MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

TX-2 USERS HANDBOOK

ALEXANDER VANDERBURGH, Jr. (Ed.)

LINCOLN MANUAL NO.45

JULY 1961

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology,
with the joint support of the U.S. Army, Navy and Air Force under Air

Force Contract AF 19(604)-7400.

LEXINGTON MASSACHUSETTS

Note to TX-2 Users -

The TX-2 Users Handbook will be printed in several installments - you
now have the first. There will be seven chapters - they are listed below in

order of (expected) appearance:

Chapter 4 - In-Out System - Sections L6 and 74 (Mag. Tape and
Plotter) to come later.
. e = Gharis
= 6 - M4 Utility System Summer '61
= 5 - ILights and Buttons
. 3 - Operation Code s Fall ‘61
= 2 - TFunctional Description i
- i - Tntrodickbion

Your comments, criticisms, and (unfortunately,) corrcehions, are

requested.

[« s
A. Vanderburghl

July 1961

TX-2 USERS HANDBOOK

CHAPTER 3 - OPERATION CODE

TABLE OF CONTENTS

3-1 BRIEF GUIDE TO THE ABBREVIATIONS . . .

3-2 OP CODE DESCRIPTIONS - (For In Out, See Chapter L.) .

JeLk

3-2.2

3-2.3

3-2.4

August 1963

LOAD-STORE CLASS . .

.

IDA, IDB, LDC, IDD, (IDE) - LOAD -

STA, STB, STC, STD, (STE) - STORE -

EXA - EXCHANGE . « « « « .« .

INDEX REGISTER CLASS . . .

RSX - Reset Index ona =
PEX = Deposit Index = < .+ o« v
EXX - Exchange Index e .
AUX - Augment Index o . -
ADX - Add Index & 5

SKX - Skip on Index e
JPX - Jump on Positive Index . =
JNX - Jump on Negative Index . -
JUMP-SKIP CLASS i e 3
JMP - Jump (with variations) . . .
JPA - Jump on Positive Accumulator .
JNA - Jump on Negative Accumulator
JOV - Jump on Overflow . "
SKM - Skap.on Bik - o .

SED — Skip if E Differs -.

SCALE, NORMALIZE CYCLE .

SCA, SCB, SAB - Scale

NOA, NAB - Normalize =

CYA, CYB, CAB - Cycle

Page

3=2
3D
3-6
3-8

3-10

3-13
3-1k
316
3-18
3-20
3-22
3-2k
3-26
3-26
329
=30
=32
350
3 32
3-3k4
3-36
=31
3-38
3-4o
3-k2

Page
3-2.5 LOGIC, INSERT, COMPLEMENT/PERMUTE coeaLmasmmaE el L 0 L 0 30

EASUNABSN SHIL s liopiters L 0 L B e e s i

INS-= Frsert o e s - Wit L Lo e e i i

COM = Complement/Bermite e . . 0 - 0 sl e . 2

3-2.6 CONFTGURATTON MEMORY CEASS® v s visrvei e b i, 0 0o . 253
SPE, SPG = SpeCify v o0 5 o n i o ¢ ceeoens e ol B o . 3050

FIF, FIG - Pile L e B s e DD

B2 ARITHMETIC CILASS S v R aes s B SRR SR s L3 5T
ADD,BUB: - o o w o 0 o s s e e e s s 058

MU e . s s s o L S e e . 0

DIV: o s e o ails s s L s o s Sl e e 3D

P o s el o s s e s R s 365

3=3" OPHRATTON CODE GHART (Wesltey AL @laple) = . . © = & 00 . . 367
Sl NOMBBRSPSTHMS Lo 0 i ol e e e - 368
3-3.2 GROSSARVEORITERMS - & 0 (a0 s o o i s s o o . 368
OFRRARION COPDRIGHARIE T ® —e 0 = 0 0 0 = 8 e ey . oo

3-3.3 NEOTES-ON THFCCODENG CHARE: & o o 0 . o0 5 oo om0 30T

3-l “OHAPTRER¢3 INDEX.-(Alphabetical vandslNumerical) .0 RiEaR G @l & 0 . . . 377

August 1963

3-1 BRIEF GUIDE TO THE ABBREVIATIONS

"ot

Xj X Memory Register " J

[Xj] Contents of X Memory Register J

i STUV memory address "T" (STUV memory is "S", "T", "U", and "V" memories)
TS T + [xj]

[Tj] Contents of STUV Memory Register Tj

Fa F memory register «

[Fa] Contents of F memory register «

e [Tj] [Tj] Configured as specified by o

q Quarter

L Left Half

R Right Half

S Sign of

SE Sign Extended (i.e. "With Sign Extension")
==> Is copied into (Goes into)

Examples:

Sq3(A) ==> qkA

[Xj] => L(T)
L{T] ==> xj
ql[Tj] => T,

The configured contents of STUV memory register T goes into the
accumulator.

The sign of quarter 3 of A is copied into all of quarter 4 of the
accumulator.

The contents of X memory register j goes into the left half of STUV
register T.

The left half of STUV register T goes into X register j.

Quarter one of the contents of STUV memory Tj is copied into F

memory register a.

The notation below is borrowed from the ML Utility system. (See Chapter 6.)

{w) Register Containing w

* Deferred address

A,B.C DB The AE addresses: 37760k, 377605, 377606, 377607, and 377610

The current location - i.e. the location of the instruction being performed.

August 1963

S S ——

3-2 Op Code Descriptions

August 1963

3-2.1 LOAD, STORE, EXCHANGE

LDA
LDB
LDC
LDD
LDE

STA
STB
STC
STD
STE

EXA

LOAD AE (24-27)
LOAD E REGISTER (20)

LOAD means copy into the AE from STUV memory.
ALL load

pa T,
J

-

o A
J] >

Extension, and permutation are used.

[Tj] ==> E.

EXAMPLES: **(Standard F memory - Chart 7-2)

STUV memory is not changed.

LDA, 24 LDA
HDBy o5 24
LDC, 26

LDD, 27

IDE, 20

Activity, Sign

instructions except LDE perform the standard

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
: v i Since all four quarters
J [T] == A >
l L l 3 are active, subword form
= W Tj l [T.] = E is immaterial. 2OLDA or
UL A J 3OLDA would be equivalent.
: Tj The left half of A is
o R[Tj] ==> R(4) not changed.
2 LDA T, i l
et e fr.] =—=—E
B A J
: Tj R[Tj] ==> R(A) The 18 bit word from
. n "
- llLDA . l l SR[T,] ==> L(A) STUV is "expanded" to
J e b ey J 36 bits through "sign
[¢,,] - 140 | ZZZZIIIITE A [z,] =>E extension."
I:] TJ A "Right Half Load" -
- \\\:::?\\ L[Tj] ==> R(A) the left half of A is
s IDA T,
3 1 [T] —Sop not affected.
VA A J

*%¥A11 examples apply directly to LDA, LDB, LDC, and LDD.

the final M to E copy is omitted.

LDE is essentially the same - only

August 1963

LDA, 2k LDA

LBB, 25 2k
LDC, 26
EDD;e 27
LDE, 20
The left helf of A is
unchanged. The right
half becomes the same as
A e
. :} (Before) L[A] = B the lefté2 In a similar
5% ILDA A \ manner, ~ LDA A sets the
- [A] == E left equal to the right.
7/, (Ai:ter) 12LDA would clear the
left half word through
sign extension.
¥ T TJ, qu[Tj] ==> q1(A) The nine bit number in
6. | orm . \ Sl - i) | Ter ol By s
J J expanded to 36 bits in A.
[F,c] - 163 IR o [ry] == E
B (Tk)J This is double indexing.
R[(T,).] == R(A)
= T+ + :
7 F S e l l k’J (Tk)j = T+[x] [Xj]
b ©
[(Tk) 1w (It is not always faster
=V, A J because the defer cycle
takes time also.)

August 1963

=

STORE AE (34-37)
STORE E (30)

STORE is a non-destructive copy from AE to STUV memory.

it becomes a partial store.

Gsra T,
3

-

Al =—> ¢
] J

STA, 3k STA
S8, 35 34
STC, 36
STD, 37
STE, 30

With a partially active configuration

Subword form is meaningless - only active pathways are used. The

E register is set from the memory word after the store operation (except for STE which does not

change E).

EXAMPLES: **(Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
77777 [A] - Tj is set from A, A is
= j fi=sch gdite 54 iEk
J not changed. ince &
e e Tj T t T ? X% quarters are active, all
[:::::::::::] are copied into Tj.
Since there is no sign
EEm
R[A] ==> R(Tj> extension, Lhank vould
1
2. STA-T. T T have the same affect.
J **
e =
[Fll] 140
l2STA would be exactl
= = £
REA) =57) th
> J e same.
5 STA T, \\\:::\\\
J o 1= 1l
This sefs the left equal
b= to the right (as does
s R[A] == L(A) -
i STA A ‘\\:::?\\\ LDA A). Since there is
Pt *% no sign extension on STA,
l2STA would do the same.
[F22] = 232

*¥ After the store operation is complete, the new content of Tj is copied into E except for

the STE instruction which does not change E.

3-8

August 1963

STA, 34 STA

SR 35 34
sTC, 36
STD, 37
STE, 30
e Tj ql[A] . q3(T) Quarter 1 is copied into
5| gusrber 3 of 1. Phe
5. | ZstaT \ -
J *x% rest of Tj is unchanged.
[F5] = 762 EE————]
Stores in the right half
B Tj only - useful for setting
6. lory Tj T T R[E] ==> L(Tj) address sections - (For
(Store E) B o example, at start of sub-
= routines entered via hJPQ).
777777777 (Tk)j e Double indexing -
Sn. (T,) ; = T+[x, J+[X,]
T STA {T }*
s e v
A

August 1963

59

EXCHANGE A (54)

EXCHANGE A is a combination of STA and LDA.

the exchange of data.

Fgxa T,
J

Subword form, Activity, and permutation are all used.

