
/ =
oy
A T —
I’,/ P — .
i N\ s
7 - — = ——
= i =
rd
M 3 3 - S L] 7 e 9 by J 131 18 i3 L 18 18

Figure 16. Overlayed Functions With: Grid

appear over the. function. When all functions have been "peointed out”, activating the
DEFINE button will allow the function to be defined in the usual way.

Finally, remember that each function specified is a file. This can be verified by activat-
ing the * NAMES:OFF * switch. The result is that the name. of sach function is printed

(as seen in the last fgure).. Note that names for new functions are generated automati-
cally by the system.

v)

APPENDIX A

5

8
/ \ . b
7 .3 i8]
8 iz
Q 13
12 14
11 LS
12 s
13
12
15
18 -
o
1 ‘ ‘.. 11
44, | BT &8 | PLAY —_—
T T T |
i
g | ! DEFINE ‘
« AMPLITUDE » EXTQUENCY « . — {
La }4 f * ORAM !in soiht modal 3 : 2anf2biest -
F [i = NAMES ON = |
s < o * GRID QN = : [0
I s17oM VOL . METRONGHME * SINGLE EDIT =
i sAvS
o o LEvEL L =
. 37 . . TEST NOTE x|
{ Mowc Te3T. NOTE = i - 2 WORKING OBJECTS =

Figure 17. Editing Frequency and Amplitude Functions

13. REFERENCES

Arfib, D. {1978). Digital Synthesis of Complex Specira by Means of Muitiplication of
Non Linear Disterted:Sine Waves, 488 FPreprind No. 1319 (0-2).

Chowning, J. (1973). The Synthesis of Complex Audio Spectra by Means of Frequency
Modulation, Journal af the Audio Engineering Society 21: 526-334.

Grey, I. (1978). Zzploration of Musical Timbdre. Stanford Univ. Dept. of Music Tech.
Rep. STAN-M-2.

——— (1977). Multidimensional Perceptual Scaling of Musical Thubre. Jouwrnal of
the Acoustical Society of America €1: 1270 - 1277,

- 58 -

A Tutorial on Editing Objects

Kaegi, W. and Tempelaars, S. (1978). VOSIM-A New Sound Synthesis System. Journal
of the Audic Engineering Society 28: 418-424.

Le Brun, M. (1978). Digital ‘r"favesbaping Synthesis. Journal of the Audio Engineering
Seciety 27; 250-266. -

Moorer, J. A. (1977). Signal Processing Aspects of Computer Music - A Survey.
Proceedings of the I[EEE, 65: 1108-1137.

Roads, C. {1979). A Tutorial on Non-linear Distortion or Waveshaping Synthesis,
Computer Music Journal 3.2; 29 - 34,

-59 -

APPENDIX B
APPENDIX B - A Tutorial Introduction to SCRIVA

1. INTRODUCTION

Scriva is & computer program which allows graphically displayed scores to be edited
by the user. By editing, we mean that the: program permits the specification,
modification, viewing, and auditioning:of score material. Work may be saved from ses-
sion to sessicn, and may be: combined with material composed using other means.

A key feature of scrive is that it allows the same score: material to be notated in
different ways. Some examples are seen in Figure 18, which shows eight different nota-
tions of the same score material. This variety helps the user in performing many
different tasks by allowing different attributes of the rmusic be mads prominent in the
notation. For example, if you want to specifly pitches outside the chromatic scale, you
can use "roll” rather than common music notation {CMN). If vou are orchestrating a
klangfarbenmelodie, then you may want. to use the notation which highlights timbre. It
only takes about one second to re-notate any score. (In what follows. you will see ilial
some iransactions -- such as adding notes -~ are undertaken differently, depending on
the notation being used.)

It is important that the user realize right from the start that scrive is an experimental
program. It was designed to test certain basic concaphis, rather than provide a
comprehensive compositional tool. As such, it has some very pronounced limitations.
When the systemm is busy, response time is very poor. Only note durations which are
multiples of a 32nd note can currently be specified when using CMN. As the music
becomes more complex, the program’s ability to notate it in readable CMN breaks
down. F'.na_lj, Lthere are rather severe rsstrictions on the. size of score which can be
edited using the:program (circa. 200 notes). Scriva does, however, serve as a reliable
and useful tocl, and for each of the above restrictions, there exist alternative solutions
within the SSSP system.

This document is; by necessity, only introductory inm nature. It assumes thatl the user
has read (and understood) Chapters One and Two of the SSSP User's Menuegl, and is
therefore familiar with the:basic concepts of naming files, conventions for typing, and
interaction based on graphics. It presents the basic concepts of scriva, deswlbes bow
to carry out key operations, and serves as a refersnce for explanaticons of the various
opticns available: (see the final section).

The program is- best undcrstoocd by a combinaticn of this document and gractical
experience. Try out the examples described! Additional information is available in the
article "The Evolution of the SSSP Score Editing Tools” found in the Compuisr Music
Journal, Volume 3, Number 4. Beyond this, an sxperienced user is your best source of
information.

2. GENERAL
The usage of Scriva is as. follows:
scriva [scorename]
If the coptional score name is specified, then the program assumes: that that is the
name of the score to be edited. If it is unspecified, it assumes (by default) that the
name of the score is "m.out”. In either case, if there already exists a score of that
name, it will bring it into the workspace. QCtherwise, it will present you with a "frash
slate”. If we assurne the latter case, typing

scriva

will cause what is seen in Figure 19 to appear on the screcn.?

- 80 -

A N N NV W W Y P
=+ S e s S S s e s
7 e T 4 ¥
i
) » [Y 1Y 22
S T S i e
= = 7
’ s
. i
~Y v —
CHN
+ +
O N —
<z R . " |
g m———— T == —_ - ——
— — -
i - -
———— — = -—
oy —— —) -
e — S - —
W -
—_—
’
T -
. B -
e CLTANE vt iy 2 TV N N T
E A Y
A) A
e — e =
%& &&‘:‘B
A [aSy [N o
& & o A BB &&
AMP |22 P v = AN AN B&&m&
l; !
N N
O
.
T -
+ ﬂ +
-
a
hY A A a
& e e S =
2 T E A = = b a
Ty Z A% a
a 4
OBJ < . 3 a a
. X i 22X I
; T T : x z , x¥
v 090 N z 3 z
60°%%0
° s
’ =
LI}
=3 =
- 4emt
o At < Wb
+-

M |

Figure 1. Notational Flexibility in SCRIVA

Tt should be noted that surivae can be called from any terminal, but it “set up shop” on the graghis wonder.
In 0 doing, it ties up two terminals. Normelly, therafore, it should only be called from the g.w.

APPENDIX B

Editor Husie Saape Jparatore
NHalettion: omn. OB iechs defautt _ok! (vhele :ecare sdd archastreie
dtsalav: slavae Yolumes 152 .eirale datale saorchasiraie
{noubs Ludwiz Charnel: 1 .sellack ” wlay et volume
Tainy wiilcw ave
Scorer maaus lenr il
Keye [+
m 33
: > lig

Fete

-4

Figure 2. SCRIVA Upon Initial Entry

Before going into further detail, we should examine the general layout of this display.
First, note that the screen is divided into iwo sections. The top section is the

space’ where the music being edited appears. The lower section is the controi arsa,
where most of our editing "tools" appear. Close examination of this lower section (Fig-
ure 20) will show that it is divided into tive columns under four headings. The fArst
column, under the heading "Editor”, coatains felds conecsrning the basic editing
environment. Control over nctation and score name, for example, are in this ragion.
The second column, under the heading "Music”, concerns variousz attributes of any
notes which are added to the score. The commands failing under the third heading,
"Scope”, have to do with enabling you to address yourself.to specific "chunks" of the
score which you would like to afect (for purposes of playing, or orchestration, for
example). Finally, the last two columns (under the neading "Operators’) are the pri-
mary editing functions, or'"commands” available in the program. They allow you to
undertake the following transactions: .

A Tutorial Introduction to SCRI

Editer L H Scope : - Operaterz
Nolatiom: emn . Chiect: defsulb_ob| whole zcove . sdd orchesirate
Display: staves :- Yolume: 182 . eircte c. delste ! ssorchaskrele
[nput: Ludwiz . Chanmeb:r L . aallack . alay ‘e sst wvoluma.
Toin: selige : ' azva
Sesre: m.oulb - : cbaar . od it
Kays <
rim 3G
Paga. : QLT

P

Figure 3. SCRIVA Command Window Layout

« build up a score by adding notes
» delete notes from a score

+ play score material

» save score material

« orchestrate notes of the score

« modify the volume of nctes in a score

f

Functionally, this is all that scrive can do. All else (such as everything in the upper
half of the scrsen and in the cther hroe columns) cxists solely to support the user's
ability to undertake these: primary tasks. Manipulations and modificaticns tc: score
data beyond thess functions must be undertaken using tools which. exist outside of
seriva. (It will be seen, however, that external functions are easily invoked withcut hav-
ing to exit from scrive. Hence, the power of the enviromment is significantly extended.)

We shall now provide a brief tutorial on how to undertake each of these primary func-
tions, or transactions. Along the way: we will introduce the light-butions in the cther
columns as needed. A column-by-column summary of the function of all light-buttons
is given in the reference secticn concliuding this tutorial.

Note that in the documentation, references to light-buttons are always followed by a
Roman numeral in parentheses, as in add(7V). This is a notational convenience to indi-
cate to the reader the column in which that light button is found. If during the tutorial
additional information on a lght bution is desired, simply look it up in the concluding
reference section under the documentation for the indicated column.

3. ADDING NOTES

3.1 General

There are different ways of adding notes to the score being edited using scTiva.
Notes can be added one-by-one, or in groups from previously defined material. To
begin adding notes, activate the add(IV) button. The technigue which will be in effect is
that opposite the input(7) button. The Ludwig input tocl is initially opposite the
input(/) button on entering the program therefore we shall explain it frst.

-83-

APPENDIX B

3.2 Ludwig

This input mode is in effect if the add(7V) button is activated with: Ludwig opposite
the input(7) buticn. When in eflect, one or two vertical "ladders” indicate where new
notes can be added. one or two vertical "ladders! {as seen in Figure 21a).

e N e

(0 0 T |

e (XX

YTITT]

T TTXTT

NENW]

11
11

i
-
|

=
. = ,
= R
= 5 B
-
A §
g O
e L
:
i
) +
e —
3 g =
: - =
s S o o
] }

| i

Pigure 4. Adding Notes Using Ludwig Tool

To indicate the pitch and entry point of the note to be input, position the tracking
cross over the appropriate vertical position within one of the ladders. In Figure 21a,
for example, the posilion of the cursor indicatss that a i4 is to be input. Once posi-
tioned, if the Z-button of the cursor is depressed and held down, three things will hap-
pen. First, a stationary marker will appear at the spot pointed at. This indicates the
pitch and entry point. Second, the iracking symbol becomes a set of notas of dura-
tions from a 32nd note to a whole note set above a row of boxes. Third, the ladders
disappear. All of this is seen in Figure 21b, where we have moved the tracking symbol
off Lo the side fo be better able to see the stationary markear. If you are trying this for
the first time, move the cursor about while holding down the Z-button in order to
bacome relaxed with the motion. Now, to specify the duration of the new noie, all we
need do is position the tracking symbol note of the appropriate duration over the
marker, and release the Z-button. If we select an 8th note as in Figure Zlc, then on

ity

releasing the Z-button we will have the completed result notated as in Figure 2i4d.
Once the note is- entered, the ladders are repositioned so that the first one is synchro-
nous with it, and.the seccnd one cfiset Lo the right by an amount corresponding to th

nota duration. We can now add additicnal notes which cither start simultaneously with

- 84 -

A Tutorial Introduction to SCRIVA

the last note entered {thereby forming a chord), or follow it (thereby forming a
melody). We just select the first or second ladder, raspectively.

Note that in using the tool wasted motion is aveided by exploiting the redundancies of
much music. The duration which automatically appears above the marker is always

equal to the last duration entered. Verify this by adding notes of different durations.

To add rests, exactly the same technique is used, except the box below a note is placed
on top of the marker, instead of the note itself... Thus, the box below the Bth note wili
cause an Sth rest to be entered. Note that for both notes and rests the method used is
just the opposite of the menu techniques used thus far. Rather than: having a moving
pointer select from a stationary menu, we select from a moving menu using a station-
ary pointer. At any point, if you want to hear whal you have wriltien, ivate th
play(/V) button. You can then continue adding notes withouf having te fir L
add(/V). {The performance can be interupted at any timse by hitting the key lab lle
"RUBQUT™.

ot

L

e
H

aacnkivatl
SACLLVAL

=
st
i

Lo o

To get note durations which are combinations of those on the tracking menu, add two
notes of the same pitch one after the other and then activate the light button shaped
like a neck-tie which is positioned between the left-hand tadders. This will cause the
two notes to be "tied" together. Only durations which are multiples of a 38nd note are
currently possible with the Ludwig tool

To gat accidentals, adjust slider 2 up or down. This will cause the last notz entered to
he dragged up or down sermi-tone by semi-tons. If you want to enter notes in a particu-
lar key and have the accidentals set automatically, activate the ksy{/) ‘
select the appropriate major key from ths menwwhich appears in the bottom lefi-hand
corner of the work arsa, and which is illustrated in Figure 22.

g o
Fit-ds..
¥ Db
F 6b
86 Cb.

mo»> o o a

%

Edttor

Notatlons cmm
Oisplay: staves

Ineut: Ludw g
Jaine solice
Seore: m.out
Kay: Q

Hm 39

Page

Figure 5. Key Menu

After hitting key(/) (or most any other light button, with the notable exception of
play(fV) — as already mentioned) the ladders will disappear. This indicates that you
must reactivate add(7V) befors new notes can be input. However, if some notes have
already been defined, just reactivating add(1V) will produce an error message stating,
"YOU MUST IDENTIFY A REFRRENCE NQTE". This is becausae the program does not know
where you want to .begin adding ycur new notes. That is,. it does not know where to

.55 -

APPENDIX B
position the ladders. You must indicate this by pointing at the note closest to where

you want to begin working, and depressing the Z-button on the cursor. If scriva under-
stood you, it will draw a triangle beside the indicated note {as shown in Figura 23).

e o Do

Figure 6. Identification of the 'Reference' or 'Current Note’

If you missed, try again. Once you have identified the "reference” note, if you want to
add, you must as the very nezt step activate the add(7V) button. The ladders will
appear, and you can begin adding as before.

To change the tempo at which the score is played, activate:the MM(7)} button, and type
in the new mm marking (expressed in quarter notes per minute). Finally, it is impor-
tant to note that the Ludwig tocl only werks when the music is notated on the piano
staves, ‘

Before progressing, practice adding notes with the Ludwig tool. In your experiments,
try writing chords, melodic structures, rests, and notes of different durations (includ-
ing tied notes). Constantly:'play what you have written (at different tempi) in order to
verify that what you got was what you intended. Verify that changing key has no cficct
(except notational) on notes already written.

In the previous exercise, it. may be desirable to pericdically delete a nots. You can d
this by indicating it as if to make it the refercnce note (as szen in adding n n

then activating delei2(7V). Deletion will be discussed in more detail shortly.

notes), an

3.3 Roil
To keep new music fans happy, we will now look at a different way of adding (and
notating) new notes. First; let us change the notation used. Activate the notation(7)

button, and select Roll from the menu which appears in the lower left-hand corner of
the work space, and which is illustrated in Figure 24.

Editor

Notst lom: Cmme :
. Dusplave stavss .

Figure 7. Notation Tool Select Menu

Notice that all material composed so far is re-notated in "piano-roll” notation. Activate
the play(7V) bution to verify that changing notation affects the music visually, not soni-
cally. Try adding a few more notes using Ludiwig just to verify that it still works.
(Remember to first identify a reference note.) Now, activate the display(/) button.
This, in effect, changes our manuscript paper from piano "staves” to (requency/line

- 88 -

A Tutorial Imtroduction to SCRIVA

space ("linear”). If we now try to add notes with Ludwig we will get an error, since it
only works with the piano staves.

To add notes in our current state, we must select a different input tocl. This we do &y
activating the input{l) button, and selscting Roil from the menu which appears in the
bottom left-hand corner of the work space, and which is illustrated in Figure 28.

Ludwis
Kers
Oraw
Read
Roll

R A ats L O

AN

Edttor Mus tc

Notat ion: cmn Cbjack: defaull_ob]
Display: staves Yolume: 192
Input: Ludwlig Channael: 1

Figure 8. Input Tool Selection Menu

We can now activate the add(7/V) button.. All light buttons will now disappear and- a new
one, "DONE", will appear in the lower right of the screen. The roll mode of input is
free-form, so no:reference note need be specified, and no ladders appear. To input a
note, position the tracking cross to that point in frequency (vertical position) and time
{norizontal position) wherc:the note should start. Depress:ithe Z-button of the cursor,
and while holding i down. drag it to the right. Notice that a "rubber-band” line is
stretched horizontally from the point whers the Z-button was depressed to the current
pesition of the cursor. This line, which remains horizontal regardless of any vertical
motion of the cursor, indicates the duration of the note being entered. When the dura-
tion is "stretched” to the desired length, release the Z-button, and the note is entered.
You can add as meny notes as you like In this way. (Also, notes can be drawn left-to-
right or right-to-left.) When you are: finished, or want to hear what you have done,
activate the Done button which has temporarily appeared in the command area. The
play(IV) and all other buttans will then reappear, and may be activated.

It is interesting to see what happens when you switch back to the. piano staves by
activating the display(/) button. All notes are notated as being on one of the 12 notes
of the chromatic scale in spite of the fact that many were specified al irequencies
which do not correspond with such pitches. If you play the material, however, you will
notice that the sound of the material has not changed, just the notation. The program
does its best to notate things to the closest pitch and duraticn, but deoes not change
the actual data values to conform to notational limitations.

4, WHY DID IT SCOND LIXE THAT?

In adding notes, we specified pitches, starting peoints, and durations: However; when
the material was played, it should have been noticed that a timbre, volume, and output
channel had somehow been determined for each note. The attributes assumed for
each of these parameters are controlled by the values associated with the light buttons
in column two. Thus, if the name opposite Object(l]) is "default”, that is the name of
the object associated with each note specified thus far. Similarly, if the value 190 is
opposite the button Volume(I]), 190 is the volume of each note. However, if we activate
Volume(l{) and Lype the number 230 in response:to the prompt of the terminal icon, all

- 87 -

APPENDIX B

subsequently added notes will have a volume of 230. Note that this change will have no
effect on notes already specified. Verify this by experimentation. Change the volume
(the range is 0 - 255}, and then add some new notes. Play the composite score and
note the change in dynamics. Add other notes using other volume settings. Notice
that a change of:volume of 20 is a change of about one dynamic marking.

You have already seen how the notation of the notes can be changed. Activate the
notation(l) button and select 4mp mode. Notes are now notated with Lhe amplilude
envelopes which are associated with them. Notice how envclopc height is proportional
to note volume,

Now read the description of Object(I]) and Channel(l7) (in Section 14.2 of this tutorial),
and verify that you understand how they work. (Remember that you will not hear the
score performed as orchestrated unless you have already created objects having
names corresponding to those used in orchestrating. To create sbjects, you must leave
scriva, and use the program objed.)

5. MIX AND SPLICE

Switch to the Roll notation and input tool (using the notation{/) and input(l) but-
tons). Add some notes in melodic sequence. Now add a new note somewhere in the
middle of the sequence. Notice that in so doing, all notes to the right of the new one
are offset in time. We have, in effect, opened up a space in the middle of the sequence
into which the new note is fit. From analogy with the tape studio, we call this "splic-
ing". This is not, however, how we always want to work. Think of the case, for example,
where you first add a bass part, and then want to add the.treble. In this case, you want
to "mix"” the new voice in with the old, without affecting the timing relationship among
any of the existing notes.

Scriva makes both options available for all input tools, and thec mode in effect is set by
the Join(/) bution. Activate the button (thersby switching from splice to miz). Add
some notes and verify the difference in effect between the two modes. Swikch back to
splice mode (by reactivating the Join{J) button) and reconfirm the difference. Verify
that the mode equally affects inputting notes in CMN using the Ludurig tool.

8. DELETING MAITRIAL

As hard as it i3 to believe, we sometimes make mistakes, and therefore want to
delete material from the score being edited! This is done by activating the Delete(7TV)
button. Before thiz has any efect, however, we must first indicate what note is to be
affected. This is done by pointing, and. depressing the curscr Z-button {just as was
done to indicate.the reference note with add{JV)}). Activating delete(/V) will now cause
the note to be removed from the score.

Indicating a note to be operated upon by pointing in this manner is a recccuring action
in scriva. It is referred to as the specification of imwmediate scope. Notice that if you
change notation after defining immediate scope,.the triangle will disappear and you will
bave to re-identify the note before it can be deleted. Immediate scope remains in
effect for only one button activation.

There are two other points to notice before moving on. First, verify that what happens
when 2 note is deleted in the middle of a sequence is afected by whether join(/) is set
to mix or splice. Second, verify that the specification of immediate scope can be used
in conjunction with the play(/V) button. The effect will be that only a single note will be
played: the one you pointed at. We will see that.imediate scope can be used with all of
the operators in columns IV and V. But first, we should investigate the general concept
of scope in more-detail

- 88 -

" A Tutorial Introduction to SCRIVA

7. AN ASIDE: THE CONCEPT OF SCOPE

We are used to thinking about the scope of a discussion. By this we mean the topics
which are tc be encompassed by the conversation. Similarly, we can talk about the
scope of an operator in scrive. By this, we mean the notes which are to be encom-
passed, or affected, by that operator. We have seen how the implicit scope of play(IV)
is the entire score, but that an explicit sccpe of one note can be specified by defining
immediate scope. We will now see how the scope of an operator such as play(iV) and
delete(IV} can be set to inelude whatever notes we desire. This is accomplished using
the buttons in column: IIL :

There are three techniques for collecting notes into the current scope. First, one can
explicitly specify that all notes of the score are to be included. This is done by activati-
ing whote scoref(llI). Second (as is illustrated in Figure 26), one can draw a circle
around all of the desired notes after activating circie(7I]).

Ay

vim?r
J ; -

T — - 1 t v
+ S A R SO S 7 . B TP S L A}

T + I W ~ N - b A . I T H
gy -l
e

™ 3

Figure: 9. Scope Specification by Circling

Finally, notes can be collected one-by-one by pointing at them after the collect(1IT)
button has been activated. Eead the documentation for each of these.buttons (Section
14.3), and experiment with:their use in conjnction with play(IV) and delete(/V). Notice
that unlike immediate scope, the current scope remains: in effect until clear(l//) is
activated. Also, additional invokations of the three scope: buttons have a cumulative
eflect, adding to the current scope rather than changing it. Note alsc that current
scope is visually indicated by the notes being drawn at a.brighter intensity. Finally,
note immediate scope always has precedent over current scope.

8. SAVING MATERIAL

In editing, it is important to remember that you are working on a "seratch pad” ver-
sion of the score. Normally, if you exit the program by activating the quit(V¥) button,
all your work will be lost. Obviously it is desirable to be able to save work {rom day-to-
day so as to be able to work on it in subsequent sessions. Scores are saved by activat-
ing save(/V). It is important to know, however, that in order to retrieve anything, it
must be filed under a specific file name. Thersfore, when you save data using save(/V),
you must know the name under which: it is saved. This is the score name which is oppo-
site scoref]). This name can be changed by activating score(/). As a resull, the names
of all previously defined scores (if any) will appear in a box in the lower left hand
corner of the work space (as illustrated in Figure 27). As well, a terminal icon will
apear as a prompt below the scare(/) button. This is also seen in Figure 27, The score
name can be set to that of an existing score by pointing at its name, or moving slider 1
until its name appears between the pair of horizontal lines in the centre of the box.
Alternately, any name of less than 14 characters (whether previously used or not) may
be typed in using the keyboard. Once the name is specified using one of these tech-
niques, the menu of score names and the terminal prompt disappear, and the new

-89 -

APPENDIX B

firsteons
+ oh dartling

babalt

gditoe fusic Scope-

- Notations Cum: Chisshs dafaulb_obj whole:-..
Display: slaves - Yolumer 154 Cogirel

;. Input: Luduiz. . Channel: 1 T eotls
Joins splice ;
Scorer st darkin, . clear
Rav: <
Hem 128

; Pege

> ' —

Figure 10. Window Showing Names of Saved Scores

name appears opposite score(]).

Always beware that only one thing can be saved at a time under any particular name.
If the name opposite score(/) is the same as.that of some existing file, activating
save(IV) will cause the previous contents of the file to be overwritten. (That is, the
former contents:of that file will be erased and replaced by the material being saved. .
Fipally, it is useful to note that you can save parts of a score, since the notions of
current and immediate scope also work for save(7V). This is especially useful as a
means of extracting fragments of a score so as to be able to use them in other contexts
without having to respecify them from scratch.

8. ADDING BY READING

Now that we can save material, it is important to know how to retrieve it. One way
which has already been seen is to give the name of a scors as an argument to scriva
when it is originally called. Cnce inside the program, however, we must use another
approach. First, consider the fact that in retrieving a score we are simply adding
notes, but as a group rather than one-by-one as seen thus far. Therefore, the way to
add notes from’ a previously defined file is to select the appropriate input tool by
activating input(/). The tool which we need is Rzad. Once it has been selected, we can
add the notes by activating add{/V). Just as before, however, it is important to specify
a referesnce note so as to determine where Lo start adding. Also, note that the mode
specified by join(/) still affects the input.

So, first set the join mode and select the read input tool. After determining the: csfer-
ence note, activate add(7/V). You will then be confronted with exactly what was seen
when score(]) was activated. Seriva is asking you to indicate the name of the score to
be retrieved. Do so in the same way as before. Once the name has been communi-
cated, the score will be read in and appear on the display. Notice that this causes the
name associated with your current score to be changed to that of the score read in.
Beware when you save the score because you may write over the saved version of the
read-in score!

Before going further, spend some time practicing saving and retrieving scores. Set
Join{l) to mix and try and write a simple canon by reading in the same score fragment

-0 -

A Tutorial Introduction to SCRIVA

on top of itself, but with each entry staggered. Work with different notations. After
saving material, set the current scope using whole score(/II) then activate delete(IV).
Then build up a new score exclusively from stored fragments. Try thinking of the pro-
gram as a multi-track taps recorder where each score file is one track, and retrieving
scores on top of one-another in mix mode is like the mix-down. Do not progress until
you are completely comfortable with the material covered thus far.

10. ORCHESTRATION

Through object(/l) we have seen that associated with each note is the name of an
"object” which determines its timbre. Orchaestrate(V) permits the name of this object
to be changed for any note, without having to redefine the whole note. On activating
the button, a list of existing object names (if any) appears in the lower left-hand corner
of the work space, and the terminal prompt appears oppuosite objeci(Il). By specifying
an object name (by typing, or selecting from the menu — as with object(lf) and score(l))
the notes encompassed by the scope in effect will be reorchestrated with that object.
Experiment with: orchestrate(V) using: both immediate and current scope. Notice that
with immediate scope, using the menu of objecti names and pointing is much like dip-
ping a brush into a paint-pot on a palette and painting the notes with a particuler
colour. There is:a problem, however: it is difficult to remember what "colour” is associ-
ated with any note. The sohution to this is to activate notation(/) and select 0bj. This is
a notation which highlights orchestration, and which functions like a topographical
map. Each note is drawn as a graphic icon which represents a particular timbr=. The
association between timbre and icon is shown in the "key” in the bottom right-nand
side of the work space (as can be seen in the two lowest panels in Figure 1). Therefore,
the object associated with any note is immediately visible, the notation being: tailor
made for the command. Finally, note that object(//) is set to the name of the last
object used in orchestration and therefore affects notes subsequently specified one-
by-one using add(7V). :

11. SETTING VOLUME

Like orchestration, the volume of any note can be changed without having to
redefine the whole note. Activating sef volume({V) causes all notes encompassed by the
scope in eflect to assume: the amplitude currently displayed opposite volumae(Il),
Therefore, to update certain notes, collect them within. the current scope., adjust
volume(Il) to the desired level, and activata set.wolwume(V) As an aid to this process,
you can select a nctation which highlights the volume attribute of the notes. Simply
activate notation(/) and seiect 4rnp. The shapes:drawn for sach note follow the note's
loudness contour {or "enveiope”). The hight of the envelope with respect to its base
line iz directly proporiional to ils votume., Two examples of this form of notation are
seen in the third row of Figure 1. Note that .the last volume used remains opposite
voiume([7) and therefore affects subsequent notes specified one-by-one using add(JV).

12, NAVIGATION

By now you should have encountered the fact that more notes can be specified than
can be viewed at one time. Think of the score as being laid out on a time line, and the
rectangle of the working area as a "window” looking onto a portion of it.. For any part
of the score to be viewed, it must be positioned so that it falls within the sight-lines of
the window. This is easy to do. The upper border of the work space serves a special
function: Lthal of a time-line representing the total duration of the score (regardless of
how long). That.portion of the entire score which is currently visible:in the window is
represented by the thick bar running along the border. Thus, in Figure 1 only the first
half of the score:is shown, since the thick bar covers only the left half of the timre-line.
To view a different part of the score, point to its relative position on the time-line and
quickly depress and release the cursor Z-bution.. This will cause the indicated material

-71 -

APPENDIX B

to come into view, and the position of the thick bar on the time-line to be updated.
(Clearly the presence of rehearsal marks or other reference points along the time-line
would improve our ability to navigate through the score. Due to the prototype nature
of the program, however, these have not been implemented.)

Often the window of the work area does not allow enough of the score Lo be sesn al one
time, or conversely, there is too much. We can adjust in this situation by changing the
effective size of the window; that is, by adjusting how much of the score is looked on
through the window. This is done by pointing at the relative position on the time-line
which should appear at theleft-hand border of the window. On depressing the Z-button
and moving the cursor to the right while holding the Z-bution down, the user can indi-
rate the relative amount of score which is to fall into the window. The position on the
time-line at which the Z-button is released indicates the point in the scors which will
appear at the right-hand border of the window. When specifying the window width, a
horizontal line stretches from the point where the Z-bution was depressed lo the
current cursor position. Cnce a new window width has been defined, it can be moved
around over different parts of the score just as before. The technigues of moving the
window and changing its size are much like panning and zooming wilh. a movie camera.
The difference with the zoom, however, is that it only works in one dimension: time.
Draw a line along the fuil length of the time-line, and the entire score will appear-in the
window. (However, with large scores, the display will "run out of ink" before all notes
can be notated, and the error message "GPAC ERROR: DISPLAY FILE FULL" will appear.
When this happens, you might switch to 4mp or Rcll notaticn, both cof which use less
"ink" per note.)

In the same way that we can pan and 2oom with respect to time, we can also pan and
zoom with respect to frequency. This.can be done when display(7) is set to Linear. In
this case, the left-hand border of the work area represents the freguency range
(currently linear seale, unfortunately) of O - 50,000 Hz. The thick bar along this border
represents that frequency range currently falling within the view of the window. The
labels on the frequency axis of the display indicate the current maximum and
minimum fregquenciss. Verify that the bar controlling the window's frequency dimen-
sion works in the same way as that controlling time. As a result, unlike a movie cam-
era, we have independent control over zooming in "< and in "y". Finaly, verify (using
olay({V)) that even though no notes are currently visible in the window, they are still
"there" in the gditor.

13. TEMPORARY ESCAPE

There are many things:which scrive cannot do. Furthermore, if we tried to build
them all into the program (assuming this was possible), we would end up with a monol-
ithic monster. A better solution, which takes into account the pragmatics of the real
world, is to make it as easy as posible for you to access "cutside” programs which ill in
the gaps of scriva. In the:middle of editing a scors you may, for example, want o
define a new object, or transpose some score file. You may just want to know who else
is on,the system, or what is the time of day. All of theses things can be done from within
seriva in exactly the samesway as they would be normally carried out. Just type the
command name, following its usage as described in the SSEFP Users’ Menual, During
the period when:you are working witlr the temperary program, the tracking symbel of
scrive will indicate that you have "broken off’’ temporarily by assuming the shape of a
broken egg shell. When you have finished, serive will pick up from where you leff off,
and the regular tracking cross will reappear.

Finally, since there is only space for two typed lines in the command area, the page(7)
button is provided. Read its documentation to see how the whole screen can be made
availaoie for typing.

-72 -

A Tutorial Introduction to SCRIVA

14. SUMMARY OF LIGHT BUTTON FUNCTIONS
14.1 Colummn 1 EDITCR
14.1.1 General

This column contains commands which affect the editing environment. rather
than editing functions per se. Aspects such as notation and other user-selectable
modes of operation.are included.

14.1.2 Notation

This button permits selection of the type of notation, or symbols, used in display-
ing notes. The notation currently in effect is identified to the right of the button.
Alternative forms of notalion can be selecled by aclivating the button. This will-cause
2 list of the available alternatives to appear in the lower left-hand corner of the worik
area. The alternatives are:

. CMN: a loose form of common music notation. The notation knows nothing about
meter, bar lines, or beaming. Only durations which are muitiples of a 32nd ncte
currently can be notated. Pitches falling hetween notes of the chromatic scale, or
durations which cannot be notated exactly are notated to the closest value.*

« ROLL: is a form of "time-line", or "piano-roll” notation. Notes are written as horizon-
tal lines whose vertical.positions indicate pitch, and whose length and horizontal
positions indicate duration and tirning, respectively. Notes of any duration can te
notated accurately.

+ AMP: notation highlights note amplitude characteristics. Nectes are drawn as con-
tours whose base-lines indicate pitch and duration (as with 7ol notation). The con-
tour shape is: determined by the amplitude envelope of the odject with which the
note is orchestrated. Whereas in the global view the vertical domain is pitch, in the
micro sense the height of the contours from their base is propertional to the ampli-
tude of the individual note.

. 0OBJ: notation. highlights the timbral characteristics of the score as determined by
orchestration: with objects. The approach taken has much in common with a topo-
graphical map. Bach object is represented by a graphic symbol, the meaning of
which is given in a "key" in the lower right-hand corner of the work.area. Each note
is represented by the graphic symbol associated with its object. Each symbol is
positioned suchthat it is centred on the starting point in pitch and time for the note
in question. There is no indication of note duration in this notation. Notes which
have not yet been orchestrated are notated by the symbol of a simple note head (a
symbol which does not appear in the key). The graphic symbols are generated
automatically by the system.

14.1.3 Display

This button is a "switch' which-permits the user to choose between two formats
of "manuscript paper': piano stafl layout, or frequency,/time free-form layout. The
display option is'independent of notation, as is seen in the first figure of this tutorial.
There, examples of the four different types of notation are shown: in the left column on
the "staves” display, and in-the right column, on the Minear"” display.

14.1.4 Input

This button allows the user to select the technique (or "tool") which is to be used
when adding notes to the seore as a resuit of activating the add(/V) button. Notes may
be added note-by-note or score-py-score. Notes:specified one-by-one implicity assume

4. R iz important Lo distinguish between notation and what is being notated. The music is not restricted by
the notation's inability to transeribe it exactly. The notation does the best that it can, odut the the
integrity of the values are maintained and are performed as composed, rather than as notated.

-73-

APPENDIX B

as attridbutes the values displayed in cblumn two. Thus, notes added after setling
volume(7I) to 100 will have their volume set to 100,

On activating the inpu#(/) button the user must select one of the input tocis made
available in the menu appearing in the lower left hand corner of the work area. This
menu is shown in Figure 8. The input tools aveailable are:

+ Ludwig: allows the inputting notes and rests one-by-one using CMM. The tool uses a
graphics-based approach of pointing at the desired pitch, and using a small moving
menu to spenify duration. Notes and rests can be tied in order to obtain any dura-
tion which is a multiple of a2 32nd note. (Currently restricted to use with staves
display(T).)

. Keys: allows notes to be specified one-by-one by playing them on the clavier key-
board. {Not currently implemented.)

+ Draw: allows notes to be specified one-by-one by hand drawing special symbols which
are understood, or recognized, by the program. (Not currently implemented.)

+ TPead: allows the notzs of a previously composed score to'be added as a single unit to
the score currently being edited. Any score file, regardless of how it was composed,
can be added in this way, starting at any point:in the current score.

« Roll: allows notes to be specified one-by-one by pointing at wher=s in frequency and
time the note should start, and "dragging” a horizontal line to the right from that
point to indicate the desired duration. (Cannoct currently be used with siaves

display(l}.)

A detailed description of the usage of the Ludwig, Roll, and: Read input tools is given in
the main body of this seriva tutorial.

14.1.5 Join

I we were to use add(/V) to insert some new notes into the middle of a score, an
important question arises.: What happens to. the timing relationship between the two
sides of the point where we started adding the new material? If the material to the
right of this peint was "pushed back” in time in order to make room for lhe new, we
could say that the new material was spliced into the score. On the other hand, the new
material could be mized in, thereby retaining all previous temporal relationships.

A similar question arises when using the delete({V) button. If we delete a note which is
surrounded on either side by cther score material, what happens to the temporal rela-
tionship between the material on either side? If, on deletion, the remaining material
shifts in time in order to fill the gap left by the deleted note, then we can think of the
deleted note as being spliced vul of Lhe score. Cn the other hand, if the deleted note is
replaced by a rest of equivalent duration, thereby preserving the temporal relationship
of the notes on.either side, then one can consider the note to be mized out of the
score.

Join{I) allows the user to select between these two alternatives in both adding and
deleting notes. It is a switch which is followed on: the right hand side by an indication of
the current mode: miz or splice. Activating the button causes the mode to switch. The
current mode affects both add(7V) and delete(7V).

14.1.6 Score

The name to the right of this button indicates the name currently associated
with the score being edited. It is the name under which material will be filed when
saved using the button save(/V). If you have not explicitly spercified a name, the pro-
gram will use the default name "m.out”.

.74 -

A Tutorial Introduction to SCRIVA

To chenge the name, you need only activate the bution. In response, the program will
(a) post a list of all currently defined score names in the lower left-hand corner of the
work area, and (b), post a picture of a terminal opposite the score() button. You may
then specify a name by one of two techniques. Either vou may select one of the exist-
ing names in the list, or you can type a new name (as prompted by the terminal ic on).

Names are selected from the list either by pointing with the cursor, or by "serolling”
through the list (using slider 1) until the name desired is pesiticned betwsen the cen-
tral horizontal lines, and then press the Z-button.

14.1.7 Key

This button sets the "key signature” which determines the accidentals. when
adding notes using the CMN input(l) mode. Only accidentals for notes outside the
specided key are posted. A kesy is selected by activating the button and selecting one
of the 12 {major) keys which appear in the lower left-hand ccrner of the work space.
Note that changing key has no effect on pitches already defined. Only the notation is
changed with the addition of accidentals according to the new kay. The key signature
is not posted on the stafdi

14.1.8 MM

This button is used to display and permit the changing of the "metronome mark-
ing". Thus, it determines the tempo at which the current score is performed when the
play(TV) button: is activated. The value is specified in terms of guarter-noles per
minute, as in common musteal practice. Its default value is:80.

14.1.3 Page

In working with scrive, at any time that the tracking: symbol is the regular cross
{"+!"), you may type commands as if you were not inside scrive. That is, you need not
exit. the program if in the middle of a session you want io modify a scorz file (using
retro or inwvert, for example), or send a message to someone using mail. There is a
problem, however, because.only two lines at the.bottom of the screen -are reserved for
typed messages. Therefore, if a command like pod7 is called, there is not enough room
for the requested text. To overcome this problem, one can activate the page(/, switch.
This enables the whole screen to be used for text. {The text is superimposed over any
zraphics, but in mcst cases is still legible.) Activating the switch a second time ciears
the text from the screen and sets the text region. back to the bottom two lines.

14.2 Column 2: MUSIC
14.2.1 Gemeral

The inpui(l) modes Ludwig and Roil enable the specification of pitch, entry
time, and duration note-by-note. Each note entered, however, must aiso have an
object, votume, and ouiput chanmael associated with it. The wvalues assumed for these
parameters are determined by the buttons in: this column. Note that notes added
using the input(l) mode Rvad aiready have these paramsters specified, and are thers-
fore unafected by this column. :

14.2.2 Object

The name opposite this button determines the name of the object associated
with notes added: note-by-note. The object name can be changed by activating the but-
ton. In response; the program will (a) post a list of all currently defined object names
(if any) in the lower left-hand corner of the work area. and (1), post a piture of a termi-
nal opposite the object(//) button. You may then specify a nams by one of two tach-
niques. Either you may select one of the existing names in the lst, or you can type &
new name (as prompted by the terminal icon). Namecs arc sclected irom the list either
by pointing with:the curser, or by "scroiling” through the list (using slider 1) until the

N

name desired is positioned between the central horizontal lines, and then depressing

-75 -

APPENDIX B

the Z-button. This name change will have no effect on notes already speciﬁed. Existing
notes may be reorchestrated using the orchestrate(V) button. To view the current
orchestration see the 0bj mode notation(7).

14.2.3 Volurme

The number opposite this button determines the volume assigned to all notes
added note-by-note. The range of legal values is 0 through 253, with 255 being the max-
imum. The value 190 is about mf, and a change of 20 is the eguivalent to a changs of
about one dynamic marking. The value can be changed by activating the button and
typing in a new value {as prompted by the terminal icon which appears opposite the
button). Changing the value associated with thes button will not affect notes alr=ady
defined. These can te modified using the sef volume{¥) buttcn. Te view the curren
dynamics, see the A7np mode of notation(l).

14.2.4 Channel

o

The number opposite this button determines the output channel assigned fo all
notes added note-by-note., The channels ars numbersd 1 through 4 counting clockwise
from front left. The value can be changed by activating the butten and typing in a new
value {(as prompted by the terminal icon which appears opposite). Changing the value
assveiated wilh the butlon will not affect notes alr=ady defined.

14.2 Column. 3: SCOPE
14.3.1 General

In using any of the operators in columns [V and V, it is extremely useful to be
able to indicate which notes of the score are to be affected. For example, in using the
command piay(fV), we may: want to audition the entire score, a single note, a chord, a
motif, or some other user-specified structural entity. The same goes for
orchestrate(V), and any other operator. The butions in this column give the user guite
a bit of flexibility in this regard. They allow the user to indicate which notes fall within
the scope of (that is. are afected by) a command. There are three ways of associating
note to fall within what is called the current scope. These corrsspond to the first three
buttons in the column. The current scope is retained frem command te command, and
is only modified when explicitly changed by the user. Notes encompassed by the
current scope are visually identifiable due to their being displayed at a higher intensity
than other notes. Gathering notes into the current scope is cumulative. That is,
repeated invocations of the first three buttons build up the current scope, rather than
redefining the current scope from scratch. To start fresh in defining the current
scope, the button clear(/I]} must be activated.

QOften we want to affect just one note with a command. We do not want to have to
redefine the current scope to be that note, nor do we want that note to be added to the
current scope. For such situations, there is also the notion of what we call immediate
scope. Immediate scope implies that a single indicated note only is to be affected by
the next operator invoked: That note is specifisd by depressing the Z-buticn of the
cursor while pointing at it. The program responds by drawing a triangle in front of the
note which it understood to be selected. {See Figure 8.) This note will be the sole
operand of the very mexzt operator only. After the next button is activated, the triangle
disappears, and the current scope comes back into affect. Again, immediate scope
takes precedence over the current scope, current scope is unaffected by immediate
scope, and immediate scope is in effect for one button activation only.

14.3.2 Whole Score

Activating this button indicates that the:entire score constitutes the current
scope. It is worth noting that when there is na current scope defined, both play(lV)
and save(TV) assume the whole score as scope, thercsy climinating the nced to expli-
zitly activate this button in some circumstances..

-78 -

A Tutorial Introduction to SCRIVA

14,33 Circie

On activating this button, the tracking symbol becomes a drawing of a quill pen
indicating that the user may draw a circle around those notes which are to be included
in the current scope. More than one circle may be drawn. Circles may be inside on
another, but may not overlap. If a circle is inside a first circle, the notes in the inner
circle are excluded from the scope. However, if a third circle is inside this second cir-
cle, then the notes circled: by the third circle are excluded from the exclusion, and
therefore includcd. This cmbedding can go on for ever (almost).

1 (D

o draw a circle, aetivate circle(/fI), position the cursor, and draw by moving the cur-
sor with the Z-button depressed.

To draw a seennd cirele, release the Z-button, reposition the cursoer, depress the 4-
button again, and draw as before. When all finished, depress butlon.d on the cur
Finally, if you make a mistake and want to restart drawing from scratch, depress

sor button 2, and start again.
14.3.4 Callect

After activating this button, new notes may be addzd io the current scope by
"collecting’’ them one-by-ome. This is done by pointing at the notes and depressing the
cursor Z-hutton.. On collection, each note will be redrawn at. a brighter intensity. When
fnished, activate the button end: collect(/I/) which has temporarily replaced
collect(II]}. Note that if scriva cannot identify which note you are pointing at, it will
automatically take you out of collect mode.

14.3.5 Clear

Activating this button will clear all notes from the current scope. This preparas
the way for a new current scope to be built up from scratch:

14.4 Columns ¢ &.5: OPERATORS
14.4.1 Gegnersal

The buttons in these columns are the primary editing commands. In using them,
it is important to be aware of how the individual commands relate to the current scope
(see documentation for column III).

14.4.2 Add

This button.is activated in order to add notes to the current score. The method
oy which notes are to be added is set by the current state of the input(l) button.
Whether notes are to. be spliced or mixed into the current score is indicated by the
Join(I) button. Notes added one-by-one assume.the attributes indicated by Obdjeci(i!),
Voluma(l7), and Channel({I). If no notes have been specified as of yet, then scope has
no relevance:; otherwise, before invoking the add(7V) button, the user must indicate at
what point he desires to begin adding notes. This is dene by peinting at a note, az done
in specifying immediate scope (see general comments on column 1IT). Failure to do so
will result in the error message: "YOU MUST IDENTIFY A REFERENCE NOTE".

14.4.3 Delete

Activating this button will cause all notes encompassed by the current scope to
be deleted. Whether the time relationship among any remaining notes is affected by
the deletion is determined by the Join(l) mode {(splice or mix) currently in effect. Cn
completion, the current scope becomes empty.