The E register is set equal to the STUV memory word used.

ul
=

Sign extension, if any, occurs only in A and after

EXAMPLES:
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
72077]
51 ==
| ma 20 £
[A]l =
7777
T
B g R[Tj] ==> R(A)
2 texa t 1 -
g b ey R[A] ==> R(T,)
e ‘
—17 Tj SR[TJ.] ==> L(A) Sign extension occurs in
A, but not in T .
3 Mex T 1 1 Rinl=s e “
iF 110 777777 R[A] ==> R(T)
ek
i e G Hilos
RES
4 Exa T, ‘\\~ i
J . Ty RiA} =5 ()
=7 J

*¥ The two copy operations that perform an exchange take place simultaneously.

Remember also

that E is changed - it is set equal to the final contents of the STUV memory word.

3-10

August 1963

5k
- T
By EEs J q3[TJ] ==> qlA
e 5EXA s \\\\\ *%
; S qL[a] ==> q3(T,)
[F5] = 762 EE A
When "A" is used as the
n address section, EXA has
Ve (Before) the same affect as STA.

2
6. FEXA A \\ No exchange is made, and
R[A] ==> L(a)

there is no sign extension

74 A.
B (After)
7////////////[(Tk)j i Double indexing:

7. | ma)y I I I I (T)y = X+,]

ALY, i

August 1963 3-11

3-2.2 Index Register Class

RSX
DPX
EXX
AUX
ADX *x
SKX ——— REX, SEX
JPX INX
JNX DEX
SXD
SXL
SXG
RXF
RDX
RFD

** Supernumerary Mnemonics for SKX.

August 1963 3-13

RESET INDEX (RSX, 11)

Ozsx. T
3

RSX
11

RESET is a non-destructive copy from STUV memory into X memory.

Subword form, Activity, and Permutation are used.

The E register is set equal to the STUV memory word used.

(Usually "T", but see example T.)

EXAMPLES: (Standard Configurations - Chart 7-2)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
0
2 RSX would do the same.
s ar oo RT] => X,
1
3 RSX, T l l [T] —=>E
Ol
g, X.
SL lgRSX would do the same
5 e = S L[T] => X, .
2. Rsx, T \\\\ s
. T [T] =>E [Fp] =
WX 24 X.
Errs gith-sne) |+ T B W
set from T. The left nine
% 3psx. T l
J =5 [T] ==>E bits are not changed.
Y2 x.
e s Smas ik g — R(XJ,) Sign of quarter 1 of T is
SaE() === L(Xj) extended throughout the
k. psx T left half of X.,. The right
5 B ey
J = el — >R - 33
v] X half is set as above. RSX
[= 360
13 would do the same. [Fss] = 320
l:[:lj: s Nothing happens (other than
o1 changing E)
5. RSX. T l l (] —F
J ety
[F] =230 I:E] X
21
3-14 August 1963

RSX
L1

This time Xj is cleared

I
O:RSX. ik th(T) ==> Xj because of sign extension.
: H
[Foc] = 030 el oy (7] =— B
[::::::::::] With a deferred address,
RiE | —>%X, RSX is indexable. Note
e | LAk
REK. . Ty (0] ==>E that E is set from T, this
ks = 5
time.
Nothing happens because X
= register O cannot be changed.
RSX, L (5 —3 [XO] = 0 permanently.
August 1963 3-15

DEPOSIT INDEX (DPX, 16) DPX
16

aDPXJ. 7 O‘[Xj] > T

DEPOSIT is a non-destructive copy from X memory into STUV memory.

Activity and Permutation are used.

The X memory word is expanded to a full 36 bit subword by extending bit 2.9 (the X register
sign bit) but only active quarters are used. (The subword form is immaterial.)

The E register is set equal to the STUV memory used. (Usually "T", but see examples 8 and 16:)

EXAMPIES: (Standard F Memory - Chart 7-2)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
T Only the right half of T
i hanged.
i is ¢ g
1. DPX, T : 3 E{J] = R(T)
X
dJ
: T Only the left half of T
is changed.
2
2. DEX, T \\ [Xd] = L(T)
Ee
J
i .
SN S E(] = R(T) Al of T8 used. - Note
J that DPX. T (or DPX T)
3. | oex, 1 i 2
j SXj = L(T) is a handy clear instruc-
= ey X, tion. ([X,] = +0 and can-
not be changed.)
I—_—m i Only quarter 1 of T is
hanged.
3 c
L. DPX - T f RlX. | = ql(T
; [J] 1(T)
=
J
T Only quarter L4 is changed
16 for only one path is active,
5 DEX, T R[Xj] = ql(T)
[F] = 163 Lo &

3-16 August 1963

DPX
16

Y, sx. => R(T) All of T is affected.
J
17
6. DPX, T B&
J [XJ.] = (1)
paliele
5 3 o0 Lo e :
1y
Vi Surprisingly enough, this
o1 does do something. (See
3 DPXJ . T 1 SXJ' = L(T) example 5, RSX.)
EREG En
[Fgl] = 230
B, [X] 5 Deposit is indexable with
J k a ;
1 v eferred addressing.
o e () T t (1] ==
s
V7 77 SX. —s q3(r) | Vote that bit 2.9 of X,
33 J is used even though quarter
9. BEX 1 T T < .
J [XJ.] =>ql(T) | 2 is not active.
[dnn300 P Y SRR |
35
':::l [Xj] = R(E) V memory, except the A, B,
10 DFX 377720 C, D, and E registers can
T t T T ij = L(E) not be changed by any instruc-
T W tion. Note that E is set to
"what -would-have-gone-into-
T- "
August 1963 e

EXCHANGE INDEX (EXX, 1k4)

EXX is a combination of RSX and DPX.

EXX T

1L

Except for sign extension, it does just what its name

implies - i.e. it will interchange words between X memory and STUV memory.

Subword Form, Activity, and Permutation are used.

memory word used.

The E register is set equal to the STUV

EXAMPLES: (Standard F Memory - Chart 7-2.)
CONFIGURATION ABBREVIATED
NO. | INSTRUCTION DIAGRAM EXPLANATION COMMENT
B R[T] ==>X
1 ek, T t t [%,] ==>R(T)
J - — [r] —=
/2 Xj
A I[T] ==>X
2 °EXX, T ‘\;:::f\\ [%,] ==>L(T)
J e) BiE — ¢
v, X,
R[T] ==>X Note that left half of T
77772222222
[XJ] ==> R(T) is cleared.
2 e f ! 1 i sx.) ==>1()
—777/ BB []T] ==
T q_l[7] ==>R(X.) Nine bit exchange.
5 e R[Xj] ==> q1(T)
L EXX, T t e
X5
T q Rlx.] ==> qit(T) Sign is extended in Xj
5 = aMT] ==>R(X,) | but not in T.
> EXXJ, I \ Sql(T) ==> L(Xj)
[F ¢l = 263 270 X (1] ==>E

318

August 1963

EXX

14
[==t (1) Sign of X, is extended
NN, J J
e L[T] ==>x. into the right half of T.
6 ey T g
3 s(xj) ==>R(T)
(7,1 =202 | 772 X, [r] == &
7 T Same as 2J'DPX_ 15
V240 S(Xj) AL 9
2
K, B
‘ J__T_ [r] == E
= %
[Fgl] 25 230 J
7 Tk R[Tk] Al EXX is indexable if a
eTerre a essS 1S used.
8 PR i I J k
Ch [z,] ==>E
w22 XJ,
= = Sai[T] ==> L(X,) Note that bit 2.9 is used
L A 7 al[T] ==> R(X.) : .
for sign extension (not 1.9).
9 33Exxj T ; Bz, | — ath T
T T A x s(X.) ==> q3(T)
= 320 = s j
[rql / [T] ==> E
i
iHSS Same as ~RSX . 37((20. (Tog-
et SN Rl 30l —— X J
1 [X] = R%E) gle registers must be changed
10 XX 377(20 l l l l i :
. L[377720] sin TN by hand. Note that E is set
Y, Xj to what would have gone into
)
August 1963

3-19

AUSMENT INDEX (AUX, 10)

AUX forms an 18 bit ring sum in Xj-

AUX
10

AUX .,

J

(21

5!

]

>X .
J

STUV memory is not affected.

Activity and permutation are used.

ory.

If quarters 1 and 2 are active, subword form is immaterial.

There is no overflow detection. All of Xj is affected.

Sign extension applies to the operand taken from STUV mem-

If one quarter of the STUV memory operand is inactive (as in standard configuration #3, for

example), +0 is used for that quarter.

The E register is set equal to the STUV memory word.

address is used.

EXAMPLES: (Standard F Memory - Chart 7-2.)

See example 6.)

(This is "T" except when a deferred

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
Al Standard configurations
B
- [x 1+ BliE] — % #0, 11, 20, and 30 would
= AUX l l
41 [T] ma do the same.
vz X = =
4 X, [F), = 1k0 [FEO] = 200
[F3O] = 600
——— i Standard configuration
- [X] &+ L[T] =>X, #12 would do the same.
2. AUX, T \\\\ J
J [T] ==>E
A X 5
j [F,] =1k
[t i Standard configuration
: § l []+ ql[T]SE —— XJ. #33 wou])_d (Zo the same (but
: e ool g
j > NOT : See note xt
. 72 [1] ==>® . o
e = X, page.)
F = 320
1 =3
P This has si extension
eowEe -~ b 1 ot
. O‘Auxj = ‘ xd = q2[T]SE ==> xj to the right. (There is
. i a o
[F] ~ 777 [T] cxs i no suitable standard con
o= xj figuration.)

3-20

August 1963

AUX
10

Register T is ignored, and

SR S
o1 [X,] + (+O)==> % Xj is not changed. Except
dJ dJ
5 AUXj T l l for E, this instruction is
; SRSl B Roart oSl ; [T] ==> E
Sl innocuous.
) Same as example 1, but
= £ [x,] + R[T,] ==X indexed via a deferred
6 A {Tk} l l [T T address.
k

\
N
\

NOTE: E is cleared and then loaded as if by OLLDE. The sum of R[E] and [X] then goes into Xj

(circuitously) and E is set equal to the STUV register used (ie. [T] or [Tk] if 8 deferred

address was used). X.

is always set.

Note - If either quarter 1 or 2 is not part of

an active subword, (as, for example, with standard configuration #3) one operand of the

sun is not completely specified and +0 will be used as that part of the operand.