14.4.4 Play

Activating this button causes all notes encompassed. by the current scope to be
played. Rests are substituted for any notes not played, so the temporal relationship

- 77 -

APPENDIX B

among played notes is preserved (except that the performance starts right in on the
first note of the scope and stops after the last note of the scope, theresby eliminating
possible delays on either end). If ne current scope is currently defined, the
score is played. The performance can be interupted at any time by hitting the k
labelled "RUBOUT". '

14.4.5 Save

O R PRy
(R ERVY A
/a7

=D

Activating this button causes all notes of the current scope to by saved in a file
on disk. The name of the: file is that currently associated with the Score(/) button.
Beware that saving a score under a particular name will cause anything previously
saved under that name to be overwritten, and therefore lost. [f the current scope is
empty, then the whole score is saved. If the current scope only encompasses some of
the notes of the score, then only part of the score is saved. After saving the data,
scrive always oulpuls one of the [ollowing messages: "YOU HAVE SAVED ONLY FART GF
YOUR SCORE", or "WHOLE SCOHE SAVED". The score being edited is unaffected by the
save{{V) bution..

14.4.6 Orchestrate

This button allows previously defined notes to be reorchestrated. Notes are
orchestrated by associating with them the name of a particular otject (sees ths com-
mand objed in the SSSP User's Manual) Note that notes can be orchestrated with a
particular object name before that object has even been defined. In such cases, the
note will be played using a default timbre until such time as the named object has beesn
created.

On activating the button, a list of all current objects appears in the bottom left-han
corner of the work arza. Also, an icon of a terminal appears opposite the object(Il)
button. If thers.are notes currently sncompassed by the currant scope, sslecting one
of the names from the list, or typing an object name will cause all notes in the current
scope to be orchastrated by the cbject of that name. (Names are selected frcm the list
using the cursor; or-by scrolling the desired name -- using slider 1 -- until it appears
between th?/eﬁral hcrﬁo\n\i‘\.al lines, and then pressing the Z-button.}

Immeadiata scope {see the general discussion of column 111} can also be used in orches-
\ = A N

tration., After activating orchestrate(/V, point to a note, then select an object name.

Point to the next note, then the desirsd object name, elc.

At any time, the current orchestration can be heard using play(/V) Remember; how-
ever, that the current scope is still in effect, and affects the performance as well as
orchestration. One can, howaver, alse change the scope. Crchestration is often facili-
tated by selecting 0%7 mode notatior(l). Finally, be awars that odjeci{l) is set to ke
equal to the last object used in orchestration, so ail subsequently added notes wiil
assume that timbre.

14.4.7 Scorchestraie
This button is currently unimplementead.
14.4.8 Set Volume-

Activating this button causes all notes encompassed by the current {(or immedi-
ate) scope to have their volumes set to the value currently asscciated with the button
Volume(lI). In setting volume, the Amp mode notation(/) is.often a useful aid.

14.4.5 QUIT

Activating this button will allow the user to exit from scriva. As a safasty cateh {o
prevent loss of material due to accidental selection of this button, there is a second
step. The program asks you to depress cursor button 2. If this is done, the program is
terminated, Qtherwise, such ag if the Z-button is depressed, the exit is aborted, and

-78 -

A Tutorial Introduction to SCRIVA

one resumes working..

APPENDIX C
APPENDIX C - A Tutorial Intreduction to SCED

1. INTRGDUCTION

Sced:is a "score: editor”, that is, an interactive program for creating and modifying
music scores, via directions specified from a computer terminal.® Sced is called an
"alphanumeric” score editor since beth the commands which it understands, and the
way in which it notatas music, ars in the form of alphanumeric characters. This is in
contrast Lo other score editors, such:as serive, which are graphics based. Both types
of editors have their advantages, and you should lezrn to know when to use one or the
cther.

Always remember: a score is a score is a score, no matier how it was created. There-
fore you can edit scorss created with other editors or composing programs using sced,
and vice versa.

This tutorial is meant to simplify learning sced. The recommended way to learn the
program is to read this document, simultaneously using sced to follow the examples.
Sced is based on the UNIX text editor ed, so any experience with ed can be directly
applied, and vice versa. Beyond this, experienced users are the best source of addi-
tional information. A summary of the sced commands is given as the final section to
this tutorial.

Do the exercigses!t They cover malerial not covered in the actuel text.

2. DISCLAIMFR

This is an introduction and a tutoriall For this reason, no attempt has been made to
cover the full facilities offered by sczd (although the most useful and freguently used
features are presented). Also, basic. UNIX procedures ars not explained here. The
reader is referred to the appropriate section of the SSSFP User's Manual. It is assumed
that you know how to log on, and that you have an idea as to what a score file is, and
that you have read the section in the SSSP User's Manual explaining conventions used
in typing and documentation.

3. GETTING STARTED
We will assume. that you have logged into UNIX'and that it has just said "%". The easi-
est way to invoke sced is Lo simply type its name:z ,
sced

The program will respond by typing:

Type "h" for hslp.
0
s*

You can ignore all of this for the time being, except to note that by {yping out the
prompt "s*", sced is indicating its willingness for you to tell it what to do.

4. SPECIFYING NCTES - the Append Command 'a’

A3 our first problem, suppose that we want to compose or transcribe -- from scratch
— the notes making up a score. We shall soon see how these noias can be played,
printed, modified, eic.

5. Sced {a directly based on the UNIX text editor ad, in order to facilitalc user cresg-cver from onme to the

other, One advantage of this similarity is the ability Lo share documentation. This tutorial is besed, with
permission, on that for ed (Xernighan, 1973).

- 80 -

A Tutorial Introduction to SCED

When sced is first started, it is like starting with a blank sheet — there is no score infor-
mation present. This must be supplied by the user. For the time being we will assume
that the notes are to be typed in, cne-by-one.

First a bit of terminology. In sced jargon, the score being worked on is said tc be "kept
in a buffer.” Think of this buffler as a work space; a scratch.pad, or simply as the infor-
mation which you are going to be editing. In eflect, the buffer is like a piace of
manuscript paper on which we compose material, then modify some of if, and which is
finally filed away until a later work session.

The user tells sced what to do by typing instructions called "commands.” As has already
been stated, sced indicates its willingness to receive a command by issuing the "s*”
prompt. Most of the commands which may be typed by the user consist of a single
letter, which must be typed in lower case. {As we progress, we shall see the introduc-
tion of certain multi-letier commands, as well:as the use of qualifying prefixes and
suffixes which extend the power of most commands.)

The first command is append, written as the letter
a

all by itself. It means "append (or add) notes to the buffer as I type them in.” You will
know that the program has understood the "a” coaunand I il responds will

M

which is a prompt indicating that you can "splice!’ notes into the buffer.

We now need to examine the format in which a note’s data is typed in. Tet us take the
example of a simple C major scale, starting on middle C. (Non-traditionalists: don't
panic —we’'ll get to how to write "funny stuff’ shortly.) To entzr the scale, we need only

type "a" (for append), and then enter the note data as follows:

s* &

a
[#]
aQ

Mrmumuwn @l
o moa @

7/}
*

There are several points to.note in this example. First, the append command (the first
line) must appear on a line by itself. Second, the data for each note must also be on a
separate line. Third, the only way to stop appending is to'type a line that contains a
period, only (the last line of the example). The "." is used to tell sced that we have
finished appending., Sced will then respond by issuing the "s*" prompt indicating its
willingness to again accept a command from the user. Note alsoc that the "a” in the
seventh line of the example:'is unambiguous. It is the note "a4", not the command "a",
since no command can be issued after the original append until the ".” i3 encountered.
Sced is clearly expecting note data, not commands. This is unambiguous to the user as

8. In the example, the "s*" and ''3:" prompts are typed by the computer. They have been included in this

example for clarity. In all subsequent examples, the prompts will be omitted, The reader should keep in
mind, however, that they are always printed ‘in the actual program.

-81 -

APPENDIX C

well. When expecting commands, sced. outputs the "s*"” prompt, whereas when append-
ing it outputs "s:", which indicates that notes are-being "spliced” onto the buffer.

Finaily, notice that only the Cs have explicit octave markings {c4 for the first, c5 for
the. Iast).7 The ather notes:could have just as correctly been written "d4", "e4”, eic.,
however, a convention of the program is that when aspects of a note are left
unspecified, some value is implicitly assumed. In the case of octave, the octave
assumed is that of the last explicitly specified octave. Therefore, all notes in the exam-
ple (except for the last) are in the 4th octave. (This ability to have note data assume
values implicitly is one of the most important properties of the program. It makes the
program both easier to learn, and to use. We shall see more of this as we progress.)

5. LISTENING TO A SCORE - the. Listen Commanrd ‘1’

After we ars finished with the append command, the buffer contains the eight notes
of the scale. The "a" command and the "." are not there, as they are not note data. We
cen now play what we have written by using another command "1” (lower case L), for
listen, or play. The way this is accomplished is by typing:

*t

Notice that the "1 cornmand is prefixed by an asterisk character, which must be typed
by the user. This means "play everything”. The asterisk is not to be confused with the
prompt "s*". (We shall go into the """ command in more detail shortly:)

At the end of the performance, the "' command prints out the last note played. You
will notice that there iz more information there than you specified -- information such
as duration, volume, and orchestration. For the time being just recognise that this
information gets defined nevertheless. This is the phenomenon which we have already
seen with regards to octave. Stay with us, and we will scon get to how to control all of
these other aspects of the score.

To splice more notes to the end of our "score”, we must {ype the "a" command again
and begin entering note data. Thus, we could add two new notes to our score and play
the new result by typing:

fa#

c
“

The new notes will be "spliced” on to the end of the score in the bufer. Note that we
bad to specify the 4th octave for the f#; otherwise the cctave would have been the 5th,
since that was the octave of the last note entered. Note also that sharps ar= specified
by the number sign "#"', and flats are specified by lower case 3, "b", The cectave can
range from O through 10, and the proper ordering (according to the Acoustical Society
of America Standard) is pitch-class, cctave, accidental. "

8. ERROR MESSAGES
If at any time 'you make an errorin the commands you type Lo sced, il will Lell you
by typing: _ -
?

7. Note that c4 is Interpreted as € in the 4th octave, that is, middle C.

-82 -

2

0 =

A Tutorial Introduction to SCED

This is about as cryptic as can be, but with practice (and sorme information that you do
not yet possess) you can usually figure out how you goofed. Inside of the append com-
mand, however, the error messages are usually more helpful, and the program
attempts to tell you where you went wrong. We will see more of this later on.

7. LEAVING sced - the Quit Command 'g’

To terminate a session with sced, type the command
q
which stands for quit. The program will then respond with the message:
Type "% to exit.
This is a safety catch to keep you from leaving the program prematurely, and inadver-
tently losing the work which you have done. (A means of saving work from session to
session will be imtroduced shortly.) If you are ready to exit, simply type

X

The system will respond with "%", and your work will vanish. If you type anything else
besides "x", sced will resume functioning, leaving your work intact. You can then issue
any command such as "1", "a", or "q".

EXERCISE 1:

Enter sced and create 2

43

imple scores using:

a
(some notes]

Play the score, add some more notes using "a”, and play the new results.

8. PRINTING . THE.BUFFER CONTENTS - the Print Coammand 'p’

To print the contents of the buffer (or parts of it) on the terminal, we use the com-
mand:

P

Since the buffer oftan contains a large number of notes, and we may only want to print
a few of them, we will explain the use of "p" so as to allow you to control what is Lo be
printed. To do so, consider. the notes of the score in the buffer to be numbered from
one on, starting at the beginning. Then, all we have to dois tell "p" - by referring to
note numbers -- where to-begin, and where to:end. This we do by typing the start
number, a comma, the end:number, and the command "p”. Thus, to print the first two
notes of the buffer (that is, notes one and two), we would type:

1,2p

It we were editing our original file "junk”, sced weuld respond with:

CTE PITCH FREQ DUR OBJECT VOL DELAY CHAN
cd 261 1/4 default_obi 130 1,/4 1
d4 293 1/4 default_obj 190 1,/4 1

APPENDIX C

{Again, as noted before, there is more information printed out than we explicilly
specified. Don’t worry. We will gst to it soon. For the timse being, consider it a carrot
being dangled in front of you to motivate you to push through the tutorial.)

Suppose we want to print all the notes in the buffer. If there were 10 notes, we could
use

1,10p

However, in general we do not know exactly how many notes there are; Sced provides a
shorthand symbol meaning."'note number of the last note in the buffer.” This is the dol-

(321

lar sign "$". Use it this way:
L3p

This will always print out every note in the buffer, regardless of the number.

Since you often see what you want before printing is finished (for example if you ar=
looking for a particular part in the score), and since in such cases it is tiresome walting
for the printing te finish, sced provides a mechanism to interupt the printing, and get
back to editing.. This is accomplished by hitting the key on your terminal labelled
"RUBQUT" ("DELETE" or "DEL" on some terminals).

Returning to "p", to print the last note of the bufer; we could use:
3.8p
but sced allows us to abbreviate this to:

$p

This can be generalized to say that if only a single number is specified (rather than
both a begin and an snd number), then the command will operate on one note only -
the note whose number was: specified.. Thus, we can print the Sfth note by typing:

5p
or the second note by typing:

2p

In fact, sced will'allow us to.abbreviate cven furthers as long as we specify the numbers
of the note(s) to be printed, we can omit the "p". Thus, each of the following pairs of
examples are equivalent:

1.%3p
1%

5,7p
5,7

A Tutorial Introduction to SCED

EXERCISE 2:

As before, create a short score using the append command, and experimment with the
"p" command. You will find, for example, that you cannot print note zero ("0"), or a
line beyond the end of the buffer. Also, attempis to print the buffer in reverse order:
such as:

3,1p

-

do not work.

9., PLAYING THE SCORE - More on the 'I' Command

We have already seen how to play the entire buffer using the {isfien command 1",
However, the command has the same type of exibility as the "p" command, and very
similar usage. Thus, typing:

3,81
will play notes three through six, and both

*l

1,51

will cause the: entire buffer to be played. (The asterisk is seen to be a generally: appli-
cable abbreviation. for "1,§". Try it in combination with "p" to verify that it works
there, as well.)

Finally, typing:
2l

- would cause just the second note in- the bufler to be played. Note again that when
finished, "1" causes. the last note played to be printed out on the {erminal.

10.. SCOPE - Cansalidating a Cancepl

We have now seen how the effect of two commands ("p" and "1") can be limited to a
specified sub-set:of the bufler. This facility is an exteremely important feature of sced,
in that it allows us to address ourselves in the editing process to that part of the score
which 13 of current concern. Thus, for example, if we are orchestrating a certain
chord, we can listen to or examine that chord, and that chord alone: We are not res-
tricted to working on the sntire score, or individual notes. We can address curselves to
the score "chunk-by-chunk', where sced provides us with a means of defining what con-
stitutes a "chunk”. We rafer to this feature as controlling the scope of commands. [t is
a feature which can be applied tc many other commands besides "p" and "1", and we
shall increasingly see how it enables us to express our desires in a concise and direct
way.

11. THE CURRENT NOTE - ‘Dot’ or ')’

Suppose that our buffer contains the eight notes of a C major scale (starting on c4),
and that we have just typed:

1.3p

-85 -

APPENDIX C

After sced has printed out the three notes, try typing just

p
This will print:

NOTE PITCH FREQ DUR QBJECT VoL DELAY CHAN
3 ed 329 1/4 default__obj 190 1/4 1

which is the data of the third note in the buffer. In fact, it is the last (most recent)
note that we have done anything with. (We just printed it in the previous example!) We
can repeat this "p"’ command without line numbers, and it will continue to print just
note three. The reason is that sced keeps track of the last note that we did anything to
(in this case note three). It does this.is so that we do not always have to type an expli-
cit note number when exscuting a command. We refer to this "most recently used”
note as the curreni note, As an abbreviation for this current note we use the shorthand
symbol ".", so we:usually refer to the current note as dot.

Dot is a note number in the same way that "$" is; it means "the current note", or
loosely, "the note which we most recently did something to.” We can:use it in several
ways. One possibility is to say:

-8p

which will print out all notes from the current note to the. last nots, inclusive. In our
case, these would be notes:three through eight, and the fcllowing example would have
exacily the same effect:

3,8p

We have said generally that dot is defined as the last nots that we did something teo.
Well, this is true, but in working with sced it isimportant to be continually aware of
what affect a certain command will have on dot.. If dot is intended as a convenience to
allow things to be understood implicitly, it is important that both you and the program
agree on what has been left unsaid! This is especially true since some commands have
a slightly different effect on dot than:others. Most cases are easy to remember, and
"'make sense'; but just in case you are ever confused, or not sure, you can always find
out the current value of dot by typing:

which following thc previous example would respond with
8

since the last note printed was the last note in the buffer: number eight. While we're at
it, we can also explain how to ask sced what it using for the value of the "§" abbrevia-
tion. We use exactly the same mechanism of typing the abbraviation followed by the
equals sign:

G

Note that this is also a simple way of finding out how many notes are in the buffer,
something that can be determined by alternatively typing:

288 -

A Tutorial Introduction to SCED

Now the last example, typing the equal sign to find out how many notes are in the
bufler, is an example of an operation which does not change dot. As we said earlier,
though, this is easy to remember, since it makes sense: the "=" did not realy affect any
note, so the last note affected has not changed. However, suppaose that the curresnt
velue of dot is three. What happens if we type the 1" cornmand like this:

1

without any explicit scope? If "I'" behaved like "p", it would just play the third note;
however, that is not the case. As a result of comments made by users of sced, when “1"
is typed alone, the program plays the current note, but then keeps on playing until
either the end of the scors, or until the RUBOUT key is depressed. ln either case, fol-
lowing playing, dot is set to the last note played. If you just want to play the current
note, that.ls easy. Just type:

A1

(If however, you want the "l" command to behave the same way as ""p", you can tell sced
by typing the command "lm", which means "switch the listening mode”. You can
always switch back by typing "lm" a second time.)

Let's lock at some other examples. One frequent use of dot would be in cembination
like:

A43p
or equivalently

+3
which means "print the third note after dot". Having done so, sced will advance dot
Vhires notes, to correspond to the last note printed..

We can also type:
~11

which would play the note previous to dot (and consequently change ‘dot as well). Or,
we could type:

A1
or simply
+1

which would advance dot one line and print it out. This particular operation, which is
often used in "stepping through' scores ncte-by-note can be alternatively efected by
typing a blank line: that is, just push the "RETURN" button without typing anything.
This second way of advancing dot by one has the added atiribute thal it does not print
out the header line, which lists the meaning of the note flelds. This speeds things up,
and follows the general axiom that “sed shalt not.run off at the mouth.”

At this stage, we can introduce yet another abbreviation: "4". This is useful when we
want to set the scope to be "dot plus the twenty notes following,” twenty being: about
Lhe number of lines that can comfortably be viewed on a display. Thus,

-87-

APPENDIX C
&
. +20
. +20p
&p

are all equivalent (with onerexception: if there are not 20 notes following dot then using
"&" will not cause an error;:rather, it will assume.the value ., 3").

SUMMARY OF SCOPE SYMBOLS

- the current note:

g - the last note in buffer

* - same as "1,3"

& - essentially the same as ".,+20"

= - print note number of dot

$= - print number of last note

= - print number of notes in buffer (same.as $=)
RETURN - advance dot 1 note and print (same as +1p)

EXERCISE 3:

Use a combination of the "a", "p", and "I" commands and axplore what effect difTerent
operations have .on dot. What happens to dot when you hit "RUBQUT” while you are
orinting or playing? Use ".=" to see if sed’s opinion of where dot should be corresponds
with your.own.

Note what happens if you change dot and then go into append. What is the reiationship
vetween dot and append? What happens if you try either of the {ollowing:

3a
or
3,5a

Once you figure that out, try and put a new note.in front of the Arst note in the bufler,
Try this:

Ca
[new note]

.

ip

Try again using the insert command "i". {You add note data in "i” in the same way as
with "a".) Try this:

1i
(new note]

1,2p

What then is the difference between "a" and "i"? Think of your answer in terms of dot.

-88 -

A Tutorial Intrnduction to SCED

12. MORE ON APPEND - Details on Notes

In specifying notes thus far, we have only explicitly defined pitch values, leaving all
other attributes to assume values implicitly assigned by sced. We can, however, use the
append command "a" to be as explicit as we want as to the characteristics of each
note. The aspects of timbre, duration, loudness;. rhythm, and pitch/fraquency can all
be specified explicitly. Furthermore, we shall see in a later section how these atliri-
butes can be easily changes or modified.

The more complete description of the line specifying a note using "a" could be sum-
marized as follows:

[pitch/freg], [dur], [object], [vol], [delay], [channel]

where cach itcm in squarc trackets represents the Aeld {or position) where a particu-
lar note attribute can be specified. The fields are summarized as follows:

SUMMARY OF NOTE FIELDS

pitch/freq - the piteh, or frequency

dur - the note duration

object - the note timbre, or instrument.

vol - the note volume, or ioudness

delay - entry delay: the delay from the. start

of the current note until the start of
the next note. Effectively controls
rhythm.

chapnel - the output channel to which the
sound of the note will be routed

As has already been seen, each field does not have to be specified. If we want to specify
a note fuily, we could type::

a
a4, 1/4, default_obj, 190; 1,4, 1

We will explain momentarily the precise meaning of each of the values specified. For
the moment, let it. suffice that what we have specified is a quarter note sine wave at
concert A pitch, at about mf. Now if.we only cared about the pitch and the channel
number, we could have just as easily specified the note as:

a49| ll"l

The felds left unspecified assume implicit values as has been seen already, but note
that the commas. are important.in informing the program that the "1" refers ta chan-
nel number. Of course, trailing comnras convey no information, so they can be cmitted
as was seen in our very first example with the C major scale, or in the following exam-
ple:

¢3,.trumpet

«where all we wanied Lo specify was the pitch amd the timbre trumpet”). So. we can
see that it is important to memorize the order of the parameter Selds, and to recog-
nize that attributes can be left unspecified, that commas are important, but that

- 8G -
o

APPENDIX C

trailing commas can be omitted. Now let’s lock at sach parameter field and sze how
values are specified by the user, and how unspecified values are derived.

12.1 Pitch/Prequency

m
CD

The highness or lowness of a nots may be sxpressed in terms "f either frequency
or pitch, In specifying frequency, valnes must be given as positive in *-cev within the
range of 0 and 25000. These values are interprsted as Hz. If pitch is specified, values
are specified according to Acoustical Society of America Standards, as outlined. previ—
ously. The range is from octave 0 through: 10, inclusive.® If frequency is left
unspecified, then that of the last note input is assumed. If the field is left blank with no
previous value having been specifed in the work session, then the vaiue "a4" is
assumed. If octave is left unspecified, then the octave of the last specified nocte is
assumed. Agains if no explicit octave has been specified in the session, the 4th octave
is assumed.

12.2 Duralion

-
¥

Durszticn is expressed in terms of whele notes, and fractional values may be used.
Thus, the fouomng a.ample demonstrates specifying a C major scale with each suc-
cesive note being half the duration of ils predecessor. The first note has a duration of
two whole notes...

b, 1/32
e85, 1/64

.

The longest note which can be specified has a duration of 255 whole notes. The shortest
legal note (aside:from 0) has a duration of 1/255 - whole notes. More generally, specified
as & fraction, the numerator must be. in.the range of 0 to 255, and the denominator in
the range of 1 to 253, Specified as an integer: nur“oer of whole notes, the duration
must be specified within the range of O to 9:)::. Also, fractional values are automalically
reduced to their simplest.form by sced. Thus a duration specified as "2/4" will ce
printed out as the esquivalent "1/2", If duration:is left unspecified, the last explicitly
specified duration is used. If no explicit duration has yet been given in the work ses-
sion, a duration of "1/4" is assumed.