August 1963

3-21

ADD INDEX (ADX, 15)

ADX ,
J

[x,] + 1] ==>1

ADX
15

ADX forms an ;8__bit ring sum usually in STUV memory although only the active quarters are stored.

There is no overflow detection.
other from STUV memory.
has both quarters active, or is an extended 9 bit subword.

inactive quarter of the operand is set to +0.

Activity and Permutation are used.

The operands are always 18 bit words - one from X memory the

A configuration should be chosen such that the word from STUV memory

to the operand taken from STUV memory.

The E register is set equal to the STUV memory word used.

If only one quarter is active, the

Only active quarters are stored, but sign extension applies

(This is "T" except when a defer is

involved. See example 6.)
EXAMPLES: (Standard F Memory - Chart 7-2)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM EXPLANATION COMMENT
w7 T [Xj] - R[T] e - teFE halt of T is not
1 * changed. The sum is
1 ADXJ. dE ‘ T [T] ==> E standard 18 bit ring
B Xj sum, also called '"ones
complement sum."
Vi i {X] + L(T] T Right Bedf of T Ics not
5 J changed.
2 ADX, T ‘\:::F\\
[1] =>E
Sames X,
Bteesas i (X.] + ql[T]gE = g1 {T) This gives a 9 bit ring
13 J sum. Configuration 33
3 ax T !
['I‘] @ would do the same, #3
[F13] = 160 E= Xj would not. See note next
page. The subword
length should be 18 bits.

3-22

August 1963

ADX

15
NOTE: In example 3, the 9 bit result is an honest 9 bit ring sum only when Xj contains an
extended 9 bit word. (See RSX, example 4.) ADX cannot be used to add a 9 bit word to
an 18 bit word. Use AUX.
Essentially the same as
T example 3 except that
EamvzEa :
aADX - b]+ QE[T]SE ==>q2(T) the left half of X, is
L. ? J significant. [Fa] illu-
[F_] = 220 [T] ==>E strated is 220. There
a [l we
J is no suitable standard
configuration.
[y 1 "Nothing" is done here
o1 because quarters 1 and
2 Ale” T T [r] —=>E 2 are both inactive.
o o
[¥,, 1 = 230 3
S 2
e Tk [X 1+ R[T] = ame as example 1, but
1 . 3 k k indexed via deferned
6 AP T T T 3 ;
k [Tk] = indexing.
B
J
NOTE: E is cleared and then loaded as if by %LDE. The sum of R[E] and [Xj] then goes into E
and an o£S'I‘E is performed. Inactive quarters of the STUV memory word therefore remain
unchanged. If either quarter 1 or 2 is not part of an active subword (as, for example,
with standard configuration #3), one operand of the sum is not fully specified and +0
is used to fill out the operand.
August 1963 SRl

SKIP ON INDEX (SKX, 12) SKX
19

Fskx . T
d

SKX (or REX, or SEX) provides 32 combinations of setting, adding, comparing, skipping, flag
raising, and dismissing - all relating to X memory and without changing the AE or the E register.

(See examples below.)

F memory is not used. The configuration syllable specifies the desired combination. (Examples

1 - 8 show the use of bits 4.6, 5, 4 and examples 10 - 12 illustrate bits 4.8 and L4.7.)

"T", the address syllable, (or the final deferred address) is used as an OPERAND.

EXAMPLES:
MNEMONIC
ABBREVIATION ABBREVIATED
NO. INSTRUCTION (See Chart 7-3) DESCRIPTION COMMENT
SKXj P STUV memory is not used =~
o REXj i "T" is the operand, not its
: s T SEX, T Tk location. The brackets [
(Set) were left out on purpose.
"Minus" T - i.e. its ones
2 lSKXj T (Set negative) S = Xj complement is used to set
. S
J
If the sum is zero, it will
2 ING - T
3 SKX, T 3 [X.] + T ==>X, be -0 (all ones) unless [X.]
J (Increase) J 4 e J
was initially +O.
3 DEX T "_p" is added to [Xj]. Zero
L SKL: & J X = 0 — % .
J (Decrease) [J] (-1) J is -0. It cannot be +0.
Skip if [X,] differs from T.
g bl 2l :
- SXDJ, T . %) Note: (+0) = (-0) and if
2 s (Skip if X = [X,] is initially (+0), it
- (i.e. #+2 == P) :
differs.) is changed to (—O).
Skip if [xj] differs from
e -
: - (Skip if H [Xj]ié . -T. Note: (-0) = (+0) and
SKXj B differs from Skip - if [Xj] o fndtinlly (—O),
ive. i.e. #4202 ==
negative.) Pee fia e) it is changed to +0.
Skip if [xj] is less than T
SXL; T 15 [xj] < and if [xj] -T does not over=-
&S 6SKXj i (Skip if X Skip - flow. (Skip range: T=3777T7
is less.) (G.e. #+2 ==>P) to T) Note: If [Xj]is ini-
tially (+0), it is changed
to (-0).

3-24

August 1963

SKX

12
Skip if [Xj] is greater than
sxcj T If [XJ.] > -T -T and if [xj] + T does not
B (Skip if X Skip overflow. (Skip range: -T to
& SKXJ L is greater.) e H2 —>D 37TTIT(-T) Note: 1If [xj]
is initially (-0),7Lt is
changed to (+0).
[%X.] is set equal to T . e.g.
d % k
a) SKX, {0,} = set X,
* * X] => X J Tk J
: I =X X,
9 SKXj {Tk} REXj {Tk} Xk 3 2 - from X,
b) SKXJ. {oj] = Comple-
ment X..
J
For j =1 to 37g, RXF is the
BXe. T .o same as OSKX for there are
10 : s
e SKXj i (Reset and no flags for these numbers.
1 =>"F}
raise flag.) 88 Note that flag zero can be
raised.
See Chapter 4 for the rami-
fications of "DISMISS."
- RXDj e T ==>X. If j = the current sequence
e 8KL T (Reset and J number, "T" is nearly imma-
J DISMISS
Dismiss.) terial for the subsequent
(see note 3) change of sequence will
change Xj'
This is used to change
IniR Bt o i
4} T ==> Xj sequence number - often in
12. 3OSKXj T (Reset, Raise 1 ==> Flag, | the form - 3OSIO(J. #+1. Tt
flag, -and Dis- DISMISS is ignored if j = current
miss.)
sequence number.
Notes: 1. "Skip" means "omit the next instruction." i.e. "Go to #+2."
2. The configuration syllable is united with the rest of the instruction. It may be
given redundantly. e.g. DEX is the same as 3SKX or lIND(or 3DEX.
3. The hold bit cancels DISMISS. (h 2OSKX is the same as SKX alone.)
4. RXF cannot be used as a Jump. Index register "j" is indeed set, but it will not
be copied into the P register, unless a change of sequence number occurs. (See
Chapter k4.)
August 1963 385

JUMP ON POSITIVE INDEX (JPX, 06)
JUMP ON NEGATIVE INDEX (JNX, O7)

JPX 06
JNX 07

JEX T

JPX and JNX are "Loop-closing", "Index-sensing" jump instructions. Their operation is as

follows:

is Sensed:

[x;]

(Zero is excluded.
JPX jumps on POSITIVE.
JNX jumps on NEGATIVE.)

If it JUMPS: If it does not:
#+1 ==> R(E) #+1 ==> P

P==> P There is no DISMISS
DISMISS occurs unless

cancelled via "h".

I I

\,
The increment is added:

+ X, => [X,
- J [J]

E is not changed.

(This is done whether
it jumps or not.)

If the sum is zero, it is -O.

"

n is a signed integer: TG B o 178.

Ak

2

3. F Memory is not used.

i A deferred address determines where to jump to, but not if, and the second
index register is not modified.

EXAMPLES :

1. Straight Table Scan (100 register
table located at "TABL.")

a.) gb% b)) INK
Start = REXj 1L Start o lSKXj g
Loop = ILDA TABLj Ioop — LDA (TABL + 77)

ped Jij Loop

This program scans the table
"backward through the manu-

G L | B
script.” (i.e.,

highest
memory location first.) Note:

xj is initially set to + (n-1).

3-26

J
% INK, Loop

This program scans "forward
through the manuscript." (i.e.,
lowest memory location first.)
Note: X —is imibially seb to

- (n—l).J

August 1963

06 07
th .
2. To gean every n table register
5
a) START — RExj (75, --n) b) START - RExj (i = n)
LDA TABLj LDAj TABL + TL - n
- =
0 TP, #-1 hn TNK, #.1

These programs run for (gé) iterations if we assume that TL (Table Length) is an
integer multiple of n. As written, they scan the first register of each block of
n registers. To scan register "i" of each block, the LDA instruction could be
written LDA (TABL + i)j for example "a" (JPX) and LDA (TABL + i + TL - n)j for

example "b" (JNX).

3. Interlaced Table Scan

NOIE:

August 1963

Scope flicker can be reduced by an interlaced table scan. The fact that the change
in Xj is made after the jump decision causes a somewhat peculiar parameter configu-
ration, but the program logic is essentially the same as above. For example, if "C"
is the interlace, "TL" is the Table Length, and if "C" is not a factor of "TL," the
program below scans the whole table with an interlace of C. (If "C" is a factor of

TL, the program degenerates to example 2a.)

START - Hﬁmjc
INX, TL
J
IDA (TABL + C - 1)(j
e JPXj oAt
JMP #-3

If 6 = 3, and Th = 7, the tdble is seanbcd-in the following order: 6:3; 05 4 1
5y 2, 6,3, 0; ete,

1. "Zero" used as an address (as above) is always +O.

2. M4 automatically puts a hold bit on JPX and JNX to cancel the automatic dismiss
(see Chapter 4 and Chapter 6).

3. The address of a deferred JNX or JPX is completely determined before the index
register is changed. Therefore a 'lJPXala S would Jjump to Sa as defined by the

original contents of Xa - if it jumps at all.

3-27

3-2.3 JUMP SKIP CLASS

JMP
JPA
JNA
Jov
SKM
SED

August 1963 3-29

JUMP (With Variations)

Cnp T,
J

05

JMP is an unconditional transfer of control. It means go to T (or Tj) for the next set of

instructions.

to provide 32 variations of JMP as illustrated below:

The configuration syllable "Q" does not refer to F memory but is used directly

DISMISS
(See Chap. 4)

Saves last memory

4.8 4.7 46 45 kb

==

l

[

l

reference in L(E)

Saves return point (#+1)

1 = "BRANCH" = An indexable JMP
lJMP = BRC = Go to Tj
1 = Saves return point (#+1) in X

J
EJMP =dPb — 6o o0 T, save

return point in Xj'

SR
in R(E)t
EXAMPLES: (See #10.)
SUPERNUMERARY JUMPS
NO. INSTRUCTION MNEMONIC TO COMMENT
5 S OJMP Tj JMP Tj T Xj is ignored.
2 lJMP Tj BRC T, Tj Indexable Jump = BRANCH
(Branch)
2 2vp Tj JPs Tj P Jump and save return point (#+1) in
(Jump and Save) the specified index register (X,).
J
Branch and save, Xj is used to
3 evaluate the jump destination Tj
L. JMP Tj BRS Tj Tj and is then reset to the return
point (#+1).
(Branch and Save)
B lLJMP P - P Xj is ignored, #+l is saved in R(E)
6. ‘e T 2+BRC Tj Tj Return point (#+1) is saved in R(E)
6 N Return point (#+1) is saved in R(E)
i JMP Tj JES Tj > and also in Xj'

+ In M4 terminology, the symbol "#" is an abbreviation for the location of the current

instruction.

(See Chapter 6.)

3-30

August 1963

JMP
05

Towp T

BRST.
J

Xj is used to determine the jump
destination Tj and is then reset to
the return point (#+1). The return

point is saved in R(E) as well.

05 T

The memory location of the last
data reference is saved in L(E).
(i.e. the contents of the Q

register)

10.

lL+JMP L

JPQ T

n_n

Jump, save "p" (i.e. #+1) and "¢
(location of last data reference).
This is the recommended Jjump, for
the information saved is often of

use in checkout.

1.

e T

BPQ T

This instruction is the same as JPQ
except that the jump destination

is indexed.

125

16np 7

JES T

Jump, save in E, and in Xj'

13.

Onp z,

JED T

Jump, Dismiss.

1k,

Lo %

BRD T

Branch, Dismiss.

158

22JMP Tj

JDS T

Jump, Dismiss, Save in Xj'

16.

23JMP Tj

BDS T

Branch, Dismiss, Save in Xj‘

Jump and save return point (#+1) in
NOTE: A superscript numeral can be

= l6JES = JES = 2JPQ =

np

August 1963

the specified index register (Xj)'
used redundantly on supernumerary mnemonics. For example:
14

JES ete.

(M4 "unites" them into the word.)

3-31

CONDITIONAL JUMPS JPA (46
JNA (47
JOV (45)

ke b

JPA - Jump on Positive Accumulator
JNA - Jump on Negative Accumulator
JOV - Jump on Overflow

Crpa T,
J
%A T,
J

%rov T,
=

The conditional jumps go to T, if the conditions are satisfied by any active subword. Permuta-

tion is ignored. The return point (#+l) is saved in E if the jump takes place. The accumulator

and overflow flip-flops are not changed. Note that these conditional jumps are indexable.

EXAMPLES:

#. A Four-way Switch:

JovV OF *¥% Qoes to OF if overflow exists (zh =1)
JNA N1 ** Goes to N1 if A is negative.
JPA 215 *¥ Goes to P1 if A is positive.

¥¥ Continues if A is zero.

#2. Overflow:
30JOV Tj is equivalent to 37JOV Tj’ for both configurations specify the same active
subwords. If any of the four overflow flip-flops are set to 1, control will go to

Tj' The overflow indicators (ZM,Z3,Z2,Z1) are not cleared by JOV.

Active subwords use the overflow indicator associated with the sign quarter, e.g. Z2

is associated with the right half word, Zh with the left half word.
#3. To Detect Minus Zero in an Index Register:

(JNXj Pror JPXj T will not jump on either + or - zero.)

DFX A
lDPXj A ** (0,,-0) or (0,,+0) now in A
JPA-T] %% Goes to Tl if -0 in right half word.

¥ Continues if +0 in both halves.

S August 1963

JPA (L46)
JNA (k47)
Jov (45)

#4. 18 Bit Zeros Again:

205pa 1P *% One half (or both) positive - (Goes to 1P)
2Oma 1N %% One half (or both) negative - (Goes to 1N)
JPA PN *% Left (+0), Right (-0) - (Goes to PN)
JNA NP *% Left (-0), Right (+0) - (Goes to NP)

#% Both (+0) or Both (-0) - (Continue)

August 1963 3-33

SKIP ON BIT (SKM, 17) SKM

'
c
SKMq.b i
"Skip-on-a-bit" uses a one bit operand. It has 32 variations - some with M4 Supernumerary
Mnemonics. The basic variations are as follows:
e W8l (leibr o551l
i
00 - No skip a———-‘ |——-> 00 - No change
01 - Skip unconditionally Ol - Bit is complemented
10-= Bkip iE bit =0 10 - Bit is set to O ("Make Zero")
T San e bl —J 11 - Bit is set to 1 ("Make One")
("Skip" means "go to (#+2)"
i.e. skip over the next L, If 4.6 =1, T is cycled right once. (Rotated)

instruction.)

The bit in question is identified by its quarter number and bit number as diagrammed below:

The meta bit is No. 10 (dec.). (SKM is the only instruction that can affect it.)
The parity bit is No. 11 (dec.).
The parity circuit is No. 12 (dec.).

These can not be changed by SKM.

(Any quarter number will do for the parity and meta bits.)

Bits and quarters are numbered from right to left and should be in subscript when used with SKM.
(See chapter 6, page 6-7.) The bit designation goes in the "j bits" (3:6 = 3.1), as follows:

4.6 353433 30 3

I 1 =

Quarter NO.-q—J L_____, Bit Number (When given in the form indicated above,

(00 refers to qlt) Bit Numbers are interpreted as Decimal,

e.g. 4.10 is the usual metabit designation.)

SKM is therefore non-indexable except through deferred addressing.

If a non-existent bit is selected, e.g. bit 0.0,1.0,2.0,3.0 for example, Unconditional Skips
(SKU) and Rotate (CYR) will still work, but "makes" will do nothing, and conditional skips
will not skip.

3-34 August 1963

SKM

1L
SUPERNUMERARY MNEMONICS (See Chart 7-3)
MKC - lSKM - Make complement
MKZ - 2SKM - Make zero
MKN - 3SKM - Mske one
10 - e
SKU - ~“SKM - Skip unconditionally, (go to #+2)
SuC - llSKM - Skip and complement
SUZ - '°SKM - Skip and make zero
SUN - 13SKM - Skip and make one
20 N 3
SKZ - "~ SKM - Skip if bit =0
SZC - 21SKM - Skip on zero and complement
S77 - 22SKM - Skip on zero and make zero
SZN - 23SKM - Skip on zero and make one
30 <
SKN - SKM - Skip on one
SNC - 31SKM - Skip on one and complement
SNZ - 32SKM - Skip on one and make zero
SNN - 33SKM - Skip on one and maeke one
CYR - hSKM - Cycle memory once to the right (rotate)
MCR - 5SKM - Make complement and rotate
MZR - 6SKM - Make zero and rotate
MNR - 7SKM - Make one and rotate
SNR - 31‘SKM - Skip on one and rotate
SZR - 21+SKM - Skip on zero and rotate
SUR - luSKM - Skip and rotate
NGIE: USkip® ic first, 'make’ next, and "rotate! last: l‘LSZZ - 26SKM = Skip on zero, make zero,
and then rotate.
EXAMPLES :
1. -To copy a8 bit: 2. Ho clear n metabits sbarting atb 9
SKZ Q, 5 Sets bit T, Rex, (n-1)
*¥% 1 *
SN T, equal to MKZh.lOIQF i.e. MKZh.lO{Ta]
e i Loex 1

August 1963 835

SKIP IF E DIFFERS

SED compares all active quarters of E and Tj according to the given permutation.
difference exists the next instruction is skipped over.

Program Counter) can be changed.

SED

SED T

Only P can
be changed.

If any

No registers other than P (the central

(E is not changed.) Subword Form is immaterial.

EXAMPLES: (Standard F Memory - Chart 7-2.)
NO. INSTRUCTION DIAGRAM COMMENT
I:] TJ, #+2 =» P if E differs from Tj
e, SED Tj I l ’ | #+1 => P if they are identical
¢ | =
I:l ’I.‘j The left half of T, is compared
- 12
= Coprs . \\ +to: the right half of . F.e (SED
J is identical.) [Fy,] = k2.
P e
S E The right and left halves of E
22 are compared. 17SED E, 2SE‘D E,
= SED E // 15 oo
SED E, or = SED E would have an
I: E identical result.
3-36 August 1963

3-2.4 SCALE, NORMALIZE, CYCLE

SCA
SCB
SAB
NOA
NAB
CYA
CYB
CAB

August 1963 3-37

SCALE SCA, 70
SCB, T1

SAB, T2

%sca T,

: a] x Ea[Tj] >3

"SCALE" multiplies each active subword by "a power of 2," i.e. by 2 where n is a signed integer

specified in Tj' Each active subword can be scaled a different amount. The D register is used

to count the binary shifts. The details are as follows:
a) An %IDD TJ. is performed (with permutation and sign extension as called for).

b) Each active subword (of A or AB) is scaled according to its sign quarter in D, and

these sign quarters are left set to -O.
c) If an overflow exists for an active subword, the proper result is recovered by comple-
menting the sign digit after the first shift, and the indicator is cleared. This rule

is used for all operands - left (+), right (_), and zero. Overflow can not affect SCB.

Notice that SCALE amounts to shifting all the bits except the sign left or right and filling
the vacant positions with copies of the sign bit (i.e. with +0). SCALE senses overflow and
corrects the sign bit if necessary.

bits are lost off the left end.

SCA and SAB always clear the overflow flip-flop - even if
SCALE never sets the overflow flip-flop.