12.3 Object

The object parameter-controls the timbre {or instrument) with which a note is
orchestrated. For this feld, the user is expected to specify to sced the name of an
"object’" file, such as one which would be defined using the program objed. {(Nots that
sced does not allow you to define objects. It just lets you orchestrate notes with objects
which you have defined, or intend to define.) If the name specified is that of an existing
object, then all subsequenk calls to the "1" command will result in that note being per-
formed with the timbre of that object, If at the time of specification there exists no

object of the name given, then sced will perform.that note with a default timbre, a sine

8. In this document:we shall use the terms pitch and frequancy interchangably. The 'p' command lists beth
the pitch and frequency of each note, but beware in deflning pitch by Hz. that the pitch printed is that
which most closely corresponds to the frequency. The pitch indication may, therefore, te up to haif a
semitone out.

- 90 -

A Tutorial Introduction to SCED

wave: however, the moment that an object of that name is subsequently defined, then
the note will be performed by that object. Thus, you can orchestrate before you have
even defined your "orchestra’t

Finally, if the cbject is not specificd; then the last explicitly specified object will be
assumed. If there has not yet been an object explicitly. specified, then the object
"default_obj" (a sine wave) will be assumed.

12.4 Yolume

Volume is specifed as a positive integer within the range of 0 to 255. A marking of
zero is inaudible, and 255 is the maximum. A volume setting of 190 is about "normal”
(mf), and a change of volume of 15 to 20 results in a change of about one dynamic
marking. Left unspecified, the last explicitly given volume is assumed. [f no volume
has yet been explicitly specified in the session, a.value of 180" is assumed.

12.5 Delay

We now get into an important, but {for some) difficult, distinction. That is the
difference between duration and emiry delay. Duration (as controlled by parameter
two), is simply the specification of how long a note will last once it has started. Eniry
delay is the length of the period between the start of the current note, and the start of
the one which follows. (The interval between attack points or "attack-point rhythm".)
Both are specified in the same way: as whole notes, or fractions of whole notes. Up
until now, we have not had any confusion between the two, since we have been treating
them as the sams thing, One conmsequence of that is that sach note specified thus far
has started right at the end of the precseding note. Enlry delay and duration have
been the same, and consequently all of the resulting material has been made up of
monophonic melodies.

What happens, then, if we want to play a chord (let us say a fourth chord on c4) using
sed? All we have to do is specify the duraticn of the chord, the pitches, and ensure
that there is no delay between the start of the notes making up the chord. Typing the
following will do the job just fine:

. a
c4, 1/2,,,0
10000
bb,.,.0
ebd

o
“p

Defining; playing, and printing the chord as shown demonstrates geveral important
points. First, we really do get a four veice chord. Seceond, the duratinn specified for
the first note (*1/2") was implicitly carried over-to the other notes. Third, we are rem-
inded that lower case "B" represents "fiat" (and "#" for "sharp"). Fourth, we see that
notes specified as flats are printed as their enharmonic "sharp' equivalents. Finally,
we notice that unlike all other parameters, when delay is not explicitly defined (as in
the final note), it does not assume the: delay of the previous note. Rather, it assumes a
value equal to the duration of the current note! This presents somewhat of a bias
towards melodic: writing, but it will be:seen that there are other mechanisms in sced to
counterbalance this bias.

Before leaving delay, let us work through ons other example. Let us. assume that the
previously defined fourth chord is still in the buffer. Let us follow it with an arpeggi-

ated version of the same chord an octave lower. This we can do as followsy

-91-

APPENDIX C

a

e3, 1/2,,,1/32
£,,.1/32

bb,,., 1,32
eb4

*p
*

This example demonstrates once again {for good measure) that the delay must be
explicitly specified if it is ta be different than the duration.

12.6 Channel

The synthesizer has four audio output channels, numbersd one through four. any
note may come out of one {and only one} of these outputs. (Fancy mixing is controlled
by the distribution network which is not afected by sced.) Therefore, for this feld the
user specifies an inleger in the range of one to four to indicate the output channel
desired. If no chanrel has been explicitly specified during the session, channel "1" is
assumed. Otherwise, the last explicitly defined channel is assumed.

12.7 Rests

With a little: thought, it will be realized that rests can be specified by having notes
whose entry delays are longer than their durations. Thus, each of the notes in the fol-
lowing three note melody are eighth notes, separated by eighth note rests:

c4, 1/8,,,1/4
3'4-", .VI//LL-
i

Note that thers is no rest after the final f#. Also, remember that the specifications of
*1 /4" control the time from the start of one event to the start of the next. Therefors,
the duration of the rest is 1/4 - 1/8 = 1/8, since the duration of the first note is 1,/8.

As a convienience to users, however, sced provides an alternative means of
rests when typing in note data. One simply types an "r” followed by the rss
Thus the next example hag exactly the same effect as the previous one:

c4, 1/8
:‘1/8

e

I'l_/"8

f#

Duplicate this example and print out the resultsi You will see that no-entity is created
which corresponds to a rest. Using "r” simply causes the value specified to be added to
the entry delay of the preceeding note. Thus, a little thought will explain why you can-
not. begin a score with a rest. Also, notice that there is no space between the "r" and
the rest value. Finally, the duration of the rest must be specified. No implicit values
are assumed. Alsp, the default note duration is not affected by ihe rest duration.

EXERCISE 4:

Now you know encugh to let your creative urges:go wild! Try and transcribe some sim-
ple melodies, using different dynamiecs and timbres. Try also Lo transcribe some homo-
phonic {chord) progressicns. How do you manage with two part counterpoint? Weork on

all of the above until you are fully comfortable with the "a" command. Frequently print

-92 -

A Tutorial Introduction to SCED

and play the material which you are generating to verify that you are:getting what you
think you are.specifying.

13, SAVING SCORE.FILES - The Write Corpmand 'w

We are now at a point where we know enough to compose material which is worth
saving. This means expending some effort on administrative, rather than musical, con-
cerns. Hopefully the musical potential of what has been learned thus far is sufficient
motivation to persevere with this new material,

To save a score {the buffer.contents), we must create a "file” which contains a copy of
the work to be saved. (Files ars the only means to save information. The moment yeu
quit sced, the contents of the suffer itself are lost forever. You are, in effect, throwing
your scratch pad into the garbage.) To write out the contents of the buffer into-a. file,

we use the wrife.command, :

e want the score filed. (This name being refered to
ave our scors in a file named "junk”, for ezxample,

n
€
=
o]
bl
0]
[a)
or
el
or
o2
[U]
ju}
o
(]
'gj
[
a3
1
. |
4
=)
Q
Ly
1] ‘:-jl

w junk

This will copy the buffer's contents into the the specified file ("junk’), thereby destroy-
ing any previous:information which might have been filed under thal name. Remember
to leave a space between the "w' and the file name.

Sced will respond to the write command by printing the number of notes saved. If we
were saving a major scale, sced would respond with

8

indicating that there were eight notes.in the score saved.

Writing a file just makes a copy of the score — the buffer's contents are not disturbed.
so we can go on adding notes to it. This is an important point. Sced at ail times.works
on a copy of a file, not the fle itself. No change in the dle takes place until you give a
"w command. (Writing out your score inito a file from time o time as it is being
created is a good idea, since if the system crashes or if you maka some horrible mis-
take you will have a backup copy on file, even though the entire contents of the buffer
may be lost.)

An important aspect of the "w' command is that it allows partial scores Lo e saved
through the specification of scope. THus, we could save the first three notes of a score
independently in a file called "motif’, as follows:

1,3w motif

In so doing, we have created a new scors which has been:'"cloned” {rom the current
~ £

buffer contents, but without changing the buffer.

EXERCISE 5:

Enter sced and create a simple score using:

.93 .

APPENDIX C

Write it out using "w". Then leave sced using the "g’ command. Print out your score
and play it to verify that everything werked. Note, to print a score, use the command
"pscore” whose usage is:

pscore <scorename>

and to play the score, use the command "play” whose usage:is:
play <scorenamme>

Thus, with a score named "junk’” you should type the commands:
pscore junk

play junk
(Remember that you can only type these commands in response to the "%" prompt by
the system. For more delailed documentation on pscore and play, see the appropriate
entries in the SSSF Users Manual.) Now try the same thing, this time experimenting
with limiting the scope of the write command, thereby saving isolated parts of the
buffer.

14, READING SCOEES FROM A FILE'- the Edit Command ‘¢’

Besides typing using the “a” command, a common way to get score material into
the buffer is to read it from an existing score file. This is what you do in order to edit a
score which you have saved: with the "w'" command. The edif command "2" fatchas the
entire contents of a file, and puts it into a fresh bufer. (That is, regardless of what the
puffer previcusly contained, after executing the "e" command, the buffer will contain
the data of the score fetched, and only the data of the scors fetched. The previous

A

contents of the buffer are lost undess previously saved using "w".j

So, if we had saved our previously defined score "junk” (the 10 note version of a scale],
the commanad:

e junk

(when called from within sed) would fetch the entire contents of the file into the buffer,
and respond by printing:

10
which is'the number of notes in the secore "junk'™ which was read in. Remember if any-
thing was already in the bujfer, it is deleted first!

If we use the "e" command to read a file into the cuffer, then we need not use a file
name after a subsequent "w” command: sced remembers the last fle name used in an
"e" command, so if no explicit file is specified to the "#'" command, then this is Lthe Ale
name assumed. An example of this would be as follows:

sced

e junk

[editing session]
“'

4

where the "w'" command saves the buffer under the file name "iunk", aven though it was

A Tutorial Introduction to SCED
not explicitly specified to "w'".

15. MORE ON MAMES - the File Cammand ‘T

We have just seen how the "e" command can cause the buffer to be impiicitly asso-
ciated with a particular file name for the purposes of saving the score using "w'. At any
time, you can find out thername of the file which sced is associating with the buffer.
This you do.using the file command "f". ‘In our case, if we typed:

junk

However, in cases -- such in our earliest examples — where thereis no'name yet associ-
ated with the buffer, then typing the "{" will result in the reply

f?

which says that there'is no file name known to sczd.

In cases where no file name has yet been specified, it is important to note that the first
{(and only the first) time a mame is given with toe "w” command, thal name becomes
asscciated with the buffer.

Finally, verify that 'f can be used to (re)set the name associated with the score baing
edited, when used as in the following example:

f lumpy

Lu; 1A RCZSE B

Experiment with the "e”, "f", and "w" commands. Try reading, writing, and printing
= - N - - = - =
various files: You may get an error: "?", typically because you speiled a fle name
wrong. Verify that

sced junk
is exactly equivalent to.

sced
e junk

16.. ¥iX, SPLICE AND THE JOIN MODE

In working through exercise four, it was probably noted that while mslcdic {and to
a lesser degree chordal) structures were relatively easy to define, multi-voice counter-
point was not. This is due to the fact that you have to define in cne stream (at the ter-
minal) semething which is. essentialy conceived as being in two or more streams. It
would be far more "natural’ from a musical standpoint to enter each voice separately,
and have them "merge’ or "line up” on their own. Sced allows us to do just that.

So far (using "a" and "{"), the notes which we have been adding have been spliced into
the buffer. If, for example, we added a new note betwsen two other notes, 1 notes fcl-
lowing the first would be "pushed back” in time by an amount equivalent to the new
note’s entry delay. This is much like cutting a piece of magnetic recording lape aad
splicing in a new chunk of material. The fact that w= have been splicing has always

-95 -

APPENDIX C

been indicated to us by the."s" in the promps "s*" and "s:"..

Instead of splicing, sced will allow us to "mix” new material in with that previously
defined. "Mix"” and "splice” are the alternative join modes, and we can switch from one
to the other by typing the command "jm". {Note that 'jm' may be typed while adding
notes, as in 'a’, or any time a command such as 'p’ is legal.) Thersfors, to add a new
voice we need only go to that location in the existing material where the new voice is to
start, go into input mode ("a" or "i"}, switch the join mode to "mix", and begin adding
notes. Let's take a simple exawmple.: We have a C ruajor triad ascending in quarter
actes dafined as follows (for purposcs of clarity, prompts are shown):

Zsced junk
s*a

sicd, 1/4
s:ie

sig

s:.

s*;

Note that the buffer contains oniy the triad. We now add a second voice which consists
of five notes descending the scale from G. We want the second voice o beginn synchkro-
nously to the second note of the triad.: This is all done as follows:

s*2a
sijm
m:g, 1/8
m:f

m:e

m:d

m:e, 1,/4
m:.

m*

Note that we specified that we wanted to begin on the second note by pre=ceeding "a

with a "2". We then switched to mix mode, as reflected by the 'm’ in the subsequent

prompts. Perhaps most important, we ware able to define the new voice just in terms

of itself. We could ignore the entry delays eéc. of the previous voice. Nevertheless, if

we look at the resulting scors, we will see that sced has been doing a bit of work kesp-

ing track of who gets played when. The new composite score resulting from the above
xample would print cut as follows:

NOTE PITCH FREG DUR OBJECT VOL DELAY CHAN
1 cd 261 1/4 default_obj 180 1/4 1
2: ed 329 1/4 default_obj 190 0/1 1
3 g4 391 1/8 default_obj 180 1/8 1
4; f4. 348 1/8 default__obj 120 1/8 1
3: ed 328 1/8 default_obj 190 0/1 1
a: g4 391 1/4 default_obj 190 1/8 1
7: d4 293 1/8 default__obj 190 1,/8 1
8: cd 261 1/4 default_obj 190 1/4 1

The above example demonstrates one problem. While the use of mix and splice makes
it easier to input voices, once this is done the new score is still hard to read. All voices
are merged into one stream. While this is what fnaily happens al the ear, il still makes
34 3 = . 3 § foym £ 3 T.ater whan WO TArA™Tt 1 ~ 3

it difficult to see what is happening from the listing. Later, when we want to come in

- 96 -

A Tutorial Introduction to SCED

and make changes, this increasingly becomes a:bother. Be patient. We will soon see
how some of the problem can be eliminatad.
FEXERCISE 7:
Work through the previous example to verify that it sounds:as expected. Now try tran-
scribing some examples of your own. Become as familiar as you can with mixing and
splicing. How, for example, can you start the sscond voice hall way beliwesen two notes
of the previous one? Does the use of a."rest” help? Also, what happens when you switeh
from mix to splice "mid-stream’?

17. DELETING NOTES - the Delete Command 'd’

We have now become rather preficient in defining material. Now lets look at how to
delete soms of it. To do so we indicate which note, or notes, are to be deletad, and exe-
cute the delete command "d". Specification of scope with "d” is just the same as with
"r'". Thus,

d
alone céuses dot:to be deleted,
4d
would cause note:-four to be deleted, and both
*d
and
1,5d

would cause the whole buffer to be deleted.

When "d” is used, dot is set.to the naote which. follcwed the last nots deleted. In the fol-
lowing example: .

3.8d

dot would be set to what was previously the seventh note, but which is now (due to the
deletion) the third note. If the last note decleted was the last note of the score, how-
aver, then dot is:sst to what becomes the new last note.

We still have one:problem. What happens to any "hole” that appears in the music. as the
result of a deletion? If the mode is splice, then the deleted material is "cut out”, and
the material which follows shifts over. to "fll in” the hole. If the mode is mix, the hols
remains as a rast. All remaining notes maintain the same temporal relationships as
they had before,.

As a convenience; you can avoid using "'jm" and set the mode in which scmething will be
deleted by following the delete command with a "s" or a "d". This is shown in the follow-
ing example:

1,3d s

Remember to leave the space between the "d” and the mode indicator. Also, the "d”
and the mode indicator must appear on the same line,

-97-

APPENDIX C

Finally, to enable you to cut down on typing, there exists.a compound version of "4"
which prints out dot following the deletion. This is specified as "dp", and the following
are a couple examples of its use:

adp
and
4,8dpm
Note there is no space between the "d" and the "p".

EXERCISE 8:

Work through some examples where you delete notes in both mix and splice modes,
After each deletion, use "p" and "!" to verify that the result was what you intended. Pay
particular attention tv deleting the nole(s) al lhe end of the score, especially in mix
mode. Play the score, then splice somcthing to the cnd. Did you remember that you
had an inaudible rest hanging on the end of the score?

183, ON-LINE HELP - the Help Command 'h’

At most any time in sced, if you are stuck, or want to know what your cptions are,
you can use the help command, which.is executed by typing.

h
When sced is expecting commands to be input, typing "h"” will give you a list of the pos-
sible commands; and a summary of their functicn. (This is the same summary which
appears as the final section: of this tutorial.) If you forget how to play a score, for exam-
ple, type "h’, read the list, and find out.

Qften, however, you are in the middle: of some special task (one which:you may not use
so frequently), and you forget what to do. Again, use the "h"” command. It usually
knows what you are trying {o do, so the kind of information it gives you depends on the
rontext in which il is called. Try typing "h" afier enfering cppend mode, {or exampie.
Among other things, the command will remind you of the order in which note parame-
ters must te specified. TFimally, if the help command doesn't help, then this tutorial or
an experienced user are your only hope. Also, if you have found out what you want, but
"h" ig still running on, just hit RUBOUT. to get back tov where you were.

19. READING SCORES FROY A FILE - the Read Command 't

In contrast to the "e" command, sometimes we want to read a scors file into the
buffer without destroying anything that is already there. This would occur, for exam-
ple, when we want to make a new score which is a combination of one or morse previ-
ously defined sceres. The way in which we do this is to use the read command, "r”. For

b pA ——y -y
axarnple, executing the command:
> g

rjunk

mode of input: mix or splice. This it does by typing
mode:

You are expected to respoad by typing an "s” or an "m”".

-98-

A Tutorial Introduction to SCED

So far sc good, but where is the new material to be added.to the buffer? ln a manner
consistent with other commands, this is done by indicating a singie ncte number as
scope. Thus in splice mode, typing

3r junk

will cause the notes of "junk” to be inserted between the third and fourth notes of the
buffer. In the process, all notes previously following the third ncte in the buffer will be
offset in time by an amoumnt equivalent to the total of the eniry delays in "junk”. Nole
that the analogy:of splicing in a chunk is appropriate, and that the contents of the file
"junk" are unaffected by this'process.:

If we ran through the same example, dbut this time having specified mix mode, then the
notes of "junk' would have been merged in with thosc in the tufcer. The relative rala-

tionship among the notes in the buffer (or in "junk") is left intact. The two scores ar=
aligned such that the first note from "junk” starts synchronously with the third ncte of
_ the bufler.

If no explicit note number is specified with "r", then dot is first set to "§", Thisis a spe-
cial case, and should be remembered!

Like the "w" and the "e' commands, "'r" prints the number of notes read in after the
operation is complets. This is illustrated in the following example, where we assume
that the fle "junk” contains 10 notes:

e junlic
10

r junk
mode: 3
10

The above is an example of dot being automatically set to "$" by the "r" command. The
result is that the buffer, contains two copies of the notes of "junk”, in the form of a
repeat. {Note that afier the second copy of junk is read in that the number 10 is
printed, not 20.: Remember: the number indicates how many notes were read in, not
the buffer size.) As a result of using the "r” command, the user who wanted the repeat
has been saved from re-typing the entire section. This is a very powerful aspect of
sced. If you use the "w" operator to create files of reoccuring germinal material which
makes up your score, you.can then use "r" to bring that material into the "master”
score. You can, thersfore, compose.in terms of phrases, or structures, rather than
just notes.

EXERCISE 9:

Write the subject for a simple canon:using sced. Save it using "w", and then copy it
back on top of itself with staggered entries, thereby realizing the canon. Do you use
mix or splice with "r” in this case? Repeat this exercise with a new canon and subject.
Now, make a new score which has an A-B-A structure. where the "A" structure is canen
one, and "B" canon two. Throughout, the only notes which should by typed in are those
of the original subjecls of Lhe cunons. Finally, change your structura to be B-A-B-A by
inscrting a copy of the B secticn in front of the previous ternmary version. Try this
using:

Or B
mode: s

where we assume "B" is the name of the file containing the second canon. You should
be able to carry out the whole exercise without once quitting scsd.

-99 -

APPENDIX C

20. CONTROLLING TEMPO - the Metronome Command ‘'mm'’

By now you may be wondering how to changs the tempo at which a score is per-
formed. Since we have defined all time values rslative to a whole note, this is rather
easy. We need only change-the metronome marking given to the 1" command.

When you enter sced, the metronome marking is.set Lo quarter note = 80; that is, there
are 80 quarter notes a minute. You can verify this with a wateh, or by typing

mm

which will respend by typing out the current metronome marking: To change the
metronome marking, you need only type "mm” followed by the new marking. T/pmc

a

mm 120
will cause the tempe to double, and
mm 30

will cause it Lo be half of the original 80.

The metrenome marking must be specified as a positive integer, and it is important o
realize that only one metronome marking can be specified for a given performance: no
changes are allcwed midway throug

Finally. speeding up the metronome marking in combinaticn with the """ command is 2
good way to find a particular place in a score. It is much like dragging a tape across
the heads of a tape recorder in fast-forward. When you get to the place vou want, just
hit RUBOUT, and sesd will.set dot to equal the last note played. You are now right
arcund wherse you want to be,

21. MODIFYING ATTRIBUTES OF PREVIOUSLY SPECIFIED EVENTS

The attributes of a previousiy specified event, or ncte, can be changed using cne of
two approaches. Firsi, the entire event.can be re-specified using the “change”, or "¢
operator. Alternatively, any single atiribute of an event (such as frequency, volume, or
object) can be individually:re-defined. using one of the "sei” operators. The former
zase requires the entire event to be re-specified. The latier case regquires only the
individual parameter to be changed. Both are described below.

21.1 The Change Camimmand ‘e’ -

In effect, the change command is a combinaticn of two cperators encountersd
previously: delete ("d") and append ('a"). Used alone (without any specific scope), "c”
causes the current note to be deleted, and then automalically sets the program inteo
"{input" mode {that is, the procgram then expects you to input event data in the same
way as done in "a"). The desire for input is indicated by the program through its issu-
ing one of the [ollowing prompts:

justy

which indicate that the input mode is splice or mix, respectively.

The user may now input the event data to replace that of the event being changed. The
repiacement data may be made up of mors than one event. One may continue to input

- 100 -

A Tutorial Introduction to SCED

just as with the "a"” or "i"" operators. (Remember that at any time the join mode may
be changed to mix or splice, or help may be rcquested, by typing "jm", or "h", respec-
tively.)

Like virtually all the operators in sced, the scope of ""¢" can be constrained to afiect a
limited set of events. Thus, the line

3,8¢

would cause events 3 through 8 to be deleted, and replaced by the user specified input.
21.2 The set Commands

The set commands allow specific attributes of previously defined events to be indi-
vidually modified. The names and usage of the set operators are similar to commands
available outside of sced, as part of the SSSP systern. This is as a memory aid to the
user. For users desiring to.work in as terse a mode as possible, abb¥reviations for the
command names are understood by the system. (The novice user should probably
ignore this feature until more familiar with the system.) The operators and their abbre-
viations are summarized in:the following table:

OPERATOR ABBEEVIATIONS

setfreg sf, sfreq, sctpitch, sp, spitch
setdur sdur

sctobj sc, scbj, creh

setvol sv, svol

setdel sdel

setchan 3c, schan

gsettime st, stime

l

Figurc 1. Summary of set cperators

he specificaticn of

All of these operators are sensitive to the constraints imposed by t I
g curresnt event.

scope. If no explicit scope is specified, the commands affsct only

<

cr
Er

Beware of confusing the se¢ operators in sced with those which are generally available
outside of sced. Functionally, they are essentially the same; however, the operators in
sced affect the score currently being edited, not a stored scors. Thersfore, oulside of
sced, the name of the score to be transformed must be explicitly specified. Inside of
sced it is implicit. The difference is illustrated in the following two examples of the use
of setvol (note that the prompt character is printed in these two examples oaly.)