EXAMPLES: (SCB is illustrated to avoid overflow complications.)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENT
I: {-4,} [B] x 2—1+ — {-4,} is a M4 convention
l l l l for A register with -4
1. SCB(-4,] -0 ==> gi(D) in quarter 4. See Chap-
VAN D q3,2,l[Tj] ==>q321(D) | ter 6, page 6-7 and 6-10.
qk[B] x 5 s a4(B) Quarter 1 of B is not
E_ - - Lgn i
SOSCB () a3[B] x 2 2 —> q3(B) changed. The sign bits
2 L l i ‘ 3 are never changed. Bits
o TR T 1_su L3 ®[B] x 2° ==>q2 () may be lost off either
////////////A . -0 ==>D end without any alarm.
[] > (2) The left halves of B and
[1@ | seiad —no en
2SCB () D are not changed.
3 *\\ -0 ==>q2(D) Note that gk of (N}
N = 2775003000 >
(8) *———J 2 775 ==> q1(D) specifies the argument
- = of the scale operation.

3-38

August 1963

SCA, 70

Note: Scale can of course be indexed - e.g. SCA Tj where the argument comes from Tj' It is

more common programming practice to use an RC word - e.g. SCA{-1,}.

k. Overflow: (SCA and SAB)

a) To "recover an overflow":

LDA {200 000 000 000}
ADD {200 000 000 000}

ScA {-3,)

b) Only active subwords are processed:

LDA {200 300 k40O 100}

3%ApD (200 300 400 300}

2lsca (774 TTH TTH TTH)

Ysca (774 77H T7H TTV)

2)

**Acc. will now be 400 000 000 000 (a nega-
tive number), and z), (overflow bit #4) will
be ”l”-

¥%-3, = 774 000 000 000. After the scale,
Acc. will be 040 000 000 000 and Zh will be

Lo Z3,Z2,Z:L are not sensed nor changed.

(Any negative argument will suffice.)

*¥Acc. will be 400 600 001 L400.

*XA1]-four Z PEip=flops-will be "1Y;

*¥0nly L(A) is scaled. Acc. will become
040 060 001 Lo0. Z), will become "O",
Z3’Z2’Zl will remain "1".

*%0nly R(A) is changed. Acc. becomes
040 060 700 140 and Z2 becomes "0". Z

and Zl are etill "%,

S

Zl are overflow indicators. They tell whether overflow has

Note that Z),2,2

occurred. An overflow resulting from negative numbers (as in g2 above) is not

treated any differently.

o Subword forms for the AB register:

a) 436" s A | B]
B) 7o "B 18" Is L(A) i L(B) j |s R(A) § R(B) |
c) "27-9" |s q432(a) | q432(B) s amf ae]

a) "9-9-9-9"

[s)l @) |p 3) a3@)|[s @) 2(@)|[s a@i am]

Note that all of B is part of the subword.

August 1963

There is only one sign bit in anAB subword.

3=39

NORMALIZE ACCUMULATOR NOA 6L
NORMALIZE AB (Extended Accumulator) NAB 66

A x2 A

Syoa 7

Tj] - nz ==> Sq(D)

NORMALIZE scales just enough to remove leading zeros or to "recover" from OVERFLOW. It clears
the active overflow indicators. The number of leading zeros (nz) is subtracted from the argu-
ment from Tj (a[Tj]) and this difference is left in the Sign Quarter of D. If an overflow con-

dition exists at the start, "nz" is -1, the scale is one place to the right, and the sign is

complemented - just as for SCA or SAB. If nz is zero, it is +0. (See Note L4 also.)

NOA and NAB start with an “LDD Tj' "nz" is subtracted from the sign quarter(s) and the rest

of D is not changed. The E register becomes a copy of T,j'

"
EXAMPLES : 1 (Assume that NO OVERFLOW exists.)

ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS

n n .
I:I (+0) [A] 3 gnz = nz 1is the number of

leading "zeros" in the
e NOA{0} l l l l -nz ==> q4(D) original contents of A.

n n . .
D +0 ==> q3,2,1(D) ("Zeros" can be positive

zeros or negative zeros.)

The left halves of A
R[A] x 2"% ==> R(a) and D are not changed.

[_—___—I {+0) "nz" is the number of
" n . . .

- 2NOA{O] \\& SR - q2(D) zero' 1in the original

: contents of the right

et |
[Y30 e half of A. Note that

the result in D is a

nine bit numeral.

==> R(A) U7RY and-"'Z1! -gre the

L—:I:D:] () a-ZR ==> q2(D) leading zeros of the

17 right and left 18 bit
35 NOA{N) \% b ==>g1(D) words of As; =[N} i85 a
N=1a.b;, o0 = v/ s . s
% 3 ==>L(A i taini
5 508 %&\\%k\\\ D (a) register con : ng
i c-ZI, 5= qli(D) a,b,c, and d in quarters
Is352 ~and k.

a ==>q3(D)

1t Brackets{} are used in the TX-2 Mk Assembly Program to indicate "Register Containing",
See Chapter 6, page 6-10.

340 August 1963

NOA 64
NAB 66

with a 27,9 split
qk32[A] x 277 ==> qh32(A) Sk dounte will be

BB s 26 if [A] is zero.

(See note on page

bl il

&,b;5¢,4 \—l:L_JD e —> q2(D)
ql[A] x 272 ==> q1(A)

nz

d-nz ==> ql1(D)

5 - A sample program — Evaluate V = xyz
This product could have 105 significant bits (3 word lengths). One must resort to
programmed arithmetic to get them all, but normalize can be used to get the 34 most

significant bits. Consider the programs below.

Without Normalize: With Normalize:

LDA X LDA X

MUL Y MUL Y

MUL Z NAB {0}

STD:T

This program puts the 35 left bits MUL Z
of the 105 bit product in A and SAB T
essentially worthless numerals in
B. The answer in A may be too small With normalize, the product is given
by 1 (in the 35th place). in-AB, to-35tnz-places from the-sign.

(It may low by 1 in the (35+nz)th
place.) '"nz'", the number of zeros,
is in T (in negative form). nz
could be as much as 69 so the last
SAB may not be desired. For example,
if the NAB instruction above were
replaced with NAB{34.,} the answer
in AB can be considered a 71 bit
integer.
NOTE: 1. NOA and NAB leave E set the same as the memory register used.
If overflow exists, "nz" is -1 so [Tj]+l ==> Sq(D).

3. NAB is essentially the same instruction - using the double length word (AB) instead.
(See page 3-39 - "Subword forms for the AB register".)

4., Normalize is an arithmetic instruction. The sign bit is not counted. "Leading

zeros" will, of course, be plus or minus zeros - i.e., the same as the sign.

August 1963 341

CYCLE CYA, 60
CYB, 61
CAB, 62

eya T,

dJ

CYCLE logically falls in a class with LDA and STA, for it is most easily considered as a bit
shifting instruction and the sign bit has no special significance. Bits shifted off one end
are inserted at the other. None are lost. However, since the practical details of its use
are so similar to SCALE, it is usually grouped with SCALE and NORMALIZE. The use of the

memory word is the same as SCALE.
&) M n T, is the first step.

b.) Each active subword is "cycled" or "rotated" according to its Sign Quarter in D
and the sign quarter is left at -0. For cycle, the active subword has its ends
connected - and can be considered as a ring of bits. If the number of places
equals the subword length, the instruction does not change the subword. You can
therefore arrive at any new position by cycling either way - the short way takes
less computer time. The sign bit is handled no differently than the others and

no bits are lost.
c.) Overflow is ignored.
d.) The E register becomes a copy of the memory register used.

EXAMPLES: Assume [A] = 123 456 765 ”32(8) at the start

CONFIGURATION ABBREVIATED
No. | INSTRUCTION DIAGRAM DESCRITPION COMMENT
T 3093047 135 753 064 —=> A One 36 bit ring cycled
= e l l l l e once to the left.
L ey
A D +0 ==> q3,2,1(D)

CT T T i 2Lh6 ==> gh(A) The four quarters

3OCYA{N} 135 == q3(A) are cycled separately
i.e. four nine-bit
b s N D . q2(A) rings, each one bit

065 ==> ql(A) to the left.

3-42 August 1963

Assume [A] = 123 456 765 1*32(8) at the start.

CYA, 60
CYB, 61
CAB, 62

SRR

The left halves of

A and D are not

276 543 ==>R(A) changed. The right
5 2cya(-3,) \\ = Balt of A (a ring
i -0 ==> R(D
= - of 18 bits) is cycled
PN » .
3 places to the right.
i.e. one octal place.)
234 567 654 320 ==> A Hhe Y2 bit ring —AB-
wenn 000 000 000 001 ==> B W Gue 2 b o,
DPX B i.e. one octal place
-0 ==> qi(D)
- i) l l l l to the left.
N=3,2,,5 -6 7 N7 N e ——> Q3(D)
=J) 2
NN E
+5 ==> g2(D)
-6 ==> q1(D)
NOTES: 1. The E register becomes a copy of the memory word used.

2. CYA, CYB, CAB are indexable, and, of course, deferred addressing can also be used.

(Neither of these is common.

Most users use RC words.)

3. CAB uses the same word structure as SAB and NAB.

August 1963

3-13

3-2.5 LOGIC, INSERT, COMPLEMENT/PERMUTE

ITA
ITE
UNA
DSA
INS
CoM

August 1963 3-45

BIT LOGIC INSTRUCTIONS

Frra .
J

a[Tj] A [a] =>4

ITA b
UNA L2
DSA 65
FTHE 0

For these instructions, the word is considered as a string of independent bits -

each bit column is a separate entity. For ITA, UNA, and DSA, the argument a[Tj], 45 altl=the

active subwords - with sign extension if applicable.

as usual, identical to the memory word used.

For ITE, the operand is the active guarters only.

There is no sign extension.

For these three, the E register is set,

The

result, of course, goes into E and there is no final E register copy from memory.

A1l these instructions are indexable and of course indirect addressing can be used.

Name INTERSECT UNITE DISTINGUISH**
Abbreviation ITA UNA DSA**
ITE
Symbol A v (v}
Other Names "AND" Inclusive OR Exclusive OR
Partial Add
a (04
;
[T,] [,]
Logic 0 o 0 I
(07
Ya] [a]
L0] EEESEE e

Note that this is
the "carry" that
results from
addition.

Note that this is
the Partial Sum.

3-46

August 1963

A1l quarters are
active and in-
dependent.

original [A] goes in-
to B.

[A] goes into B.

(ITA) (uNA) (Dsa)
Typical Masking - e.g. Bit Setting, or Bit Complementing -
if Tj contains T7 clearing to minus if ‘I‘j contains T7
Use TTA T5 clescs all zero - if Tj contains DSA Tj complements
ii i gxiész for the 77, UNA Tj sets the et
. b last 6 bits to 1 with-
out changing the rest.
i 0 30
Shecine Psa8 (-9,-9,,-9,-9) 3548 (-9,-9,,-9,-9) SAB(-9,-9,,-9-9)
B b st e g Smmes oo oo L SR T R L R S
% b e If positive, A is ine ?egative, A.ig set | The a?ioiute valui or
30 cleared to +0. The to -0. The original magnitude or eac

quarter goes into A
The original [A] goes
into B.

*%x . Note:

DSA affects both the C and D
The effect on C is equivalent to forming

registers.
the carries and uniting them with the original

The effect on D is equivalent to LDD T,.

contents of C. - i.e. ([A] A[Tj]) v [c] ==> cC.
No. { INSTRUCTION CONFIGURATION ABBREVIATED DESCRIPTION COMMENT
DIAGRAM
% = L i ffected.
> ot -//A Tj R [Tj] v R [A] = R (&) ; 1is unaffec ed
‘ * The left half of A
e i ST [Tj] = E is also unchanged.
% A
7%,
Tj is unaffected.
% R 3F . R [A => R (A i
s T W " (z;]1 & R [2] (a) B
2 TRAST o is intersected
J ¢ # SR [T.]a L [A] => L (a) | withbit 2.9 of T, -
7 5 - Hence, if R [T,] Yis
700 [T.] => E posibive; L(A)E s
J cleared.
T, is unaffected.
-y/////, TJ' . [TJ] aR[A] = R (E) L(E) is unaffected.
llI [There is no sign
3 i Tj l ¢ extension on ITE.
r,] = 0| P24 ®
R [Tj] @ B I8l — R (A DSA affects registers
i A C D5 and
I Rl > B e g
1 l l [T.] =>
. LS (R[T,] & A]) v R[c] = R()
7Z

August 1963

3-b7

INSERT

INS 55

%NS T,
J

([a]alB]) v ([BlAlT,]) => T, -

Insert is a partial STA (store accumulator) instruction — only those bits marked by a 1 in

the corresponding column of B are stored in Tj'

changed.

to the final contents of the memory word used.

If [B] is minus zero (all ones), INS is identical to STA.

There is no sign extension, and [A] is not

The E register is set

EXAMPLES: (Standard F Memory - Chart 7-2)
CONFIGURATION MASK
NO. INSTRUCTION DIAGRAM (CONTENTS OF B) COMMENTS**
7 Al ==7 . TIN5 i
777777 s e
= INS T. T t T — identical to STA when
J [B] = -0.
s
N7) g REAC =T e
XY * ot T o
5. INS T. T T T T 0,,TTTTTT it looks like a ~STA Tj’
J because of the mask.
EE—
Bit Ll of A lg-copied
_7‘ Tj into position 1.1 of Tj'
3. 3 T T %,2,,3,1 Quarters 2,3, and 4 are
J inactive. No other bits
e are changed. LOINS T
would do the same.
[Fls] = 160
Bit -1 of A B copied
%_ TJ into position 4.1 of Tj.
= 6INS T \ hg, 3T Note that permutation
d has no effect on the use
Seeewe = & of B. 1orms £ e
identical.

*%In all cases, there is a final copy into E from the memory register used.

t+ "Insert" is also given by ([A] v [E]) A

3-48

(2] v [7,1).

August 1963

INS-DD

CONFIGURATION MASK
##
NO. INSTRUCTION DTAGRAM (CONTENTS OF B) COMMENTS
> R 1|A] = ql(T,) ..
7 s LY
ST BINS{TK]J-* T L":5):6)7 3STA =2 would pe
equivalent.
I/
e)
L_:_J T Since [B] = +0, nothing
J
£ =S TJ. T T T T +0 happens.
50 i 9y
7 R — AJ. Onl
T atl g Cﬁ;i =
s
e 2INS A 4,5,,0,7 g -
changed. (Because of
Saae RRery
(before)
August 1963 3-49

COMPLEMENT - PERMUTE (PMT) COM

56

CoM = T

Tj is permuted.

COM - Complement - performs two basic operations. The active subwords of Tj are
complemented (one's complement - all ones become zeros and vice versa) (with sign extension)
and all quarters are permuted whether active or not. Note that if all quarters are inactive,
COM permutes all quarters of Tj without changing the data. PMT is another abbreviation -
equivalent to COM.

There are 4 basic steps:

5 [Tj] => E , permuted according to .

2 Sign extension occurs in active subwords.

3. Active subwords are complemented. (OTEE = %
I [Bl— Tj straight - no permutation.

Note that, as usual, E is the same as Tj at the end.

EXAMPLES: (Standard F Memory - Chart 7-2)

NO. INSTRUCTION CONFIGURATION ABBREVIATED COMMENTS
DIAGRAM DESCRIPTION
T e ATl of T
:l 3 [TJ] % d - J -
i COM T * { i * (before) complemented
J I
7 i T = F
A 3 (7]
(after)
W i L[Tj] — R(Tj) The halves are

reversed and the

J
2 (vefore) : :
2 €oM- 1 right half is
- \\A

-y Tj R[TJ.] - L(Tj) complemented.
(after)
[:I TJ. qu[Tj] = ql(TJ.) Quarﬁers o
and are set to
3 16COM 'I‘rj \\\\‘\\‘~ . the complemented
el | P73 5 LR T
(after)

3-50 ; August 1963

NO. INSTRUCTION CONFIGURATION ABBREVIATED COMMENTS
DIAGRAM DESCRIPTION
oM T = R[T,] => L (T,) | When all
J J J J quarters are
" X& inactive, the
a =172 Ll =S R (1) data is not
(all inactive) ‘::] T J J changed - it is
J (Simultaneously) merely permuted
according to
the given con-
figuration.
T Bl =0 This has
- [: k,J k,J k,J double index-
5 COM [Tk}j l l l l ing.
=ttt b T =T +
e b=k k5]
1 ae) -
RS
[x] + [x]
Note: Since COM does not use any register other than Tj’ there may be some confusion
as to the meaning of "Activity". In this chapter, quarters for which arrows are
drawn are active. To be consistent with other instructions, one should say that
the permutation comes first, complementing second, and sign extension last. If you
use the phrase "Active Subwords of Tj"’ the order of the first two is immaterial
since both operations can be considered to take place simultaneously. In any event,
sign extension uses the complemented sign.
August 1963 3-51

3-2.6 CONFIGURATION MEMORY CLASS

August 1963 3=53

SPECIFY FORM (SPF) SPF (21)

SPECIFY GROUP (SPG) SPG (22)
e
SPF TJ g L [Tj] =0
f =

a1 LTJ,] o

q2 [Tj] > o
c
S g 3] 2B

ql [Tj] =S

"Specify" copies from STUV memory into F Memory. (STUV memory is not changed.) SPF
sets only one F Memory word. SPG sets four. F Memory addresses are consecutive modulo 3,78 =
dseaa sl P e 368’ 378,0, l, 2, etc. These instructions are indexable but not configur-

able. The E register is set, as usual, to the contents of the memory register used.

EXAMPLES:
NO. INSTRUCTION DESCRIPTION COMMENT
[S)

i SPF Tj -- F, is permanently set
to +0 and can not be
changed.

q 2[TJ.] => F
2 °seG T q 3[Tj] => F, Seme as #1.
Limele - o
q H1,] = T4
a l[Tj] > F37 F_ is, of course, not
3T - changed. The F
: - TJ 4 3[Tj] = Fl Memory address "c" is
= normally given in OCTAL
q A[TJ.] => F,

3-54 August 1963

FILE FORM
FILE GROUP

FLF Tj [Fc] - ql(Tj)
(F] =>a(T))
(Fol = a2(T))

°FLG e

(Fopl = a3(Ty)

[Foyzl => a(Ty)

BFR S
BhG- 32

"File" copies from F Memory into STUV Memory. (F Memory is not changed.) File Form (FLF)

copies a single 9 bit word, File Group copies four.

The F Memory Addressing is modulo 378— i.e.

E register is set as usual, to the contents of the memory word used.

They are indexable, but not configurable.

=0,1,2, ... 36g, 37g, 0, 1, 2, ... etc. The

EXAMPLES :
NO. INSTRUCTION DESCRIPTION COMMENT
F is permanently
°FIF T +0 => ql(T.) o
e 3 3 set to +0.
0 — ql(Tj)
- [Fl] = q2(Tj)
2 FLG T E
J (F,] = a3(T.)
J
F | == ali(T.
(F5] => al(Ty)
[F36] => ql(Tj) The F Memory address
n_n .
& [F37] = qE(Tj) ¢ is normally
e FEG T given in octal.
: +0 = a3(1,)
=> ql(T,
[F 1 => ak(T,)

August 1963

3=55

3-2.7 ARITHMETIC CLASS

ADD
SUB
MUL
DIV
TEY " (TATLY)

August 1963

ADD (67) ADD (67)
SUBTRACT (77) SUB (77)
S T el o« Tl N
%suB = %51 - Tl N

ADD and SUBTRACT are straightforward one's complement (RINGED) arithmetic instructions.
The use of configuration is similar to LDA. A zero result is negative except when both argu-

ments are zero at the start -(+0) + (+0) = +0; +0 -(-0) = +0. There are four overflow indica-

tors--a separate indicator for each active subword. The indicator is cleared before the
arithmetic is done and is set to a one for either type of overflow--(too negative or too positive).
(With one's complement arithmetic there is a sign reversal when overflow occurs. The scale
instructions take this into account.) Sign extension occurs prior to the arithmetic. The D
register is set as if an o‘LDD Tj were done. - The C register is set to the carries from
each column. (In the case of subtract, "c" contains the carries from adding the complement

of [Tj]') The B register is unaffected. The E register is set, as usual, to the contents

of the memory word used.