Zsetvol minuet 190
and
*1,5setvol 180

The second example, the one from sced, emphasizes one key advantage of the internal
version: the ability to impose scope on the operator.

There is one more general point to make before:moeving on to a detailed discussion of
the individual sef operators. This concerns the alternative available in most sef com-

ands to either {a) set an attribute of an event {such as its volume) to a specific, abso-
lute value, or (b) set the attribute to a new value which has seme specified relalionship

- 101 -

APPENDIX C

relative to the previous value {(such as 'double the frequency"). From here nn, the
former will be referred to as absoluie mode, and the latter as relafive mode. 'Fhese and
other details ars expanded.upon in the discussion of the individual comrnands.

21.2.1 zetfreq

This operator enables the respecification of the frequency/pitch attribute of one
or morce cvents; in cither absclute or relative terms. I will permit values to be
specified in terms of frequency (Hz, or cycles per second) or pitch (using ASA pitch
notation, eg., a4#), shifting: up or down a fixed number of either cycles per second or
semitones, or transpositionnup or down by arbitrary degrees.

In absoluie mode the usaga:of the operator is:
[scope]setfreq <value>

where the scope is optional, and the value is specified in either cycles. per second (Hz),
or in ASA pitch notation. Hz are expressed as uusigned inlegers wilhin the range of 0
to 25000. ASA pitch notation is expressed as a pitch class (eg., "g" or "a"") followed by
an octave indicator (an integer), followed by any accidental. An example would be
"cd#", which stands for middle ¢ sharp. If the octave specification is omitted, the
octave of the last event previcusly input is assumed. If the accidental is omitted, the
event is assumed to be natural. Sharps are expressed by the number sign "#", and
flats by lower case B "b". The concepts of doubls acxder\tals or key signature are unk-
nown to the program.

Two examples of:the use of absclute mode are as.follows:
setfreq 440
setfreq a4
Both examples have the same effect: changing the pitch of the current event to con-

cert A,

In relctive meds, there are two different ways tn which seifreg can be used. First, it
can be used to shifi the event up or down a fixed.number of either cycles per second or
semifones. Sccond, it can be uscd to scale the existing pitch by a specified factor

Ior purposes of shifting frequency/pitch relative to the existing value, the usags of the
command is expanded as follows:

(scope]setfreq <[signlvaiue{s]>

The sign preceeding the value is either a "+" or a "-", indicating the direction.of the
shift is either up or down, respectively. When prefixed by a sign, the value may be an
mwger only. Suffixing the value with the optional “s” indicates that the value specified
is the number of semxtones that the pitch is to te shifted, or transpused, up or dowr.
If the "s" is - absent, then the value is:interpreted as being the number of Hz that the
frequency is to oe shifted.
Shifting is illustrated in the following two examples:

setfreg +12

3,%8setfreq -12s

In the first example, the frequency of the current note is shifted up 12 Hz. In the
second example, the pitch of all events in the score, from the third event on {due to

A Tutorial Introduction to SCED

the "$"” in the scope), are to be transposed down 12 semitones. In the examples, note
the following points: there is no space between the sign and the value; there is no space
between the value and the "s'; the value must be an integer, as it makes no sense to
say something like "+e4s”. Note also that shifting by semitones does not imply that

either the original or the resulting pitch must correspond to one of the notes of ths
chromatic scale.: For example, if the original note was half-way between c and c# and it

2
was snifted up one semitone, the new resull would fall between c# and d.

By scaling freguency atiributes relative to their previous values, we mean that the pre-
vious value is multiplied cr divided by some user-specified factor. In this case, the
usage of the command is as follows:

[scope]setfreg <[oplvalue>

The optional "op" parameter which prefixes the:value is either a "*" or "'/" character
indicating, respactively, that the frequency is to be multiplied or dividsd by the valuc.
If either the "*' or "/" characters are present, then the value may be spercified as
either an integer {eg., "3") or as a real number (e as a fixed-point fraction such as

(13 " i (3] 1
1.58" or ".333").

Qur first exampie of scaling:

3.3sstirsq /2

since dividing the frequency by 2 is the same as transposing down 12 semitones, the
pitch is transposed down an octave. The same result can be achieved by yst ancther
means, as shown-in the nexi example::

3,8setfreq *.5

Note the use of a fractional value in this exampie. Note also that thara must be no
space between the "* or "/ characters and the:value. Finally, note that il is an:error,
and makes no sense, to follow the valus by an “s” when it {s preceeded oy either a "%

or a /" character,

The usage of the:seifreq operator is summarized in the [cllowing table:

¥MODE PREFIX VALUE SUTRDL
absoiute none Hz. or ASA Pitch nene
rel, shift + or - Hz. or semifones s

rel. scale “or / scale factor N/A

Figure 2. Summary of setirsq usage.

21.2.2 setdur

This operator allows the duration of any one or more events to be set in either
absolute or relative terms. In changing a ncte's duration, however, it is impertant to
remember that nether tempo nor rhythm are really affected; rather, changing a note’s
duration is a question of articulation, making the note more stazcato or legato. Tempo

- 103 -

APPENDIX C

and rhythmic characteristics are controlled using the command setdel, described fol-
lowing setdur. The user concerned with questions of time shouid aisc see the command
seitime. In absoluie mode, the usage of setdur is as follows:

[scope]setdur <value>

where the scope is optional, and the value indicates the duration to which the event is
to be set. The duration is specified just as with the “a” command. That is duraticns ars
specified in terms of whole notes: either fractions (eg.,, "1/2", "2/3", "3/2"), or as
integers. Remember that neither the numerator or denominator of the fraction may
exceed the value 255. Also, the concept of a negative duration is unknown, and there-
fore not.permitted.

Examples of the use of absolute mode:are as follows:
setdur 1/8

which would have the sffect of triplet quarter notes, and
setdur 2/8

which would have the effect of triplet half-notes. Note that both examples would affect
only the current note since no explicit scope was specified.: Note also, that if the svent
affected by the second example were printed out, the duration would. appear as ""1/3",
since the program always reduces fractions to their simplest terms. Finally, if there is
confusion as to why a duration of "1,/8" would result in a triplet quarter note, think for
a mumenl and iL will make. sense: the fraction being expressed is a fraction of a whole
ncte, not a fraction of a beat.

in relaiive mode; one can.either add a constant offset to one or more durations, or
scale them by a specified factor. To change durations by a specified cfiset, usage of
the command is..

where the scope is optional, and the value is the magnitude of the constant offset to be
added to the durations. This offset is specified in exactly the same way as durations in
absolute mode. The presence of the optional sign indicates that the value is, in fact. an
offset. If the signis a"+", the offset is added to the durations. If it is a "-", the value of
the ofset is subtracted from the durations. The following is an example of adding the
duration of an cighth note to all notes' of a score:

*sdur +1/8
This would resuit in the score being performed slightly more legalo. Note Lhal there
must be no space between the sign and the value:

If the command is used to scale durations, its usage is:
[scopelsetdur <[oplvalue>

where the scope is optional, and the cpticnal "op” argument is either a "% or """ char-
acter. When the optional "op" character is present, the value is interpreted as a scal-
ing factor. When the "*' character is presesnt, all durations in the currant scope ars
multiplied by the value. When the "/* character is present, they are divided. by it.
There must be no blank between the "op" character and the value. The vaiue itself may
be expressed as an lnteger, or as a real number (a fixed-point fraction). it may not be

- 104 -

A Tutorial Introduction to SCED

expressed as a fraction.
The following example shows how all duarations fron dot to the end of the buffer could
be halved:

wSsetdur %5

or
w3sdur /2

both of which are equivalent,

Cnc point to note: duc to the existence of both setdur and setdel, the abbreviation "sd”
is ambiguous, and thersfore not allowed.

21.2.3 setobj

This command permils Lhe user to "orchestrate” one or more events with a par-
ticular timbre, or "object'. Unlike most sel commands, sefodj functions in absclute
mode only.

Usage of the operator is a his follows:
[scope]setobj <name>

where the scope is optional, and the name identifies the ooject which is to be associ-
ated with that event. An example of the use of the operator.is:

.gsetobj trumpeatl

which would set all notes from the current event to event 9 to be orchestrated with the
object "trumpetl2”. ‘

In orchestrating events, a few important points should be kept in mind. First, an event
can be orvheslrated with an object even before that object exists, The user need only
specify the. name {(as the name used:in the setobj command) that the object will be
given when it is created. In the meantime, the:system will play that ncte witk some
default timbre, such as a sine wava. Al the moment that the new objcct is defined,
however, the program will use it autornatically when the event is played.

In naming abjects; remember that an object name may nci-begin with a digit (0-9), the
name must not have more than 13 characters. in total, and that thers must be nc
blanks in the name. As the last sxample demonstrated, however; the name may
include digits anywhere but the first character.

21.2.4 setvol

This command allows the volume attribute of events.to be set to some absolute
value, or changed by some specified amount. Volume settings are specified as integers
in the range of 0 to 255, where O is off,. 255 is the maximum, and about 1980 is normal.

In absoluie mode; the usage is:
[scopelsetvol <setting>

where the scope specification is optional, and the volume setting must be an unsigned

integer (no "+ or "-" signs) within the range of 0 to 255. To illustrate, the following two
examples:

setveol 100

APPENDIX C
.setvol 100

have the egquivalent effect of setting the volume of the current event to 100. The next
example: '

5,9setvol 200

would have the effect of setiing the volumes of notes 3 through 8 to 200C.

Relative mode provides a.means of raising or lowering the volume of notecs by a
specified amount. The magnitude of the change is prefaced by a '~ or '+’ sign, indicat-
ing the direction:of the change. .

The use of relative mode is illustrated in the following example:
setvol +20

which would inrease the velume of the current event by 20 units (about one dynamic
marking). The next example:

*setvol -30
illustrates the use of relative mode to. lower the volume of all events in a score (by vir-

tue of the specification of "*" for the scope), by 30 units.

One final point, notz that if an attempt is made to increase the volume of an event
above the maximum (such as increasing an existing setting -of 240 by 30), the value will
be set to the maximum of:255. Similarly, values failing below 0 will be set to U. The
effect can be to lose the dynamic variation of the score, due to this "flatiening-out” of
the dynamics.

21.2.5 setdel

setdel permits exactly the same operations on entry delays as setdur permits on
durations. That is, delays can be set to some absclute value, or changed to some new
value relative to their current one. In relative mode, values may be changed by a con-
stant offset, or scaled by some specified [actor. Again, lhe usage is exactly as with sei-
dur,

21.2.6 setchan

This operator allows an event tobe assigned to a particular audio cutput channel
in sither absolute or relative terms.

In absolute mode, the usage of the operatlor is:

fscopelsetchan <value>
where the scope:is optional and the value indicates the output channei. The value must
be expressed as an integer within the range of 1 to 4. An example of the command's
usage is:

setchan 3

which wiil cause the audio output of the current event to berouted to channel three.

In relative mode; one can specify that the output of an event is to be shifted to some
other channel, relative to the previously specified one. In this case, usage of the com-
mand is as follows:

- 108 -

A Tutorial Introduction to SCED
[scope]setchan <[sign}value>

where the optional sign is either a "+" or "" character, and when prefixed by 2 sign,
the value is interpreted as:an offset indicating the magnitude of the shift. For exam-
ple, if the channel assignment of the current event was 2, then the following command:

setchan +2
would cause it to be changed to 4 (i.e. 2+2). Alternatively, the command
setchan -1

would have caused the channel to be set tol (2-1).

If the value resulting from combining the offset and the previous value results in a.new
value falling outside the range of 1 to 4, then the new valuc ""wraps arsund” in crder to
stay in range. Thus, if the current channel was 3, then all of the following examples
would have the same effect of setting it to 1

setchan -2
setchan +2
satchan -8
setchan 1

As with commands previously seen, the absence or presence of a sign prefixing the
value indicates absolute or relative respectively.. Again, remember that there must not
be a space between the sign and the value.

21.2.7 settime

Settime is a combination of setdur and setdel It allows transformaticns to affect
both aspects of time in the same way at the same time. The usage is exactly the same
as seidur and setdel. In absolute mode, both delay and duration assume the same
specified value. In.relative mode, both delay and duration have the same offset added
to them, or are scaled by the same amount.

EXERCISE 10:

We- have just swallowed a rather large amount. Befors going further, spend some time
experimenting with the sef-commands. Take the B-A-B-A structure from the last exer-
cise. Make the second instance of B much softer and more legato. Make the first ver-
sion of A staccato, and double the tempo of the first. Also, transpose the second ver-
sion of A up a perfect fifth. Finally, having listened to the effect of each change along
the way, now "detune" the.second half of the second B section by adding a constant,
say 15 Hz, to eall frequencies. Make up your own.examples, and exercise on these com-
mands until you are comfortable with them.

22, MORE ON SCOPE: Conditionals

Thus far, note number has been the only criterion according to which the scope of
an operator has been specified. Often, however, we want to address curselves to score
data characterized by other properties. For example, we may want to play all notes
below a certain pitch, or reorchestrate ail notes longer than a quarter note which are
currently orchestrated by some object such as "trumpet”. To do so, we must havs a
means of unabiguously describing to:sced the characteristics identifying those notes
which we want afected by an operator. The sewmanlics of doing so are described below.

The notes that we want affected by an operator can be described in terms of any attri-
bute (or combination of attributes), including its pitch, volume, object, duration; entry

- 107 -

ATTENIIH G o eea
delay, note number, or channel. In effect, we can say "all notes having a pitch of C44",
or "all notes with a loudness between: 90 and 120 which are coming out of channel 3".
To do so, we use an algebraic notation which is: more terse and precise than English.
The notation makes use of: {a) a set of "key words" representing the various note attri-
butes; (b) parameter values; {(c) varicus "relations” (d) miscellaneous punctuation.
The keywords are given below. The note attiribute associated with each is obvious.
{Note that for sach keyword Lhere are varicus abbreviations which are permitied.)

KEYWORD aBBR"" FIATIONS

frequency freq, f, pitch, p

duration dur

ubJuuu ij, o

volume vol, v

delay del

channel : chan, ¢

notenumber number, n, £
The specification of characteristics: deﬁ:*mc. the conditional scope must appear
between curly brackets — "{" and "}" — immediately preceeding the operator. Thus, if
we accept the "= character as being the relation "equal tc", then

{freq = 100{orch trumpet

would have the effect of taking all notes having a frequency of 100 and orchestrating
them with "trumpet”. Other relations besides "equals” can be used in such exprss
sions. The legal options are given below, aicng with their interpretation

RELATION MEANING
= egual Lo
< less than
> greater than
>= greater than or aqual to
<= less than or equal to

not equal to
not (unary negation operator)

(In two character relations the order of the characters is unimportant. Thus "<="
the same as "=<".) The following examples demonstrate the usage of some of these
operators:

{obj i= fredil - play all notes not orchestrated with "fred”
ifreq < cdip - print all notes having a pitch lower than c4
édur = 1/41d - delete all notes which are not guarter notes
f# = 4]p - print note 4 (which is the same as "4p")

Obviously it makes no sense to talk aboul objects being "greater” or "less” than each
other, and

fobj < fredid

would be an error.

- 108 -

A Tutorial Introduction to SCED

Often, the notes. which we want affected by somea operator cannot be fully described in
such simple terms. We can, therefore, make compound relations which are made up of
simple relations; such as those already seen, coaanected by the conjunctions "and”,
“or", and "exclusive or’. The symbols used for these conjunctions are:

CONJUNCTION MEANING
| or
& and

Thus,
{freq > 100 & obj = saxisetchan 3

would cause all notes which had botk a frequency above 100 and which were orches-
trated with "sax’ to have their channei sel lo three,

In complex compound statements, it is often useful to parenthesise clauses in order to
clarify the intended order of operaticns. This is seen in the example:

{(freq < 100 & obj = sax) | (freq > 100 & obj = Aute)il

which could also have been writen:

§({freq<100) & (obj=sax)) | ({freg>100) & (obj=flute))il

Both would play ail "saxes” below 100 Hz., and all "Autes” above 100 Hz. This is because
the scope encompases all notes complying with either the first or second main clauses
of the sxpression. But think about the difference of meaning due tc the use of
parentheses in the following two examples.

{freq=100 & (obj=sax | obj=flute)}d
{(treq=100 & obj=sax) | obj=flutejd
Sometimes it is desirable to describe the notes to be encompassed in the current
scope in terms of some parameter being equal io one in a list of specified values. For

example, we could express.print all notes having a duration of a quarter, eigth, or half
note’ as follows: -

fdur = 1/4, 1/8, 1/2}p

FTach alternative.in the list must be separated by a comma. Such usz of lists can also
be used.in compound expressions. For example,

{{vol < 100) & (obj = flute, trumpet,.sax)jl

which would play all notes having a volume below 100, and which were also orchestrated
with one of the objects "flute”, "trumpet”, or "sax",

3o tar, we have been specifying the scope in terms of who is-to be included. Cften, how-
ever, il is easier Lo idenlily which noles are noé to be afiected by an operator. To do so
we cmpley the unary operator "!” which stands for 'mot”. Its use is seen in the

- 109 -

APPENDIX C
example:
{i{freq=100)id

which would delete all notes whose freguency was not egqual to 100, This example is
rather simple, and the same result could have been obtained by:

{freqi=100]d
The real power of the negaticn operator comes i compound conditions such as:
$i{freq < 100 & obj = sax)ip

which would print 2l notes except for those who wers both below 100 Hz. and orches-
trated with "sax'. There are other ways of specifying the same condition with our nota-
tion, but using the "not” operator is probably the most clear.

Finally, notice that the conditional method of specifying scope allows us to express
exactly the same concepts-as with the previously used unconditional scope. For exam-
ple, the following two exprassions are functicnally identicalr

3,8d
and
(#>=3& #<=8ld

Clearly, the former s more efficient; however, the conditional form is more fAexible as
is seen In the fellowing example which uses the list {eaturs:

f# = 1,3,5,7,39)L

which plays the first five odd-numbered notes. One important point tc note is that the
two netations for scope can he combined. For example:

9iobj=weirdip

would print notes orchestrated with the object "weird” between notes four and nine.
This example illustrates the requirement that the conditional part of the scope must
immediately precead the operator.

Finally, one labour-saving feature of sczd is~that it remembers: the last scope
specification so that it 'can be reused, without being retyped. We do this by leaving the
contents between the curly brackets.blank. Thus, the following two commands affect
the same notes:

ffreq = c4 & dur > 1/4lorch Aute
{isetvol -20

23. SEARCHING

From what we have already seen, we know that we can print out all notes conform-
ing to a particular set of characteristics by using scope and the 'p' command., Often,
however, we just want to find the next note which conforms. We can reguest this by
using slashes (/) to parenthesize the characteristics, rather than curly brackets.
Thus,

- 110 -

A Tutorial Introduction to SCED
/ireq = c4/

will cause the next note of:pitch c4 to be printed. As with regular scope, the pattern
between the slashes is "remembered"”, so

//
will find the next c4 after that, and
{lorch flute

will cause all cd's to be orchestrated with "flute”. (The point here is that the same
"memory" is used for both scope and fthe search pattern: they are intarchangable.)

Finally, there is a notation for finding the last previous note which fts the search pat-
tern. In this case, question marks (?) are used in place of the slashes. An examrpgle

would be:
?dur < 1/327

Experiment with:forward and backward searching until you are comfortable with their
use. ,

24, ESCAPING TO.TEE SHELL - the 'Y Command:

Often when working with sced, you will want to leave the program in order to do
something at the terminal, with the intention of picking-up where you left off once you
are done. You may want to send mail concerning some problem, sxscute some cther
program in the SSSP system, or simply find cut-the time with the date command. In
any case, sced provides a means of femporary escapa which permits you to do all of
these things without ever leaving tha program. This is deone using the "!" command,
which we call the shell operator.

At any time when sced will accept a command (such as "a'"), you can type the command
" followed by the name of the program which you want to execute. Typing

i1s
for exarmple, would cause the current.contents of our directory of files to print out on
the screen. Thus, if we cam’'t remember the name of a particular score, or its spelling,

here is a way to find out.

When the requested command has completad its task, control returns to sced, and to
indicate this fact, the program types out another ™" character. Thus, a compiete list-
ing of the transaction described above would be::

ils

fred

junk
masterpiece
exercisel

trumpet
!

EH

In the example, it was assurmed that there were five files in the dirsctoery.

-111 -

APPENDIX C

25. MOVING NOTES ARQUND - the Meve Command 'm’

The move command "m" is used {or "cutting” and "pasting’ the notes within a
score. It lets you move a group of notes from one place in the buffer to anocther. If we
wanted to cut the second to sixth notes of the score out of the buffer, and move them
so that they will be spliced onloe Lhe =ad, we could do so as [ollows:

2,Bw temp
2.6d s

$r temp
rnode: s

(Do you see why?) We can do the same thing far more easily; however, as follows:
2,6m3

The usage of the-command can be summarized as:
[scopelm[destination]

where the scope specifies what is to be moeved, the "m"” the fact that it is to be moved,
and the destination says to where it is to be moved to. Scope is specified as with "p". or
the other commands seen. When omitted, dot is.assumed. The destination is specified
as a single note number. When omitted, dot is assumed.

Examine the next example:.

3,6m0

cut mode: s
in mode: s
4

Notice that therz is no blank betweerrthe "m" and the destinaticon. Also, the value "Q"
is a legal destination, indicating that the material in question iz to bec moved in front of
the first note of the score. The issue of mixing and splicing now arises once again..
First, are the notes being moved extracted from their previous position in mix or splice
mode? Second, is:the material mixed-or spliced into its new position? The respounse to
"out mode answers the first guestion. and the respcnse:to "in mode” answers th=
second. Either can be answersd by "s" or "m”. Finaly, notice that dot is set to the new
posilion of the last note of the group moved. (We moved four notes and placed them at
the front of the score. Dot is therzfore four:) This can ke verified with the "p" and "\"
cornmands.

26. COPYING SCOURE MATERIAL - the Copy Command *t*

Sometirnes we want to repeat a section of material at a.differsnt point in the score.
Wz have alrzady ssen how we can do so using a combinaticn of "w' and "r"". We can,
however, do so in a more direct manner using the copy command "t (sorry - "¢" is
already used for change). Usage of the command is similar to the "m" command:

[scopelt[destination]

The scope says what is to be copied, the "t" says that it is to be copied; and the dastina-
tion says where it is to be copied to. The only difference between "t” and "m" is that
when we copy, the notes encompassed.by the scope operator ars not deleted. They are
simply copied. Thus, if we want to have a copy of notes three through five mixed in to
the buffer starting at note 10, than the following will dothe trick:

3,5t10
mode: m

Note that the gquestion "mode” is referring to whether the copy should be mixed or
spliced into the buffer. Also, note that "0" is a legal destination with "t”. Finaily, dot is
sct to the new positicn of the last note copied.

EXFRCISE 11:

"

Practice using the "t" and the "m'" commands. Pay particular z
mixing and splicing. Also, see what happens when the destination falls within the range
of the defined scope, as in the following example::

3,8t4

27. SCORCHESTRATICN - the 'secorch’ Command

This command permits the user to "orchestrata’” one or more events. Unlike seiodj
{orch), however, scorch orchestrates notes with:scores rather than objecis. This pro-
cess, which has besn termed muliiplication by Beuleg, is not as strange as it might

gad . ; 5
seem al Orsl, Two exzenples are of use at this point.

Qften, a chord will function: musically. as a single "gestalt”. Itg individual components
“fuse” together into a single new timbre. In such cases it.is reasonable for the com-
poser to want to treat this group of notes as a single entity for purposes of orchiestra-
tion. This can be accomplished using scorck. First, a new score must be crecated which
contains just the chord (orchestrated.as desired). Let us assume that the name of this
chord is "fourth”, and that it has three notes as follows:

-

i

NOTE PITCE FREQ DUR QBJECT VOL DELAY CHAN
1 c4 281 1/4 bssn 180 0/1 1
2: £ 345 1,4 brass 180 0/1 1
3 b4b 4886 1/4 W 120 1/4 1

In addition, let us assume that we have a four note melody, "root”, which we want to
"scorchestrate” with the timbre defined by "fourth”. For purposes of example, let
"roct” be defined as follows:

NOTE PITCH FREQ DUR OBJECT VOL DELAY CHAN
1: cd 281 1/4 default_obj 150 1,4 1
2: 63 2486 1/8 default_obj 100 1,/8 1
a: d4 293 1/8 default_obj 180 1,8 1
4 cd# 277 1/2 default_obj 210 1/2 1

If, while editing "root”, we type
*scorch fourth

we will cause sach notea of "root” to be orchestrated with thea timbre cf the fourth chord
defined in the score "fourth’. The result (in both CMN and sced notation) is as follows:

- 113 -

APPENDIX C

NOTE PITCH FREQ DUR QBJECT VO DELAY CHARN
1: c4 261 1/4 bssn 190 0/1 1
2 fs 345 1/4 brass 120 /1 1
3: b4db 4886 1/4 ww 180 1/4 1
4: b3 248 1,/8 bssn 100 0/1 1
5 ed 328 1/8 Lrass 100 6/1 1
B: at 439 1./8 wwW 100 1/8 1
7: d4 293 1/8 bssn 160 0/1 1
8: g4 391 1,8 brass 180 0/1 1
9: ch 523 1/8 wWw 180 - 1,/8 i
1G: cd# 277 1/2 bssn 210 O/l 1
11: f42 370 1/2 brass 210 0,1 1
12 b4 494 1/2 ww 210 S 1/2 1
1
e I | i[

- a ~7 T o =7 y

). m) VAR AN — LA * T

~ I | X 1=

/ % B - L3 7=
ROO+ FourTLL\ Roofl

As stated, we see that "root” now consists of four fourth chords. There are saveral
details to point out, however. First, notice that the orchestration of each chord has
remained cosistent with that defined in "fourth”. Second, notice that oniy the frst
chord is an exact replica.of "fourth”, and this only by chance. The notes of each
instance of the chord have maintained their relationship relative to one another. How-
ever, as a whole, each chord has been transposed in piteh, time, and loudness: by an
amount determined by the nete being scorchestrated. On reflection, we realize that
this is consistent with the behavior of objects, whose absolute pitch, duration, and loud-
ness are determined by the notes which they orchestrate. With scorch, the way this
works is that the first note of each instance of the (sub) score being used for scorches-
tration is set to have the sama pitch, duration: and volume (not timbre) of the note
being scorchestrated. All other notes:of the sub-scor= ars then adjusted so as to main-
tain their relative relationship with the first. The adjusted sub-score then replaces the
note being scorchestrated. .

In the previous example, notss were scorchestrated with a score consisting of a chor
It is important to realize that the operator also - works if melodie structurss ars uss
Thus, let the following two note structure represent a score-"root” which is carrently i
ae edxtor 3 buffer:

fugl

Lo

o]

— et i = e = - \] i

’ / L
NOTE PITCH FREQ DUR OBJECT VOL | DEJY CHAN
L: c4 281 1 / brass 190 \1/2 1
2: eh 859 1/8 brass 180 1,78)

If it is scorchestrated with a four note arpeggio “arpegg’’ defined as follows:

- 114 -

A Tutorial Introduction to SCED

NOTE PITCE FREQ DUR CBJECT VQT, NELAY CHAN
1: c4 261 1/4 brass 190 1/4 1

2 e4 329 1/4 brass 180 1/4 i

3: g4 3g1 1/4 brass 180 1/4 1
4 ch 323 1/4 brass 190 1/4 1

then the effect on "“root"” will be {notated in both CMN and sced notation):

NOTE PITCH FREQ DUR OBJECT VOL DELAY CHA?
L cd 261 1/4 brass 190 1/4 1

2: ed 329 1/4 brass 190 14 L

3 g4 391 1/4 brass 190 0/1 1

4: ed 529 1/8 brass 190 1/8 1

5 g5 830 1/8 brass 180 1/8 i

8: ch 523 1/4 brass 180 0/1 1

7 bd 987 1/8 brass 180 1/8 1

8: 28 1320 1/8 bIrass 120 /8 1

™ 9
n I N » -
- [7 A [-
A 14 i
7 i
Root Arpegs

Notice that exactly the same process occurs, and that the: instances: of the sub-score
are mized.in with the existing score. Remember alsc that the eflect of scorch can be
restricted to certain notes using scope, just as with.any other command.

Scorchestration is a powerful and useful operator when carefully used. Among other
things, it combines the effect of iz, iransp, tscale, and sefvol into one operator. Work
with it, experimenting witlr simple structures so as to be able to verify that its:effect -
corresponds with your expectations. Try using it to compose a simple canon, a das-
cending sequence of some ornamental figure, and some "Steve Reich” type patiern
viece,

28. REEEARSAL MARXKINGS
It is possible to "mark" specific notes with labels which can function like rehearsal

markings. The command used is 'k'. [t is immediately follawd by one lower-case alpha-
betic character name (such as ‘a’ or 'g’). The following example wiil label ‘dot’ as 'g’

kg
while the next example labels note 7 as 'x’

Tkx
Note the following points. The label is associated with the specific note, not the note
number. If the note is deleted, so is the label. If the number of the note is alterad, the

label remains with the note, regardless. Finally, there is.only one note allowed per
label, hence only one note number can be given as scope to'k',

- 115 -

APPENDIX C

A note label which has been:thus defined, can then be used in any context where a note
number would be legal. The only constraint is that the label must be prefaced by a sin-
gte quote character (’). (How else could sced distinguish between the command 'a’ and
a label of the same name?) An example of the use of this feature would be as follows:

'a.qv’bp
which could be interpreted: as, "print all the notes between rehearsal markings:A and
B.” One point Lo note, these markings are not saved from session to session.

29. MACRCS

It often happens that the same thing is typed over and over during a work session.
When this repeated text is long, this becomes tiresome. There is a feature which allows
any string of Lyped characlers to be saved, associated with a name, and every time
that name appears, it is replaced by the characters that it.represents. Such a feature
is called a "macro”.

In sced, a macro'is defined by specifying the macro name; foilowed by an equals sign
(=), followed by the text to be saved. Two examples would be:

%fred.= {obj = sax] -

Zfrank = d

The second is silly, since the name is longer than the text it represents. Note one rule
that is illustrated, however: All macrc names must begin with the percent character

().

Now, any place that "{obj = sax}" would be legal, we can simply type "%fr=d”. Finally,
more than one macro may appearin a single line, as secn in the following:

Zired Zirank
which is the same as
{obj.= sax]d
Two additional commands are provided to help with book-keeping. The fArst is 'show",

which will print all macro names and their associated text. The second is "eval” which,
followed by a macro name, will print the associatad text.

- 116 -

A Tutorial Introduction to SCED

20. SUMMARY OF COMMANDS
GENERAL
a append (add) new notes m mave notes.
c change note. i redefine metronome.
d delete. jo! print.
dr delete and print. q quit: end edit sessiom.
e edit new score. r read score file.
f redefine file name, scorch scorchestrate scores.
I help 1A copy notes.
L insert new notes. VIIL verbose prompt switch.
jm join mode Mix/Splice. w write (save) score.
i listen: play score. = print note number.
im switch ilsten mode.
SPECIAL

* all notes. (CR] advance dot and print.
<int> set dot. iline Shell escape with line.
& dot through dot + 20.

APPENDING
order fraq, dur, obj, wol, del, chan
r<dur> for r=sts
h for help

MODIFY COMMANDS (with abbreviations)
setfreg sf, sfreq, setpiteh, spiteh, sp
setdur sdur
setobj so, sobj, orch
setvol 3v, 'svol
setdel sdel
setchan sc, schan
settime st, stime
REEEARSAL MABKINGS
Xa "' is command to set morking, fcllowed by single letier
to identify the name of the marking.
'a a defined name preceeded by a single quote mnctlons in
place of note number {in scope for example).
MACROS (OR ABBREVIATIONS)

%Zname = <...> defines "%name"”" as abbreviation for: <...>
Zname evaluate <..> defined as above.
eval <..> extrapolate all macros in <..>
show - list contents of all macros

- 117 -

APPENDIX C

SCOPE (by example)

Key words: freq, dur, obj, vol, del, chan, #
Relations:

RELATION MEANINC
equal to

1 %
WBS3 LaaT

greater than

greater than or egual to

less than or equal to

not equal to

not (unary negation operator)

AV VAN

Cenjuncticns:

CONJUNCTION MEANING
§ or
& and
- exclusive or (one or the other,
but not both)

h gram will cause sxampiles to print oo screen,

SEARCH
frrnnes] print all notes satistying condition
defined in §.....}
/eeaes / print next note satisfying given condilion
Y print previous note satisfying given:.condition

A Tutorial Introduction to PRCD

APPENDIX D - A Tutorial Intreductiion to PROD -

by

Mark Green, Steve Hull ard William Buxton

1. INTRODUCTION

Prod is a program for composing music scores. With the program, the user can
exercise complete control over the music; however, the program also allows for various
compositional decisions being made by the system using "controlled" random
processes. Scores produced using prod are compalible with all other scores and pre-
grams in the SSSP system. That is, scorss generated with prod may be edited with
sced, for example, or combined and transformed like any other score.

One attraction of using prod is that it permits scores to be specified by their underly-
ing structure, rather than note-by-note. This is because the input to the program is a
grammar defining the score's structure. The cutput from prod is a score whose strue-
ture conforms io that grammar. Simply staled, a graunmar is a set of rules (or produc-
tions) which specify the recipe to be followed in putting a score together.

The grammars used in prod may be deterministic, where the score is completely and
explicitly defined by the rules of a particular grammar. Grammars may also be norn-
deterministic, where the score is not completely specified by the grammar. In this
case, prod functions as a composing program. With non-deterministic grammars, pred
makes compositional decisions according {o randem (or stochasiic) processes. prod
provides a means for the user to exercise some control over these random processes
by allowing the composer to specify the alternatives available, and for each alternative,
the relative probability of their being selected. Furthermore, prod enables the usar to
reproduce any score generated by random processes.

2. THE USE CF PROD IV COMFPOSITION
prod is just one of the many tools available to the composer using the SSSP music

system. The composer should use prod only for those parts of the- composition for
which it is best suited. Prod concentrates on two particular composing tasks.

The first of these tasks is the generation of parts or sections of scores in a hisrarchical
fashion. These sections may be used with other composing tools or combined with
other parts of the score which were produced by other composing techniques. The
score sections produced by prod may vary from one or two notes to major compenents
of the piece.

The second composing task involves piecing together the sections of a composition to
produce the final score. Some musicians develop their compositions as a number of
separate sections. This could be the result of using different composing tools or tech-
niques on each section or writing the sections at different times. Through the use of
the "score” feature {see Section 3) prod can be used to combine these diferent sec-
tions into a fAinal score. The grammar for putting together the sections can bz stored
on a file and called up whenever a copy of the final scere is required.

3. PRODUCTIONS

The rules of a- grammar are called productions. A production in a prod grammar is
made up of two parts: a left side and a right side. The right side is the rule for produc-
ing a new structure, or element. The left side is the name of the new element (non~-
Lerrninel) which, resulls from applying this rule:: The two sides of the production are
separated by an "=, and thc cnd of the producticon is signalled &y a ;. As an example,
the following rule states that the non-terminal "exl” is composed of a single note.

- 119 -

APPENDIX D

exl = note ;

This example is complete in itself, and will generate a one note score.

4. SCORE GENTRATICN AND PROD USAGE

In actual practice, prod can be used in two ways. In the first case, usage is:
prod <sccrename>

where "scorename” is the name of the score to be generated by the user-specified
grammar. After invoking the command (including typing RETURN), the user types in
the productions of the grammar. Once all of the productions have been specified, the
user types (on a.new line} CONTROL D by holding down the terminal key labeiled "CTRL"
and typing the letter "d". The new score will be generated and the program will be
exited. Generating and playing the score defined in the first example would therczfore
be as follows (the per cent signs are generated by the computer):

Zprod demo
exl = note;
CTRL D
Zplay demo
%

When the specified grammar has few productions, the above technigue is satisfactory.
However, there is no method to correct or modify productions typed on previous lines.
Also, the grammar is not saved once the score is-generated. To get around these prob-
lems, the best approach is to prepare your grammar 23 a text file defore prod is called.
This can be done using the texi editor ed (Kernighan, 1975b). The grammar can then
ce fed into prod from this text file, rather than oy direct typing. This is seen in the {ol-
lowing example:

%ed gram - start editing the file "gram”
a - enter append mode

exl = note; - enter text defining grammar
leave append mode

1]

< -

save the file by writing to disk
12 - 12 characters written {computer-generated)
q - leave the editor
-

%wprod demo < gram
Z%play demo

Following this usage, notice how the name of the flie containing the grammar appears
as an argument to prod. Mosi importantly, the name of this file must te preceded sy a
left angle bracket <", This indicates that "gram! is being fed into prod.

There is one cther featurs of the text =ditor which facilitates the use of prepared gram-
mars. One need not exit the editor to call prod. The temporary escape feature can be
used by preceding the call to prod with an exclamation mark """, Thus in the previous
example, prod could have been called and "demo' played as soon as the file "gram’ was
written to disk. The commands would have been 23 fcllows:

A Tutorial Introduction to PROD

w
12

iprod demo < gram
t

Iplay demo
i

This example demonstrates how intermediate results can be heard using the play com-
mand. Before progressing any further, try each of lhese procedures usiog the simple
grammar defined by "exl". Furthermore, type in and play the grammars defined in all
future examples.

5. NOTES

In the context.of prod, a.note is the lowest level element in a score structure. Notes,
therefore, are referred to structurally as termincls (notes are not the only terminals:
see Section 9). A production may have more than one note (terminal) on its right-hand
side, thereby resulting in a multi-note score. This we see in:the following example:

ex2 = note note note;

The results can be heard; however they are not espercially interesting. Each note has
the same pitch, volume, duration, and timbre. This is because no specifications con-
cerning these properties have been given in any of the examples seen thus far. Thers-
fore, they were derived automatically from "default” values, which are assumed for
parameters left unspecified by the user. The composer can, however, exercise control

over such parameters,

In the SSSP system, there.are six aspects of a note which can be specified (Buxton,
1978). They are:

o Prequemcy,/Pitch: specified in either cycles-per-secend or Acocustical Society of
America pitch notation {e.g. c4, g3#):

» Duration: specified, as in sced, as any value from 1,/255 to 255 whole notes (e.g. 1/4
for a quartar note);

« Timbre: specified by the name of the odject (instrument) which plays the note;
. Volume: specified as a number between 0 and 265, with 190 being about mf;

« Entry Delay: specified in same way as duration; represents the time delay before
the start of the note which follows, thereby controlling rhythm;

« Channel: one of the four audio output channels.

These six parameters can be specified for each note by appending & list of their values,
enclosed in parentheses, to the ‘note’ symbol. Thus, we can repeal our first example,
but specifying all aspects of the note this time: Note thal the attributes of the note
must be specified in the order given above.'

ex3 = note(c2#, 1/8, chime, 190, 1/8, 0);

It is not necessary for the user to explicitly specify all attributes of a note. Feor exam-

ple a quarter note played by a trumpet at a frequency of 440 hertz could be specified

1. Users familiar with sced will notice that prod uses the same order of parameter specification.

- 121 -

APPENDIX D

as
note(440, 1/4, trumpet)

For parameters left unspecified, the correspending attributes of the preceding note
are carried over. Where an attribute has nct previously been specified (e.g. the first
note of a piece) the corresponding defaull value is assumed from the following list of
default values: a4, 1/4, sine; 190, 1/4, 1. The following production will generate a three
note sequence, with each note having the same duration (1/4), volume (150), and
orchestration {trumpet).

ex4 = note{c4, 1/4, trumpet, 150) note{d4) note(f4});

Alternatively, we can give a similar example in which the timbres vary note-to-note and
all else remains constant.

ex5 = note{z4, 1/4, trumpet, 150) note(,,flute) note(,,sax);

In the example, note that where parameters are left unspecified, the leading commas
must be included tec enable prod to know for what parameter a particular value is
intended.

The entry delay paramester is used for differentiating between chords and meiodies.
This parameter specifies the time delay bebween the start of the current note and the
start of the note immediately following. If the entry delay is zero ('0’, '0/1', etc.), a
chord is formed (i.e. there is no delay between:the start of the current and following
notes). If the entry delay is the same as the duration of the note, then a melody is
formed. Entry delays greater than O but less than the note duration result in overlap-
ping sequences, whereas snpblry delays.longer than the duration result in rasts between
notes. A two note chord is produced by the following producticon

chord = note{c4, 1/8, trumpet,. 100, 0/1)

Pitches can be specified in relative, as well as abseclute, terms. This is shown in the
next example, which is functionally identical to the previous one.

chord = notefc4, 1/8, trumpet, 100, 0/1)
ncte(third(ec4),,,, 1/8); .

The pitch specification of the second note is given as an interval name fcllowed by the
reference pitch {that is, the second note will have a pitch a major third above c4). The
refarance pitch must be enclosed in parentheses. The following tabie lists the intervals
understocd by prod

NAME INTERVAL
third major third
fifth perfect fifth . _
seventh major seventh
octave octave

- 122 -

A Tutorial Introduction to PRCD

8. A NOTE ON TiPING

At this point we can mention the following points regarding the format in which pro-
ductions may be typed in to prod:

- no spaces are needed preceding or following the equal sign (=) which separates the
left and right sides of a production.

. no spaces ars needed preceding the semicolon {;) at the end of a production.

. the elements on the right side of a production must be separated by at least one
space.

« productions need not be typed on a single line: wherever a "blank” may oeccur,
several "blanks”, "tabs', and/or a "return” character (ie. a carriage return) may
occur.

« in any grammar, a particular name may occur once angd only once on the lef{ side of
a production.

« anywhere a number is called for, an arithmetic expression may be used: it can
include any combination of +,- %,/ and parenthieses.

7. HON-TERMINALS

The type of element allowed to appear in the list on the right-hand side of a produc-
tion is not restricted to note terminals. The names of non-terminals, that is, names
appearing on the left-hand side of other productions, may be used as well, either alone
or mixed with other non-terminals or terminals. Fach time the name of a non-terminal
is used in the right-hand side of a production, it serves as an abbreviation for the struc-
ture defined by the production in which it appears as the left-hand side. For example,
we can use one producticn to specify that a compositicn is in A-B-A form:

composition = ABA;

and then define two additional productions which sperify the details of the A" and the
"B" structures. For purposes of simplicity, we present a trivial example of an A-B-4
structure: a simple Plagal Cadence:

A = note(e3,,..0/1)
note(e3,.,.0,1)
note{g3):

B = note{e3,,..0/1)

'

note(f3,.,,0/1)
note(a3);

In the example, note that the default value assumed by the gntry delay parameler is

determined in a different.manner than the default for other parameters. Namely,
when left unspecified, the delay assumes a value equal to the duration of the currcnt
note, rather than the delay of the previous one.

The above three.productions form a grammar which can be used as input to prod. The
resulting I-IV-I cadence is shown in Figure 1. :

The underlying {(or "deep") structure of this particular composition is shown in Figure
2. Diagrawms like this can be constructed from the productions in any grammar. This
type of diagram shows how the whole composition is divided into parts, and the parts
into sub-parts. Each non-terminal in a grammar.is described in terms of the terminals

- - 123 -

APPENDIX D

\

,
D

e
T o
ek
e

Figure 1

and non-terminals from which it is constructed. In the above grammar the non-
lerminal "compesition” is described in terms of the non-terminals "A"” and "B". Each of
these lower level non-terminals is in turn described in terms of its constituent notes.
Descriptions of this type which ars bhassd on differsnt levels of detail are called
Aderarchicel

COMPOSITION
A B A
c3 a3 g3 c3 £3 a3 I3 a3 g3
Figure 2

8. PARAMETER PASSING

In previous examples we used productions to generate chords., In these producticns
the bass note (root) of the chord was fixed. That is, if we wanted cne major chord with
d4 and another with e4 as the root, we would have to write a separate production for
each. To circumvent this problem, there is a way to define productions such that par-
ticular values are not defined until the production is used. For example, we can define
a production which specifies everything about a major chord ezcept its root. If the left
side of such 2 production were called "major’, then the actual root of thaf major chord
would not be defined until "major” was used in the right side of some other preduction.
surthermore, a diferent root may be specified each time "major” appears.

A Tutorial Intreduction to PROD

In such productions, the values which may change each time the production is used are
called parameters. When the production is defined, those filelds (such as pitch or
cbjcet) which are to be parameiricized in this way have their values marked by special
symbols. A production for the non-terminal "major’” described above would be:

major = note{$1, 1/4, trumpet, 150, 0)
note(third($1),,,,0)
note(Ath($1)....0)
note{octave($1),,,,1/4)

Note that each place where the pitch should appear, the special symbol "$1" is used.
This notation is used to tell prod that the specification of the actual pitch is Lo be
deferred until "major” is used. (Note also how the interval functions are used in order
to build up the chord.)

Bach time the non-terminal "major” is used in a production the pitch of the bass note
must be specified. Such a parameter is specified by appending ils value, enclosed
within parenthesis, to the non-terminal symbol when it is used on the right sids of a
oroduction. Note the similarity to specilying lhe paramelers of notes. an example of
the use of the non-terminal "major” is:

series = major(c4) major{d4) major(s4) ;

Each of the pitches used with "majer” in the above example will replace the symbol
#41" when it comes to generating a chord. This will give three different chords all pro-
duced by the same production. The result is seen in Figurs 3.

=T

i
i
4

N

Figure 3

A more general chord production weuld also include parameters for object, duration,
and volume of the chord. The following is such a production

- 125 -

APPENDIX D

major = note($1, &2, §3, %4, 0)
note(thlrd(‘..al),mo)
note{fifth($1),.,.0)
note(octave($1));

The parameters to this production are (in the order in which they must be specified):
pitch ($1), duration (32), object ($3), and volume (%4). Since there is more than one
parameter, there must be some means of distinguishing among them. That is the pur-
pose of the number which follows the "%" sign. The """ ancates that the value is
parametricized, and the number indicates which one. Notice that the parameters
which remain unchanged in all notes of the chord ars explicitly specified for the root
only. It is possible to leave any number of parameters unspecified. In such cases the
corresponding values of the preceding note are used in their places. If one does not
wish to change any parameters, the nen-terminal is simply used without parenthesis.