EXAMPLES: (Standard F Memory - Chart 7-2)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
[a] + [Tj] = A The expression
[= o BisPi s b0 s
. A5 Tj J [TJ] = D equivalent to saying the
l 3 = "carries" of each bit
[TJ] => E column go into the cor-
- responding bit column of
7///////////A D c. Z)+ is set if over-
flow occurs.
|:) H R[A] + L['I‘J.] => R(A) | The left half of the A,
2 = C, and D registers is
2 ADD Tj \\\;:\\\\ R[A] 4 L[Tj] => R(C) unchanged. Z2 is set
P i o RD) |
i 5
-m [Tj] : if overflow occurs
: i [AT-[)l—> & Z, 1is set if overflow
[A] A [Tj] = occurs.
3 SUB T, l l l l (1,1 => D
S R |
/A, D [1,] > E

3-58

August 1963

ADD (67)

SUB (77)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
3toa (277) Gmsaiay 606 => ql(A) | (277) is the Mk repre-
. 1 s g sentation for "a register
3 = ik containing 277, 0y .
ADD ()
(307} 207 => q1(C) (8)
307 => q1(D)
e 07T = B
¢ |:] i 201 —> gl (A) {510,0) is the M4 rep-
LDA (510,0} F - resentation for "A
5. 3 5 3 register containing 510(8)
ADD (470,0} o —> qi(€) :
in quarter 4, and zero
L—' ige. == qi(D) in the rest of the word."
jre_Tovaled)= P See Chapter 6
70,0 => B :
Note: The four OVERFLOW indicators are associated with the subwords by Sign Quarter
Number. See table below:

August 1963

SUBWORD OVERFLOW INDICATOR
Quarter 4 ZlL
Quarter 3 Z3
Quarter 2 Z2
Quarter 1 Zl
Left Half Zu
Right Half Z,
Full Word Zh
I =9 Zu and Zl

3=-59

MULTIPLY (76) MUL (76)

Q. a[

MUL T Al x

"MUL" forms the double-length, ones-complement product of [A] and [Tj] and stores it in
A and B. The extra bit of B -- at the extreme right -- is set equal to the sign bit of the

proguct, - e, to 4 0. (Bit 1.1 of B = Bit 4.9 of A after MUL.)

< A — B -
Sign /L Full Product :l \Jro(Same as the)
Bit | I = Sign Bit

The use of configuration is similar to LDA and the relevant overflow indicator (correspon-
ding to the active sign quarter) is cleared. No overflow can be generated. The active
subwordsief ~C .are.cleared -to 30 and =D. is set as if .an o‘LDD 'I’j had been done. The: E

register is, as usual, set to the contents of the memory word used.

EXAMPLES: (Standard F Memory - Chart 7-2.)

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
|:| T Al x [Tj] => AB "AB" is the double
1 MUL, T £0 <5 % pia TRSHh g ster
= it a9 diagrammed above.
L It is also used with
. o — ¢ SAB, CAB, and DIV.
07777777777) D iy -
[Tj] el depending on the

sign of the product.

[:' Tj 000 = ~~gol-{A) With standard con-
3 250 = 1 (B figuration 3
2 LDA (5] 000 => 31 écg ql[AB] is an 18-bit
3oL, %) l ook => q1 (D) register composed of
=k, 0o = Zl quarter 1 of A and
_m D quarter Lol B The

other quarters are
not changed

3-60 August 1963

CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
[_——_—] T + 0 ==> R(A) The left half
1 words are not
LDA (- ==
=3} 000030 ==> R(B) R,
3 1 + 0 ==> R(C)
MUL (-4} =
- 4 ==> R(D)
.77 -k
0 ==> Z2
i = O*==> A
e Ty .
= 3000 ==> B
LDA
k. (i} l +0==> C
MUL {-400
() = logi— D
V72224 © =5 =5 B
0 ==> ZLL
bt e
= Only the right
2LDA (3 0 000030 ==> R(B) half words are
5. 22 + 0 ==> R(C) changed.
WL (4 ,, 0) a5 + b ==> R(D)
V
| V2 o (+4,,0) => E
G — 22
Note: When a 27-9 subword form is used, the Arithmetic Step Counter is set for the
27-bit word, if it is active. This results in too many steps for the 9-bit
word if it is active also. (This is true for MUL, DIV, NOA, NAB, and e)
Normal use of this subword form is for floating numbers of the form N = x - 2y
(27 bits for "x," 9 for "y"). Since different operations are performed on the
two syllables, both subwords will not be active at the same time.
August 1963 3561

DIVIDE (75)

DIV (75)

%prv T,

J Remainder ==> B

DIVIDE considers the contents of AB (except for the lowest order bit of B) as the

numerator and the contents of 'I‘j as the denominator. (Note that it is compatible with MUL.)

Configuration is similar to ADD, LDA, etc. The Quotient is stored in A with the appropriate

algebraic sign.

The remainder is stored in B with the same sign as the original numerator.

(The sign of the remainder is at the left, as usual.) (SAB {+n} will bring strange bits into

A for the remainder (in B) is not an extension of the quotient.)

[4B] - Q=>4

[T.] [T,] R==> B

The relevant overflow indicator is cleared at the outset and an overflow will be generated

if | [A] | exceeds or equals | [Tj] [

Note:

58

e Bfallee o - I[Tj]| overflow, if any, is guaranteed recoverable via

SCA {-n} . SAB {-n} will also recover the correct answer, but it will
destroy the remainder.

If both [AB] and [Tj] are normalized (as per NAB and NOA), the condition
above is met, and any overflow is recoverable.

On overflow, the sign of A 1is always the reverse of the proper

algebraic sign.

If overflow is not recoverasble, both [A] and [B] are useless.

2 N , and Overflow is set. (This is true for any N.)

F 0

=N
=0

= N , and Overflow is set. (Also true for any N.)

o'
Divide clears C (as if by LDC {0}) and sets D (as if by %pp Tj).
The contents of the memory register go into E, as usual.

See also note on page 3-61.

3-62 August 1963

EXAMPLES: (Standard F Memory - Chart 7-2.) DIV (75)
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
[: Tj [AB] - [TJ.] => A Overflow, if any, sets
L. DEV: T Remainder == B Zy:
J l l l l e 0
[TJ.] = D
7 o
V2772722 o [T,] = E
. R[AB] = R[Tj] => R(A)|Overflow sets Z,. The
5 lDIV T Remainder = R(B)|left half of the arith-
: 3 l l +0 => R(C)[metic unit is unchanged.
A R['I‘j] == R(D)
77/ E o
J
[:] TJ 004 => q1(A) |The numerator is actually
3 = half of 000052 since the
3. i 001 => qi(E) lowest order bit of B is
31oB {052} 000 => ql(C) |[not part of it. In deci-
= mal, we have 21 : 5 or
*orv L 9 — D 005 => q1(D) 4 with a remainder of +1.
& 005=> E
0 => Zl
6LDA to :I TJ, +4 => ql(A) |Note th;‘}tl [A] iztmings
l;. 6 = i q_l(B) ZE€eTro. € numer ?I‘ J 8
DB ({725, } therefore -21 (decimal).
- +0 => ql(C) |If [A] were +0, the
pIv. { -5,) B -5 => ql(D) [numerator would be
- a0 (5} = 8 +7§5(8) or 234 (decimal).
0 => Zl
August 1963 3-63

TALLY (7h4) TLY (74)

%y T
J count of ones + [SqD] —— Sab

TLY (TALLY) loads A (as does LDA). Then the count of ones is added to the sign quarter

of D. The rest of D is not affected. The sign digit is counted also if it is a "one".

The E register is set, as usual, to [Tj]'

EXAMPLES :
CONFIGURATION ABBREVIATED
NO. INSTRUCTION DIAGRAM DESCRIPTION COMMENTS
|:| TJ_ [TJ.] => A "n" is the number of
n+qh[D] => gkD ones in [T,j]' The
i TLY e l l L l [T] i addition is regular 9-bit
J e e ring addition with no
L A overflow detection.

‘:“‘0] +0 =>A The P _register is not
= changed
2. TLY (+0) l Ll l =

)

A A

iy -0 =>R(a) The left half of A is
ik = not changed. Only the
3. e 18+q2[D] => 2D sign quarter (No. 2) of
=0 = H D is affected.
)

En 7

Note: When a 27-9 subword form is used, the Arithmetic Step Counter is set for the
27-bit word, if it is active. This results in too many steps for the 9-bit
word if it is active also. (This is true for MUL, DIV, NOA, NAB, and TLY.)
Normal use of this subword form is for floating numbers of the form N = x - 2y
(27 bits for "x," 9 for "y"). Since different operations are performed on the

two syllables, both subwords will not be active at the same time.

August 1963 3-65

3-3 OPERATION CODE CHART (Wesley A. Clark).