“Major" could be used in the following way:

series = major{c4, 1/4, trumpet, 190)
major{fd, 1/8, sax, 200)
major{g4, 1/2, piano, 150);

Note that the parameter order specified by the user in the production must be
adhered to when that non-terminal is'used elsewhere, as it {s the only way prod has of
distinguishing the parametsrs,

. THE SCORE TERMINAL

Besides "note”, another terminal which can be used in prod grammars is called
"score”. This terminal is used to include pre-composed scores in the composition
described by the grammar. This terminal has one parameter, the name of the score to
te inciuded. If we had two:scores, "parta” and "partd”, and we wanted to use them to
produce a new score with the structure A-B-A the following grammar could be uzsed:

compesitien = AB A,
A = score{parta);
B = score{partb);

cr

The score referenced by a “score” terminal can be any score in the SSSP system. [
need not be one thal was previcusly generated by prod. Finally, both terminal types
may be used in the same production {or mixed in any combination with non-terminals),

as seen in the following example:

examp = note{c4) score{minuet) ncte{f4);

10. NCN-DETERMINISTIC GRAVMARS

Each of the grammars that we have seen describes only one score. That is, every
time one of these grammars is used as input to prod the same score is produced as
output. We call this type of generation process deterministic. One can also construct
grammars which describe more than one possible score. When one of these grammars
is used as inpul to prod one of the scores it describes will be generated. A different
score may or may not be preduced each time the grammar is used. This is referr=d to

- 128 -

A Tutorial Introduction to PROD

as a random or non-deterministic generalion process..

In order to construct a grammar which describes mors than one scors, we use produc-
tions with right sides consisting of several aiternatives. Each of these alternatives is
made up of termmds and non-terminals and is similar to the right sides of productions
we have seen so far. When prod encounters a production: which has several alterna-
tives, one of them is chosen at random. The symbol "}" ("or" bar) is used to separate
the alternatives which make up the right side. Thus, a production with two choices
would be writien as

A_CR_B=4AiT,;

This production states that.when the non-terminal "A_OR_B" is found in a production it
can be replaced by cither Aor B. -

To show how this type of production is used, consider the following example. We want
to compose a iZ-note melody which consists of randomly ordered pitches from a
whole-tone scale. The melody can be defined by the following production: ’

mel = rand rand rand rand
rand rand rand rand
rand rand rand rand;

N

Fach instance of the non-terminal "rand” implies a random pitch from the whele-tene
scale. We now define the production "rand” such:that this will actually take place:

rand = note(c4) | note(dd} | note\ed-) | note(fd#)
| nota{g4#) | note{ad#) | note(cd);

i

In English, we can read the "{" bar as "or". Thus, each occurencs of "rand” in "mel” will
give us c4 or d4 or =4, etc. One of the nassible scores gencrated by this example is
shown in Figure 4. NB: Repeating the above example with the twelve tones of an octave
instead of the whole-tone scale will nof necessarily produce a tone row, as any pitca
may occur more than once..

11, WEIGHTED PROBABILITIES

In the previous example, any pitch in the scale is as likely to result as any other
when "rand" is used in a production. In this case we say that each alternative has an -
egual probakilily of occurring. This may not be what we want. Let us use just the first
three pitches of the scale in an example. Suppose we wanted the probability of the c4
occurring to be the same as the comdined pz‘oha"\mty of d4 and e4. We can rewrite
“rand” to accomplish this:

rand = note(c4) | note{c4) |
note(d4) | note(ed);

By including ¢4 in the production twice (that is, two of the four alternatives are c4), we
accomplish our objective.

From the example we see that one way to increase the probability of some alternative
in 2 non-determinpistic production is for that alternative to appear more than once.

There is a shorter way of accomplishing this. Instzad of repeating the alternative, we

¢ g

- 127 -

APPENDIX D

TTH
N
ol

Figure 4

follow it with a number which indicates that it has the same weight or probabdility that
it would have if:it were repeated that many times. The number which specifies this
weight must be: separated from the aiternatne by a tilde, ie. a "™, Thus, we can
rewrite the last example as follows:

rand = note{c4)} ~ 2| note(d4) | note(ed);

. RANGES.

We have seen how certain aspects.of a scors may be defined non-deterministically.
zrod can randomly combine notes, scores and combinaticns of notes and scores with
littie effort on the part of the user

However, there are some things can only be made random in a very cumbersome
manner. For example, if we wish to define a production which produces a note ran-
domly pitched between c4 and e4, we must express it as:

cd_to_ed = note(mL) note(crl-;;r) note{dd)
| note{d4#) | note{ed);

With a little imagination, the reader should be able to comprehend the horror facing a
composer who wishes to randomly produce a single note in the range ¢3 to ¢8, having a
volume from 32 to 220, one of four possible channels and a duration somewhere
between that of a breve and a hemidemisemiquaver...

Fortunately for the poor composer, there is a much less painful solution. prod has the
facility to randomly gesnerate any numerical valus in a specifiad range. This means
that anywhere in the score:that a number cccurs one may, by r plan..ng it with 2 con-
struct we call a range, cause a random value to be used.

The syntax for a range is quite simpler '

- 128 -

A Tutorial Introduction to PROD

[m,n]

where "m'" and "n" may be any number, ASA specification or arithmetic expression
valid for the place where the range is being used.

Thus, we could solve the aforementioned composer's nightmare with the following pro-
duction:

the_horror = note{ [c3,c8],[2,1,/64],,[32,220],[1,4]);

Several things should be noted about ranges. Firsi, any number of blanks, tabs and
carriage returns-may be placed in and around the range without affecting it. Second,
it does not matter which of the two values specified is the larger. Finally, it is impor-
tant to realize that the value is selected randomly from all possible numbers in the
range. As a resull, our definition of the above note using ranges differs from the "long-
hand” version in that we are not limited to diatonic notes, conventienal durations or
even integer volume values: For example, the range [c2,c4] in no way implies that the
resultant pitch will be one representable by ASA notation; in fact it is more likely not to
be.* '

Une last point about ranges: as stated before, they can be used anywhere a value is
normally usad. This includes waightings, as in:

a=b~[15]
tccddce ™ [32]

However, it also may include other ranges. Thus it is perfectly valid to use a range to
set one of the bounds on apother range. This perverse constructicn cculd te used for a
weighting efect; for example, one could allow pitches from c2 to c4, but make the
lower pitches more probabie by the foilowing construct:

low_pass = note{ [c2, [e2,c4]]):

Here the lower bound on the note's pitch is ¢2, but the upper bound can be anywhere
from c2 to c4, thus increasing the likelihood of a lower pitch. This weighting could be
increased by adding further self embedding. Since it doesn't matter which bound of
the range is larger, we can bias the range towards any specific value in a similar
fashion. For example, to choose a number between one and ten but preferably one
close to five, we could use:

[5 [1.10]]

[{110] 5]

or

13. RECREATING RANDOM SCORES:

The heading of this section appears to be a contradiction in terms. If the score is
random, how can one be sure of recreating i, and if it can be consistently recreated,
why is it called random?

2. However, the SS3SP comunand mcde can be used to cause all frequencies to he adjusted. to the nearast
semitone on the chromatic seale.

- 129 -

APPENDIX D

The solution lies:in the method by which computers generate random numbers. A ran-
dom number generator takes a number called a.szed, and proceeds to produce a com-
plex series of numbers using various mathematical tricks. This series of integers
deesn’t faveur any numbers over any other, but it is nof random in the sense of being
unpredictable. For any given seed, the same series of numbers wiil always be pro-
duced.

The random number generator used in prod normally gets its seed from the time and
date when it is called, so it is unlikely that you will ever get.the same seed twice. How-
ever, it is possible for the user to specify the sezed that prod uses, and thus cause it to
pseudo-randomiy generate the same score again aad again To do this, simply call the
system with the usage:

%prod <scorename> [seed]

where the seed is a positive or negative integer. If a grammar fle is used, it may be
specified in the same manner as before. ,

It should be remembered that seeds are used only with non-deterministic scores: if a
score is deterministic, random numbers are nsver required and the seed does not
affect the score.

When a non-deterministic score is used, prod will finish up by typing the line
Seed used to generate this scors: <pumber>

Thus, if your non-deterministic grammar file produces a score whick you particularly
like, you may reproduce it at any time by specifying this number as the seed.

Sometimes, if prod is called with a very large number, the seed returned at the end will
not be the same. number. This is because the number originally specified was cut down
to a more manageable size before being used as a seed, and the number returned will
give exactly the same results as the original large number.

14. RECURSIVE PRODUCTIONS

A non-terminal can be used in the right side of the production which defines it. This
is known as a recursive production. However, if such a production has only one: alter-
native on the right side problems will arise. Consider the following example.

A=AB;

This production says that Ais to be replaced by itself followed by B. Since there are no
other alternatives which can be used to repiace A, this replacement process will try to
continue forever. This will resuit in an error, and prod will not generate a score. On
the other hand, if a production has at ieast one alternative which doss not contain the
non-terminal being defined; then an infinite sequence of replacements will not be pro-
duced. The sequence will stop whenever one of the alternatives that does not contain
the non-terminal being defined is used in a repiacement.

This type of production can be used for producing sequences of notes or chords which
are of an arbitrary length. We can illustrate this, based on:the earlier example of zen-
erating a 12 note melody made up of random pitches. We:will use random pitches as
before, and alsc let the melody length be randem, but within seme sounds. This we do
as follows:

- 130 -

A Tutorial Introduction to PROD

mel =tand mel ~ 11| rand;

If this grammar: were used, we would expect "mel" to be about 12 notes long. This is
because the first alternative has probability 11/12 and each time it is selected the pro-
duction will be repeated. "mel" could; however, be as short as one note Jong. The pro-
bability of this is only 1/12; which means it would happen on average once every twelve
times the grammar is used. It could also generate a very long melody, but this would
happen very rarely.

APFPENDIX E
APPENDIX E - An Intreduction to CONDUCT

1. THE NATURE OF A CONDUCTARLE SCORE

The main motivation for developing the system was to provide the musician with a
tool which would enable pre-composed scores to be conducéed in performanrce. A scors
is named group of notes which has been previously composed using a composing tool
such as scriva or sed. The score may consist of a single note, or a more complex struc-
ture made up of up to a maximum of about 800 noles.

Scores can be compared with seguences as used in conventional analogue systems,
There are two important distinctions, however. First, =ach note of.a score may be
orchestrated with a differsnt timbre. Second, the structure need not be a monolinear
string. That is, notes may overiap, and the number of simultaneous voices may vary
between zero (tacet), and the maximum supported by the synthesizer (18). Finally, it
is important to consider the notion of a compasition as being made up of a number of
parts {for which the divisicn of much vocal music into “soprano,’ "‘alto,” ‘‘tenor,’ and
“bass’ serves as an example). Por our purposes, we consider each of these parts as a
sgparate score. Thus, in order to conduct the entire composition, we must be able to
conduct more than one score at.a time, This we can do, with the obwious benefit being
that we can now express ‘‘conductor-like’’ gestures such as: "*a little more from the
brass, and more staccalto in the violins.” That is, by providing a facility to indepen-
dently conduct several scores simultaneously, we are provided a much-need “handie’’
on the scope of conducting commands..

2. CONDUCTABLE PARAMETERS

For the time-being, let us consider the simpler task of. conducting a single score.
There are 7 parameters of the score which we can afect. Figure 1 shows these param-
eters in the manner in which they are:labelled on:the system's CRT.

8VE TEMPO ARTIC AMP RICE: CYCLE ON/OFF

Figure 1. Conductable Parametars

We can now describe esach of these parameters in detail.
2.1 Octave:

In composing a score, sach note is notated at a specific pitch.. By varying this
parameter from its default value {0), one can' cause the score to he performed n
octaves higher or lower than originally notated.

2.2 Tempo

This parameter allows the speed of performance of a score to be altered. What is
actually being scaled is the time interval separating the start of one nots and the start
of the next. As with conventional music, the tempo is specified as a metronome mark-

ing, indicating the number of ‘‘beats per minute.”
2.3 Articulation

The previous: example demonstrated how the timing defween note attacks could be
scaled. This parameter allows the user to scale the durations of those notes. Scaling
all the durations by .5, for. example, results in a staccato-like efect, while extending
the durations beyond how they were nctated, causes a legatc-like effect. Notice the
potential here for compensating for room acoustics {which may be very resonant, or

- 1328 -

An Introduction to CONDUCT

dry, for example). Notice also that tempo is unaffected by this change. Timing
beiween event attacks is orthogenal to the timing of event duralions.

2.4 Amplitude

The next parameter to be described is rather straightforward. It enables the per-
former to scale the dynamics, or loudness, of a score from how it was originally
notated.

2.5 Richness

This parameter enables us to transform the f(immbres of the notes from how they
were ociginally defined. The effect is similar to that of having an adjustable filter
affecting the signal generated &ty a score. In the case of the conduct systern, the efIfect
of adjusting the parameter is intimately linked with the technique of sound synthesis
employed. For current purposes, the synthesis:technigue used is fregquency modula-
#iom (Fi; Chowning, 1573). The effect of the richness parameter, therefore, is to scale
the specified index of modulation" affecting the timbre of individual notes.

2.8 Cycle

The function: of this parameter is:to enable the performer to specify what occurs
when a playing score comes to its end. There are two options available: one, the score=
will stop; two, the score will repeat. . This latter case we call cycle rmode. Thus, Lhis
parameter is a binary switch specifying whether the score is in cycle mode or not.

2.7 On/0F

Finally, the seventh parameter is ancther binary switch which is used Lo control
whether the score is on or.off. When the vaiue is set to "1 the score begins (is irig-

gered); when it is changed to 0" Lhe score slops, and resels.

3, TECHNIQUES OF CONTRCL
3.1 General

At all times., the status of sach active scors” is displayed on the CRT. A simplified
version of the format in which these data are displayed is seen in Figure 2.

SCORE 8VE TEMPQ ARTIC AMP RICH CYCLE ON/OFF
demo 0 80 80 0 0 1 0

Figure 2. Simplified Display of an Active Score’s Attributes- -

As can be seen in the figure, there is a fleld for the score’s name, as well ag one for
cach of the seven conductabie parameters. The fields are labeiled, and the current
value of a particular parameter of a score is shown in the appropriate fizld opposite the
scors’s name. In this case, for sxample, both the tempo and articulation parameters

-

of the score “"demo” are sat to the default value 80,

For the purpose of control we can consider the conductable parameters as falling into
two categories: swifches and varigbles. Like a light switeh, switches can be either on
or off. The two switchable parameters are cycie and on/0f7. The others, octave, {empo,
articulation, ampiiiude and richness, are all continuously variable. They are scaling
factors which allow parameters to be transformed from their notated values, during

4 An aclive score is a score which ig currently conductable. While several parts, or scores, may be
conducted throughout the course of a performance, only eight scores may be conducted, or active, at any
ontie time.

-133 -

 APPENDIX £

performance,
3.2 Direct Control
3.2.1 Switches

To change the state of a switch, the tracker is positioned above the switch and the
cursor Z-button depressed. The switch immediately changes state, and the screen is
updated (*‘1" and “0'" representing “‘on’* and ‘‘off"’, respectively). When fnished play-
ing, a score in cycle mode will repeat; otherwise, it will stop playing and the display will
be automatically updated. A score may be stopped at any point during pertormance,
at which time it will reset to its beginning and await to be restarted. (A flag to enable a
score to "pick up” from where it was interupted aiso exists, but has not been made
available to the user in the current implementation due to probiems of screen density.
Using an alphanumeric terminal, we can only display 24 x 80 characters.)

3.2.2 Coantinously Variable Parameters

3.2.2.% Typing One technique for changing the value of a variable during performance
is to position the tracker over the variable, and type the new value. If the perfcrmer
wishes to transpose a score up an octave from where it was; originally notated, he need
only point at the octave field and type a “1"". Alternatively, typing *-1" will lower the
pitch by an octave. ln either case, the change takes place immediately. The screen is
updated, and if the score is:playing, the result heard.

The typing interaction requires two hands: one for pointing and one for typing. To facil-
itate this one-handed typing, certain system-specific conventions have been adopted.
First, to avoid the awkwardness of depressing the “‘return” key after typing a valus,
any numeric value can alternatively be terminated by depressing any non-oumeric key.
Second, in orderto increase the speed of typing negative numbers, the minus sign can
alternatively be indicated by depressing the ‘‘space-bar’”, which is equally accessible
from any point on the keybeard, and whose physical appearance resembles a minus
sign. These redefinitions of the keybeard have the dual advantage that they are sasy to
remember, and they significantly improve the bandwidth and reliability which can be
achieved through one-handed typing. -

3.2.2.2 The ‘Last-Typed’ Technique .While we have attempted to make typing as
eflicient as possible, in many cases it.is not the most appropriate means of communi-
cation. (Often during performance thers is simply no time to type. One alternative
expleits the observation that we often assign the same value to more than one field.
The system takes advantage of this redundancy by designating cursor button-3 as the
“last-typed'” button. Placing the trackesr over a variable and depressing buatton-3
causes the last value typed to be assigned to that variable. Again, the display is
updated and the-efiect may be heard immediately. ’

3.2.2.3 Default Set Another often typed value was observed to be the “‘default’, or
"normal’ value for each variable feld ("'0" for all parameters except tempo and articu-
lation, which have a default of 80). These are the values that cause the score to be per-
formed "as notated”. To facilitate the frequent desire to.restore a paramster to its
default, cursor button-2, has been designated the ‘‘default” button. Using the tech-
nique seen in '‘last-typed" mode, any variable can be reset to its default by placing the
tracker over that parameter, and depressing button-2.

3.2.2.4 Dragging Perhaps the most effective technique for directly modifying the value
of 2 variable in the technique that we call "dragging’’. This is a direct approach analo-
gous to reaching out and turning a knob on a console. With dragging, the tracker is
placed over the:variable to be updated. By moving the cursor in the vertical (s}
domain, waile Aolding down the Z-buiiom, the value is, in eflect, '‘dragged” up or
down.* During this process, the scrzen is continually updated with the current value,

- 134 -

An Introduction to CONDUCT

and the resulis can be heard simultaneously. There is then, an immediately accessible
“virtual” potentiometer awvailable for each continuously variable parameter without
any special purpose hardware. Pots can be added, moved, or scaled using this tech-
nigue without any physical change to the system: The technique is direct, fuent, intui-
tive, me‘{penswe' and only utilizes one hand. Finally, it is clearly adaptable to many

.

other control applicaticns, not the least of which is digital scund reccrding.
2.3 Indircet Contrsl

3.3.1 Trigg

i

rs

3.3.1.1 Manual Triggers One shortcoming of the control technigues described above is
that they only allow one parameter to:be changed at a time. The deficiency of this can
be seen in contexts such as unison starts: starting more than one score with a singls
gesture. In the case of the on/off parameter, the way around this problem is to allow
several scores to be started by firing a single "trigger'. The use of such a trigge

be considered in two phases. The first is the "sel-up” phase: grouping together the
scores to be fired by a particular trigger. The second is the actual trigger ﬁrmg

There are many ways that scores may be triggerad. Two of them, triggers nine and ten
(T9 and Ti0) can be fired. manually with the cursor Z-button. Opposite the on,/ofF
paramectcer for cach score is a centrolificeld to which a t*'lgger number can be assigned.
This field is initially set to ''-”’, indicating the default ‘‘no trigger assigned’ condition.
This can be seen.in Figure 3.a. A scors can be linkesd to a particular trigger by peinting
at the control feld and typing the trigger number. Therefore, as is illustrated in Fig-
ure 3.b, score "testl” can be linked with T9 by pointing at its control field and typing
“9", The szecond score "test2” can then be grouped to the same trigger smml) oy

ing at its control field and pressing cursor button-3 {using the "last-typed” tect
described above).

Specifying the trigger number constitutes the set-up ghase. In order-for the scores to
be started, the trigger must be fired. In the case of triggers nine and ten. this is per-
formed by placing the tracker over the appropriate light-button (T8 or T10 shown in
Figure 3.c), and depressing the cursor Z-button. All om,/0jF switches controlled by that
trigger will then: change state, As is indicated in f'igure 3.d, this means that if one
score is on and the other off, and both are controlied by the same trigger, firing that
trigger will cause the one to switch off and the other to switch on. Anywhere irom zero
Lo gight scores can be conirolled by any trigger, but only one trigger at a time can con-
trol a particular scors. Trigger assignment may:be changed at any time during perior-
mance, and the trigger contrel of a particular score can be cleared by pointing at the

control field and: depr\,ssmg the cursor Z-bution {or buttoe-2, the "default” button).

There is another manual trigger: T11, that does not appear on the screen. The rzaso
is that it is fired by hitting the touch tablet rather than with the tablet cursor. Thus,
by assigning the number 11’ in the trigger fleld of one or more scores enables them to
be triggered as from a drum.

[SLSR 8 pF=i R8-S L ¥ “T 3

The clavier can also be used to trigger scores, class (white notes enly} i3
capable of generating a different trigger. Thus, a different score can be connected &
each key and triggered on: that key’s depression. Chords and rmotives of scores can
thareby be performed. There are 7 distinct ciavier trizgers. They are numbered -1 L
-7 (always preceeded by '-), which are asscciated with the pitch classes c¢ through b
{any octave).

tach piteh

4, In order to prevent values at the top of the screen from baing disoriminated zgainst (in terms of
"dragging-room''), the mapping of Lhe tablet co-ordinates.to ser=en co~ordinates leaves a "margin’ arsa at
the top of the tablet co-ordinate space.

APPENDIXE

SCORE 8VE TEMPC ARTIC AMP RICH CYCLE ON/OFF
testl 0 80 80 0 0 1 0 -
test2 0 80 80 0 Y 1 Q -

a) Parameters including the control fields (**-'') for remote triggering.

SCORE 8VE TEMPO ARTIC AMP RICH CYCLE ON/QOFF
testl 0 80 80 0 0 1 0 9
test2 0 80 80 0 G 1 0 9

b) The same two scores with trigger 9 linked to each.

SCORE 8VE TEMPQG ARTIC AMP RICH CYCLE ON/OFF

testl 0 80 80 0 0 1 1 9
test2 O 80 80 0 0 1 19
TS
T10

¢) The same two scores playing after a unison start triggered by ‘‘firing”’
T9, shown for the first time. If the value 10 wasin the control feld, rather
than 9, the scores would be fired by firing T10.

SCORE 8VE TEMPO ARTIC AMP RICH CYCLE ON/QFF

testl 0 80 80 0 0 1 1 9
test2 0 80 80 0 0 1 0 g
T9
T10

d) The “flip-flop’’ nature of triggers. Firing T9 will cause ‘‘testl’ to stop,
and '‘test2” to start.

Figure 3. Examples of Trigger Usage

3.3.1.2 End of Score Triggers An important concept which we wanted to incorporate
into the system was to allow (rigger events to be generated by events in the music
itself. While this feature hay nol been bnplemenled in a general way, ons type of svent
in.the data can generate a trigger. Any time a playing score comes to its end {regard-
less of whether it is in cycle mode or not) it generates a signal which can be used as a
trigger. These trigger events ars numbsred "1" to "8", corrssponding toc the eight
scores which may be active at one time. Score "a"' can trigger score "b", and wvice
versa. Complex combinations of score material can thereby be built up, either in
sequence, or in parallel. The only constraint is that a trigger is only generated at the
"normal” end of a score, not when the score is turned off mid-way. (Note that a score
can trigger itself, although:that would be redundant, given. the cycle switch -- which is

implemented using the trigger mechanism.)

- 138 -

An Introduction to CONDUCT
1.3.2 Groupings of Continuously Variable Parameters

3.3.2.1 Groups Like the on/9f switches, continuously variable parameters can be
grouped together and indirectly controlled as a single unit. The approach taken is con-
ceptually similar to the use of a “sub-rnaster’ control in a conventional audio mixer.
As with on,/off switches, associated with each variable is a controi-field which is initial-
ized to **-'", or “null”.

SCORE 8VE TEMPO ARTIC AMP RICH CYCLE ON/OFF
testl g - 68 - 66 - ¢ - a - 1 9 -
test? e - 58 - g¢ - g - @ - 1 noo-
GROUPS RAMP TRIGGERS
cL - a a @ T9
G2 - b 0 2 T14
53 - c @)
Ga - d @ 2
Gs -
G . -
c7 -
seE -
a) A simplified view of the screen layout showing the coniral
fields {marked by the '~ character) for both score arameters
and groups.
5CORE 8VE TEMPO. ARTIC AMP R1CH CICLs CN/ufF
testl 9 1 60 2 6a 2 g 3 ¢ - 1 5=
tast2 2 - £g¢ 2 €2 2 g 3 a - 1 o -
GROUPS RAMPS TRIGGERS
Gl sldrl a 5 1 Ta
sldr2 o 5 -2 T1¢
X c 9)
- d] 9

€Y G2 L QoD I
3 3 Qv YV

b) The use of groups is illustrated. Group 2 is controlled by
slider two. The articulation and tempo. of both scores are
members of this group. The cciauve cf ''testl” is ‘the cnly
member of group one which is controlled by slider: one. The
amplitudes of the two scores form group three, which is con-
trolled by the x-mouse.

Figure 4. The Use of Groups

This is diagramed in Figure 4.a. Any variable can 52 controlled by any one of sighi

APPENDIX E

group controls, numbered 1" to 8. Group set-up takes the form of pointing at the
control field and indicating the group number (either by typing, or by using the “last-
typed” technique). This is illustrated in Figure 4.b where the fempo and eréiculation of
both scores has been assigned to group two, the octave of “test1' to group one, and the
amplitude of both scores to group three.

One task remains in order to complete the set-up phase: a transducer must be
assigned to control each group to be used. This additional level of indirection is impor-
tant in that it allows any group to be controlled by any single transducer, and a single
transducer to control more than one group.

3.3.2.2 Group Control Transducers There are currently ten transducers available as
group controlers. They fall into five generic types: sliders (2), the cursor as “mouse”
(x and y). the touch tablet, the clavier, and software ramps {4). All transducers have
one important quality in common: they are all motion, rather than position, sensitive
devices. That [s, they increment or "“deltz medulate” the parameters which they con-
trol. The instantaneous value (or type) of the individual parameters being controlled is
irrelevant to the transducer's function. Values are simply incremented or dscre-
mented when the transducer moves.® Thus, any transducer can control many parame-
ters, all having different instantaneocus valucs, without any concern for context. The
“nulling problem"” which plagues most automated mix-down systems is thereby
avoided. The resulting ability to rapidly switch the context of a transducer results na
maximum of control bandwith from a minimum number of physical transducers,

TRANSDIICER TYPRED VALUE
slider 1 1
slider 2 2
X -mouse x
y-mouse y
x-touch h
y-touch v
clavier K
ramp a
ramp b
ramp ¢
ramp d

TR

Qo

Figure 5. Summary of Group Control Codes

A transducer can be assigned to a group by pointing at the group control field and
specifying the transdiicer identifier. Typing ‘1’ while pointing at the control fleld of
group one {(the '~ opposite the label G{ in Figure 4.a), assigns slider one to controi that
group (as seen in Figure 4.b). Moving the slider upwards will increment all members of
the group (the sciave variable of "‘test1” in the figure), while moving it downwards will
decrement all values. Similarly, we can use the tablet cursor as a group controller. In
this case, relative motion in the horizontal (x):and vertical (y) domain can sach be
used to control a group. This is illustrated in Figure 4.b where we have specified that
motion in the horizontal domain should control group three (by typing “'¥” in the con-
trol field opposite G3).% As a result, all horizontal cursor motion which takes place

5. A special note should be made about the clavier in this regard. L js used in an umusual way, The contre f #
has no aflect when the clavier is used to control a group. Hitting any other key will cause a change in the
parameter values controlled by the group: The magnitude of the change will be prepertional te the
distance from the central f§# of the depressed key. The: dirvetion of the change depends on if the key
depressed is to the right (decrease) or left (increase) of the f4.

- 138 -

An Introduction to CONDUCT

while cursor butfon-1 is depressed will afect the amplitude of both scores. Alterna-
tively, we could have typed: an ‘&' opposite G3, thereby specifying that group three is
to be controlled by ramp: a. A ramp is a sofiware transducer which provides the
benefits of an automatic fader, whose direction and speed can be easily controlled.
Each of the L"our ramps, as illustrated in Figure 4.b, is assoeiated with two parameters.
The first indicates how often {in 30ths/sec.) the controlled group's members are to be
incremented. The second field indicates the size of that increment. In the example
given, ramp “a'" will provide an increment of one esvery five time unils, wheresas ramp
‘b’ would provide a decrement of two. Thus, a s1mple mechanism is provided which
enables the parameter to be dynamically varied.in a controlled manner, while lzaving
the hands free for other purposes.”

3.3.2.3 Negative Groups The final new concept to be introduced concerning groups is
the notion of a “‘negative’ group. When specifying that a variable, such as articulation,
is to be controlled by a particular group, one has the option of prefixing the group
number with a minus sign.: The eﬁ'ect of this is-that when the members of group ''n
are incremented, members of group:'-n’’ are decremented by the same value. The
control structure thereby provides a cuﬂt -in facility which allows cross-fades to be con-
trolled by a single transducer. Duration can vary inversely with tempo, richness with
amplitude, and the whole process in independent of which transducer is controiling the
group. -

3.4 Additional Performance Variables
3.4.1 Score Selection

We have already pointed cut that the performer may:conduct up to eight scores
at a time. These are what we have called the sight “active’ scores. In the course of a
composition, a performer may wish to utilize more than eight score files. A mechanism
has been provided, therefore, whereby active scores can bes replaced:by those from a
“reserve’ list.

The reserve list is made up of the set of all scor=s specified by the performer during
the set-up nhase of the conduct program. They are added to the list as their names are
typed, and they are read into primary memory. Once initialization is completed, the
first eight of these scores will automatically appear on the display as active scores. In
addition, in the bottom right-hand corner of the display, there appears a list containing
three names. This is ﬂlustra.ted in Figure A (which is the first complete facimile of the
display shown thus far). This list is a “window’" showing the names of the first three
scores on the reserve list. Using two special keys con the keybeoard (4" and "), we
can cause the names in the list to {circularly) scroll up and doewn, thersby cnabling us
to display the name of any score on the raserve list,

To have a new score appear in the upper half of the screen:where it can be conducted,
one points to the. name of some score which-is already there, but which can be
replaced. If the old score is not playing, depressing the cursor Z-butteon will cause the
score whose name appears:al the {op of the reserve list window, to replace it. Using
Figure 6 as. an sxample, pointing at the name '‘jig'"" and depressing the Z-button will
cause it to be replaced by "‘bass’. At the same time, all variables associated with that
score are set to their default values. Therefore, to access any score on the reserve list,
one need only scroll through the list until that seore’s name appearsz.at the top of the
window.

The active list mmay be thus updated without disturbing any:other scores whicn may be
A g any y
playing. An important point is that thers may be more than instanee of a particular

8. Note that in typing alphabetic data, any non-alphabetic character function a3 an alternative to the
“retumm'’ character,

7. A summeary of the spacisl cheracters used to specify each transduecer for the purpoge of group control is
gshown {n Figure 3.

- 139 -

APPENDIXE

SCORE EVE TEMPO ARTIC AMP RICH CYCLE ON/OFF
testl 2 1 Eo 2 589 2 g 3 q - 1 7 -
testz2 2 - 59 2 59 2 9 3 - @ - 1 a4 -
Jig 3 - 538 2 50 2 3 3 - 8 - 1 z -
mel 4 - 68 2 52 2 2 3 g - 1 g -
treb L - 69 - 2 - 4 4 g = L 1 -
treb 4 - 59 - 59 - g 4 a - 1 1 -
trab -1 - 68 -~ 120 -~ 2 4 g - 1 T -
rotten 20 - 89 - 53¢ - 3 - 2 - 1 8 -
HQUPS TRIGGERS RAMPS

Gl sldril TS a 2 "1 RAT=Z 1

g2 slir2 T1i2) @ 2

G3 X , C 2 7]

Gt oA ! d] bass

- . . D ,

Fe Joe

6 - mel

a7 - '

GE -

Figure 6. The Complete Screen as Seen by User

score on the active list at any given time. Each instance of the score may have a com-
pletely different set of transformations affecting it, and all may be playing simultane-
ously. This is illustrated in Figure 8 by thc throc instances of the score “‘trab’,
Significantly, regardless of the number of instances of a particular scors, thers
one copy of that score in primary mamory!® Thiz is an imprtant fcature given the sys-
temn consiraint that all score material must be in primary memory before the st

2
performance, and that there is only about 18K words of data memory once the pre-
gram is loaded.

3.4.2 The Rate Contrel

The RATE parameter seen in the:bottom right-hand side of Figure 8 is a frequency
control for the master clock of the system. Lowering its value (to a minimum of '“0"),
by typing or dragging, speeds everything up. Conversely, raising its value siows things
down. It is a rather course:control which determines the rate at which the synthesizer
is updated, with'the minimum value resulting in a rate of 50 Hz. The main benefit of
this control is to overcome the limitations of the computational bandwidih of the pro-
cessor. It enables the user to set the update rate such that the system is able to Anis:

computing the current update data before an interrupt comes requesting that for the
acxt set. [t can, of course, alsc be used Lo effect glabal accelerandos and retards; how-
gver, these are better realized through the use of groups. -

B

8. The use of instances is further explained in Suxton, Reeves, Baecker, and Moza (1978).

An Introduction to CONDUCT

3.5 Concluding Cormments onithe Contrcl Structure .

The point to emphasize in considering the control structure is that it supports
parallel control funciicns.

CONTEXT
BUTTON VARIABLES SWITCHES CONTROLS
A drag change state cle&'xr
1 <—-——- x/y "“mouse’ mode -——>
2 last-typed N/A last-typed
3 set default N/A clear

Figure 7. Summary of Cursor Button Functions

%

For example, the members of a group can be incremented by moving slider one, while
another value is:being dragged up using the cursor.® Given the serial nature of most
digital computers, and given most current programming languages, this parallel con-
trol is one of the most difficult constructs to deal with in an elegant manner. This is
one area of research to which we are currently devoting much of our attention. In the
meantime, we find { rather ircnic that these: of us who jumped on the all-digital
bandwagon are now spending so much of our energy trying to amulate the parallelism
inherent in the analogue systems which we were so quick to. abandon.

9. A summary of the special functions aszociated with the cursor buttons is shown in Figure 7.

- 141 -

APPENDIX F

APPENDIX F - User Defined Shell Commands

A combination of alphanumeric command primitives and the editor (ed) allow composi-
tions to be defined in terms of their underlying structure, or "recipe”, rather than by
note-by-note specification. The benefit of this approach arises in cases where the com-
poser cenceives of a composition in terms of a set of basic ""germinal” ideas, or scores,
which then undergo a set of transformations, the net result of which is the Snal compo-
sition. In this case, the germinal score material is compesed using the normal tools
available with the SS8P system. The composition is then specified in terms of these
germinal scores, and the transformations possible through the command repertoire of
the music system. We now work through a set of examples which illustrate this
approach. To use the facility described, however, it is essential that the composer have
an understanding of the text sditor "ed". Familiarity with the score editor “"sed” will
make this an easy task.

Rather than typing commands and having them executed directly, execution can be
deferred by lyping exactly the same thing as text into a fils, asing "ed". If there
existed a file called "fred" which contained the following two lines:

retro minuet : temp -
trapsp temp a¢

1

then the two lines of the file "fred” could be caused to be executed simply by typing the
following: : :

sh fred

The result would be exactly the same as typing the two lines which "fred” contains: that
is, a score called "t

~t,

temp"” would be created which would be a retrograde version o
minuet, transposed to start on a4,

TATS

#ith the preceeding example, we have not gained very much. It would have been just
as fast to type the two lines. The real benefit occurs in cases where "fred” would con-
tain a longer seguence of often repeated commands. Let us pursue this for a moment.
In the tape studio, to hear your ideas, a long period of assemblage must take place. If
one wants to change one of the constituents in: this assembly, one which has several
instances, a great deal of work must be faced, not the least of which is remembering
exactly how the piece was put together. (Not at all an uncommon problem.) However,
using the editor as outlined above, we have an explicit record, or "rzcipe”, of the
piece’'s structure. At any time, one of the constituent "germinal” structures in the
work can be medified, and the new version of the score assempbied, foilowing the stored
recipe. The composer need only type one command: sh. Furtbermore, at any time,
the composer can update, correct, or extend his recipe.

Up until now, we have only dealt with cases where we wanted an exact repitition. of the
instructions in the recipe file (which is. properly called a shell file, (from whence the
name of the "sh" command derives). In many cases, however, a composer will want to
carry out the same set of transformations on different source material. That is, the
deep (or syntactic) structure may be the same, but the semantics different. By intro-
ducing a strongly coupled pair of concepts, that of the argument and of the variable,
we see that the use of shell files can be addressed to this point, as well. This is accom-
plished by enabling the user to use shell files to create their own operators, operators
which are made up of sequences of axisting primitives, or commands, bul operators
which will work on any valid fle. The following example demonstrates how this is
accomplisied. Consider that the fle "fred” now contains the following:

retro $1: temp
transp tamp a4

User Defined Shell Commands
If one now typed
sh fred minuet

The result will be exactly the same as in the first example above. The reason is thal, on
execution, the "$1" inside the file "fred” is replaced by the the first (and only) argu-
ment {minuet) foliowing "fred” when the sh command was invoked. The argument $1,
by convention, is a variable representing the first argument following the shcll file
name when the shell file is executed.

Let us expand on the previous example with another. Let us say that "fred” now con-

tains:
retro $1: 32
transp 32 a4

‘Then, executing the shell file as {ollows:
sh fred minuet temp:.

will have exactly the same effect as all the other-examples. Thisis by virtue of the fact
that on execution each instance of "$2” in "fred” is replaced by the second
(corresponding to the 2) argument following the shell file name when the shell fle is
sxscuted: that is, §2 is "ep’aced by temp

We now can see a patiern uwrgmg, where each instance of variable "8n" in the shell
file is replaced on. sxescution by the nih argument o ow'l*:g t i¢ shell file name in ths
command line which invokes sh. Think, then, how we could use a third variable to allow
this "fred"” transformation to be generalized to u.onst t retrogradu followed by tran-
sposition to some arbitrarily specified pitch. Your scluticn should be as [ollows:

-g

i- n—

21

rotro 31 82
transp &2 $3

which is properly invoked by:
sh fred minust temp c4

One point to note, unlike the basic music commands, shell commands of c
manufacture obviously require that the arguments appear in a specific order. . is up
Lo you to remember them.

Don't forget that you can go and change the recipe at any time, simply by using =d.
Also, your cnmmands can be made to look even more like the regular music com-
mands. By using the command "mx" as follows:

mx fred
“fred” (or any other shell file appearing as an argument) is made executable (mx =
by = o
Make Exscutable} on its owmn, withoul having tc use the 'sh" command. lhus, after

using mzx, the following line will invoke our recipe fred:

fred minuet temp g5#

Finally, cnce a shell file command has been defined using the techniques described
above, the resulting fommand can than be used as an operalor within yet anotner sneil
file, and that within ancther ... This can be: seen if we consider a file "joe” as

- 143 -

APPENDIX T
containing:

fred minuet temp g5#
fred tric junk c4
splice temp junk : new
rm temp junk

Fxecuting the command:
sh joe

will result in a score called "new” being created, which has two main sections: the score
"minuet” transformed by "fred”, with the "fred” transformed version of the score "trio”
spliced on toit. In the example, note that the "temp” and "junk” are only intermediate
versions of the score, which need not be saved. They have, therefore, been removed
once "'new’ has been created, using the command rm.

The facility offered by the use of shell files is far more extensive than described above,
Features such as loops and:conditional execution: are also available. They are, however,
beyond the scope of the this document. Users wishing to obtain more details should
consult the UNIX Programmers Manual.

- 144 -

Synthesizer Specifications

APPENDIX G - Sgnthesizer Specifications

The synthesizer used by the SSSP system was develped at the University of Toronto. A
detailed description of the device can be found in Buxton, Fogels, ¥edorkow, Sasali,
and Smith {1978). A summary of its specifications are as follows:

- number of oscillators: 15
- number of simulfaneous voices: 1 - 18
- depends on cbject type
- PM and Waveshaping: 2 osc/voice
- VOSIM and Fixed Wavefcrm: 1 ose,//voice
- Additive synth.: 1 ose/partial
- number of cutput channels: 4
- sampling rate (per oseillator): 50 kxHz
- frequency resolution: 1 Hz. (integer)
- frequency range: -25 kHz - +25 kHz
- dynamic range: over 100 dB
- signal to noise ratio: betier than 68 dB

uq

- 143 -

APPENDIX H - 5552 PUBLICATIONS . MONOGRAPHS

Baecker, R. (1979). Towards an Effective Characterization of Graphical Interac-
tion. Presented at IFIP W.G. 5.2 Workshop on Methodology of Interaction,
Selliac, France.

Baecker, R., Buxton, W. . Resves, W. (1579). Towards Facililating Graphical
Interaction: Some Examples from Computer-Aided Musical Composition.
FProceedings of the 6th. daen-Communications Conference, Otiawa, May
1979: 157-207.

Buxton;, W. (1977). A& Composer's Introduction to Computer Music., [néerface G:
57-72. French translation: Les ordinatsurs et le compositeur: une intro-
ducticn generale. Revueg FAIRE 4/5: 15-20. Ilalian traasiation in: Polo, N.
(Bd.} Musica. e FElaboratore, Venice, Laboratoric perminante per
U'Informatica Musicale deila Biennale di Venezia. :

ed. (1977). Computer Music 1975/77: a directory to current work.
Qttawa: The Canadian Commission for Unesceo.

«—--— (1277). Towards a Computer Based System for Music Compositica and Per-
formance. Invited paper presented at the ACM/SIGLASH meeting, New
York University, Ceicher 1877,

———-- (1978}, Design Issues in the Foundation of a Computer-Based Tool for
Music Composition. Technical Report CSRG-37. Toronto: University of
Toronto.

— (1981). JMusic Softfware User's Manual. (Second Edition) Toronto:
SSSP/CSRG, University of Toronto.

Buxton, W. . Federkow, G. (1978). The Structursd Sound Synthesis Project
(SSEP): an Introduction. TechAnical Report CSR(E-92, Toronto: University
of Toronto.

Buxton, W., Fedorkow, G., Baecker, R., Reeves, W., Smith, K.C., Ciamaga, G., .
Mezei, L. (1978). An Overview of the Structured Sound Synthesis Project.
Proceedings of the 1378 International Compuier Music Conference, Dept.
of Music, Northwestern University, Evanston llinois. Vol. 2! 471-485.

Buxion, W., Fogels, A., Fedorkow, G., Sasalki, L., . Smith, K. C. {1978}, An Intro-
duction to the S3SP Digital Synthesizer. Compuler Music Journal 2.4:
28-38.

Buxton, W., Patel, Si, Reeves, W., . Bascker, K. (1580). On the Specification of
Scope in Interactive Score Fditors. Presented at the Fourth International
Conference on Computer Music, Queen's College New York, November
1980.

-(1980). "Objects” and the Design of Timbral Resources. Presented at the
York, November 1980.

Buxteon, W., Reeves, W., Baecksr; R., . Mezei, L. {1978). The Use of Hierarchy and
Instance in a Data Structure for Computar Music. Compuier Music

SSSP PUBLICATIONS . MONQGRAPHS
Journal 2.4: 10-20,

Buxton, W., Reeves,: W., Fedorkow, G., Smith, K. C., . Baecker, R. (1579). A
Computer-Based System for the Performance of Eleciroacoustic Music.
AES Preprint 1529 (J-1).

——(1980). A Microcompuler-Based Conducting System. Computer Music
Journal 4.1: 8-21. ~

Buxton, W., Reeves, W, Patel, S.,. 0'Dell, T. {1979). SSSP Programmer's Manual.
Toronto: Unpubhshed manuseript, SSSP/CSRG, University of Toronto.

ardware: Currsnt and Proposed.

Buxton, W. . Smith, X. C. {1979). Brief on SSS
S .. University of Toronto.

PHE

Toronto: unpublished manuscript, C.S.R.G

Buxton, W. . Sniderman, R. (1$80). Iteration in the Design of the Human-
Computer Interface. Proceedings of the 13th Annual Meeting, Human
Factors Assoctation of Canada. '

Buxton, W., Sniderman, R., Reeves, W, Patel, S. . Baecker, R. (1979). The Evolu-
tion of the 8SSP Score Editin TooLsA Computer Music Jouwrnal 3.4: 14-25,
3.4 (De mber 1979).

Fadorkow, G (1978). Awudio Network Control. Toronto: M. Sc. Thesis, Dept. of
Electrical Engineering, University of Toronto.

Fedorkow, G., Buxton, W., Patel, S S Smith, K. C. (1980). An Inexpensive Clavier.
Presentsd at.the Fourth International Confersnce on Computer Music,
Queen’s College New York, November 1980.

Fedorkow, G., Buxton, W.. Smith, X. C. {1973). A Computer Centroiled Scund Dis-
tribution System fer the Performance of Electroacoustic Music. Com-

puter Music Journal 2.3:.33-42,

Green, M. (1980). PROD: A Grammar Based Computer Composition Program
Presented at the Fourth International Conferencs on Computer Music,
Queen’s College New York, November 1880.

Hogg, J. . Saidermnan, R. (1878). Score [mvu..é Tools Projecé Report., Toronte:
Unpublished manuscript, SSSP/CSRG, University of Toronto.

Laske, O. E. (1978). Considering Euman Memory in Designing User Interfaces for

-

Computer Music. Computer Music Journal 2.4; 39-45.

Patel, 8. (1879). Score FEditor DJesign: Toronto: unpublished manuscript,
SSSP/CSRG, Universily of Toronto.

Reeves, W., Buxzton, W., Pike, R., . Baecker, R. (1978). Ludwig: an Ex mple of
Interactive Computer Graphics in.a Score Editor. Proceedin f h .
1878 Iniernational Computer Music Conferemce, Dept. of Mus
Northwestern University, Evanston Illinois. Vol. 2: 392-408.

Roeads, C. (1979). Advanced Directions for Computer Music. Toronto: unpublished
manuscript, Computer Systems Research Group, University of Terente.

Sasald, L. (1977). Macro Music] User's Cuide and Language Raference Manual.
=3

)

APPENDIX H

Toronto: unpublished manuscript, Dept. of Electrical Engineering, Univer-
sity of Toronto.

-——— {1878}, A Descripticn Languagze
Toronto: unpublished manuscript,
sity of Toronto.

Approach to Compositional System Design.
Dept. of Electrical Engineering, Univer-

Sasaki, L. H. . Smith, K C. (1878}, Digiial io Analogue Converter Systems for
Adudio. Toronto: unpublished manuscript, Dept. of Electrical Engineering,
University of Toronto,

—mmem (1978). Music Synthesis. Toronto: unpublished manusicript, Dept. of
Electrical Engineering, University of Toronto.

- &

— {1980). A Simple Data Reduction Schemse for Additive Synthesis. Comi-
puter Music Journal 4.1: 22-24.