August 1963 3-67

3-3.1 Number Systems

Let S be a binary number of length A

3 number ranges are commonly used:

1) Positive Integers (e.g., r, P, Q)
o« 8 & 51

2) Signed Integers (e.g., Xj)
s = B 5+(27"l-1)

3) Signed Fractions (e.g., A in MUL, DIV)

3 = 2'(7"1)) = B < 100 2'()"1))

Negative number represented by "Ones Complement" of corresponding positive

20 =
number. g & .1 9 (complement of S).
3 0 =00...90
W tat um
o representations of number zero 6 = 5 A bits in length

Reduction Modulo

For positive Integer S 0. S5 < 21l

S 1f- S <0
S modu =
S -p B> n
Example: 6mod 7T =6, 8mod 7 =1
3-3.2 Glossary of Terms
h Hold bit
e Configuration
i Instruction
J Index
r effective address
wr memory operand
Wr* Permuted Memory Operand
er Memory operand (indexed)
er* Permuted Indexed Memory Operand
r,r@Xj Operand addresses
D! Leftmost (sign) quarter of D

(er*)' Leftmost (sign) quarter of permuted indexed memory operand

G Group c

3-68 August 1963

EXAMPLE 1 EXAMPIE 2
S, I A-bit binary numbers S gl 011 101 131 611l 010
S Complement of S (sign bit complemented S 101100 010 060 160 10l
<S> Inversion of S <38 > 110 031" 101 Bl =@l =010
RS Positive (counterclockwise; left) unit
rotation of S RS 106 111 010 116 110 101
e Negative (clockwise; right) unit 5
rotation of S Ri=S 101 601 110 gLk 101 101
2Ex S Unit positive scaling of S (S scaled
up by one) 2% 5 000 1L Q10 410 1160 10L
oY% 5| Unit negative scaling of S (S scaled [
down by one) 2 x5 00l 001 - 110 Ll 101 104
(scaling is rotation without change
of sign bit)
n(s) Normalizer of S (S signed fraction)
%512n(s)xs|<1 n(s) 0 2
Note: n(0) = n(0) = A -1. (Used as
9-bit number.)
T(8) Tally of S (number of ones in S) (used
as 9-bit number.) T(8) 5 6
1 011 010 011 Q11 0l0 011
S AT S and T for each bit Sealn 010 010 00l 01l 010 010
by bl 2,
Swv T 5 for @ S = N Sy - Okl 011 111 114 o1l @l
Ss@T 8 or Il but net both s® 7 0L 001 - 110 100 001 0O0L
(ShoL A-bit blnarz I‘ln% sum of S and T ® 101 110 000 010 101 110
SgT A-bit binary ring difference = (S 6 T) |S©T 111 001 - 001 190 000 111
Enclosed expression applies to each active gquarter of operand [:::::::::js
Enclosed expression applies to each active subword of operand [::::::::j!

A blank box indicates that no change is made.

August 1963 3-69

INSTRUCTION EXECUTION TABLE. Imstawriomsfh, o, i, 7,24} (enrmes axe ARLYRLOES IN TERMS OF (NIUAL vALUE:)
TimE
Cove R 885K) ' |ogaey. | NAME P Q X; Wa W= Mg,x’» F4o)l A B £ . D €
mem cveec) @ M Wt LW W D D
° 21| sPF | sreciry romm\E
22| §PG |SPeciFy GROu
Psl [A®X[
1.2 Jai] Fr [rite romm = . 3 @
2.8 |s2] rie [riLe oroue 3
24| LDA {LoAD A Vi
° 25| LDB {LoAD B Wa7
26|LDC [LoaD ¢ Wy
27|100 [LoAD D W
34| STA |STORE A 5
as|sTe [sTore B =
1.2 [s[svc [store c —
37|sTD |store D
54 | EXA | ExcHangE A Q A Wiy
(BaA)
2.4 |ss|ins | insenT (BAWS)
41| ITA |[INTERSECT A As WS
42 [UNA [umire A Av Wy
] 65 | DSA | misTWGUISH A A®WE (A & WE)vC
3 ®
67| Abo | Apo AB Wy Ay Wy
77| sus_| susTracT AG WY AA Wl
D
I1S{11[8]5] 76 | Mur | mucrimer ® = Aﬁsli i‘ A WY =
1731551371%6] 75 | oiv | Divioe e © @ (AB/W,2 Jquar. | (AB/ WS Dugm.
(et / w|cya |cvare A 2 A @
3 [e2]cas [eveie an M 48
x
("’u,g,i,’ éifcrs jevae B £ g
70| SCA | SCALE 2m=0 2N A
Z(A)at Oy
i)' >0 ?(w)'<A> 7
Z(AVs 1 v
a)0 o [5G
g
FLY RO |/ IAN e AN ala 2. a8 ®
ZAe ! =
@)>o 20%4) . ¢am) e
A= O ~
ectco 2 (o~ am) g
71| sce | scae @) g
64 | NOA | omrmaLizE A | Z():o o (Wi @ m(a)
% @]z o [(wi)e 1
<6 | nas | nommaLize AB | za)ie 2= g (w)'© man)
@] zm=1 (2°' < AB) (Wy')'® |
42]9[5'2 7% | Ty | TALLY ® w; '® o)
<#|ps1 244
< = 1] -A
kx| SKIP ow ®
3.6 |2 (REX), Two#x 2 XA
Pe2 3 X1 OA
4-1 @)
56 | PMT | PerpuTe A =17 Wy
2.0 COM |compLEnenT ® [.
[} 20 | LOE | LOAD [WY
4.2 lsofsre [srore E PETABK; E-
90 | ITE | INTERSECY € E AW
) 43|skD | skip A
€ DIFFEAS Ay
caws| P2
2,0 | i7]sxm | sip - maxe @ (] A ® = @®
o 1] msx [meser x (W)
2 6 | DPX | DEPOSIT X SelX5)Ks
1.2]| exx [excuance x Pri A (Wh Selg) Xy o
8 | 1o |[Avx [Avenewr x P e
3.2 Jis[aox | app x Xy O (WIS
06| TPX | JunP on X €0 | P+1 @
3.2 PosiTive X X7 >0 5 c®Xj (Ey): (Ew):
O7|INK | Jump om Xj<0 SRt
nEoaTwE X Xi20 | P+ 1
46| IPA | TUMP on R>o 1P+l T
posiTIVE A >0 :
= i
S bwiie - Bl g
NSGATIVE A "A" 0 I
an| Jov | Tume o a1 i
oveERFLOW Finyet 12 ® Xy TPat
12 OSjIMP | JuMP ¢ aven A
BAC | BRANCH c odd | 2B X{ @ @ : @
. 57| TSD | TRANSFER Nanev P
- PATA S| o AX; @ @ ®
August 1963

3-3.3 Notes on the coding chart
18

2 In all expressions P + 1, P + 2, sums are reduced modulo 2 .

(777777 + 1) moa 228 = o.

e For SPF and FLF only quarter one of er is used. SPG and FLG use all
four quarters. F memory addressing is counted modulo 37g (b, 36, 37,

O T o)
3= 0wl Xj = 377604 (address of A reg.) then EXA has same effect as STA.

4. Final value of wQ => (Q=r, T80 XJ,).

5. ADD, SUB overflow conditions:
A0 W ——A+W Then 0 ==>"%(4)

If AOW # A+W Then 1 ==> Z(A)

Z(A%) = z(Am) = z(AM) = Z(Au) = 7
Z(A3) = z3
Z(Ael) = z(A?_) = Z,
z(a) = 7,
6. DIV Conditions:
CONDITIONS Z(A) A B
|w_.*|> |AB| 0 QUOT REM
w_*| #0 o
rj [W...¥[< TAB] i JUNK JUNK
J
A | it
|AB| =0 A
1 =
[¥.5%| = O]|aB| £ 0 L@ £ 3

Sign of normal remainder = sign of dividend (AB).

JUNK is recoverable if |A| <2]er*l =

Expressions listed are not correct for quarter (subword) 1 of A, B, and D'

if a 27, 9 subword is chosen, and if quarter 1 is active.

8. CYCLE, SCALE, and NORMALIZE instructions begin, in effect, with LDD.

* ==
¥, S E 1

9. PMT, COM consist of 3 consecutive steps: Wk =5 b

August 1963 3-73

10. SKM variations:

3 M ¢ selected bib
r.g.b
q mod 4 b =
Mr.q.lo(dec) =
3.613.5| 3. 3. 31 3. 2131 M =
=P
r.q.11(dec) -
q —“guarter: b — bit Mr.q.l2(dec) = parity (Mr)
CONDITIONS ACTIONS
FUNCTION c M (SKIP, Then MAKE,
5.8 4.7 4.6 k5 kh| T UP| Then cycim)
= - - P+1==> P
SKIP o6 i - - = - - Prg — B
SKIP on T 0 = = 0 EEP — b
ZERO 1 B il — B
SR on g . = 2 0 P 1 — =
ONE il P+P-— P
COMPLEMENT = 0 1 - Mr.q.b ==> Mr.q.b
MAKE ZERO St ol o - 0 ==> M
r.q.b
MAKE ONE = = = - 1 ==> M
r.q.b
-1
CYCLE s L - Rl W
T 4
19 SG(XJ,) is 18-bit number 00 ... O or 11 ... 1 according as sign bit of x‘j
is O or L.
12. ADX , AUX. consist
of sequence of steps:
ADX AUX
lEEl X, => Egll |E3l ® X, => XJJ
Y

13. c is 18-bit signed integer expansion of c¢. (0 < e< 37; -1T<c<+ 140

3-Th August 1963

August 1963

1k,

155

JMP, BRC variations:

Cc
FUNCTION a ACTION
8t b6 5]kl
JUMP o e S
BRANCH - - - - r 8 xj ==> P
SAVE k- f - o S e
Bl - - - - B E ::>E21
Q =—E - - - - Q==> E,
DISMISS = - - E ifh =0, 0 => ¢L
TSD (Unit Ready)
- assembly
normal mode
mode out in
out in - =
X ﬂ Uy =E e Ug => ¥y,
: Y : Y
Y Y s Y REV FWD_y
o E=>W ¥ -1 - :
K rj R wrj => wr‘j R er => er.
3=

CHAPTER 3

INDEX
NUMERICAL ORDER ALPHABETICAL ORDER
CODE NO. OPERATION PAGE OPERATION CODE NO.
L I0S b7 ADD 67
5 JMP 3-30 ADX 15
6 JPX 3-26 AUX 10
¥ JINX 3-26 CoM 56
10 AUX 3-20 CAB 62
it RSX 3-14 CYA 60
12 SKX 3-24 CYB 61
14 EXX 3-18 DIV 75
15 ADX 3-22 DPX 16
16 DPX 3-16 DSA 65
1Ly SKM 3-34 EXA 54
20 LDE 3-7 EXX 1k
2l SPF 3-5h FLF 31
22 SPG 3-54 FIG 32
2k LDA 3-6 INS 55
25 LDB 3-6 I0S in
26 LDC 3-6 ITA b1
2 1IDD 3-6 ITE 4o
30 STE 3-8 JMP =
31 FLF 3-55 JNA u7
2 FLG 3-55 JNX 7
3k STA 3-8 Jov 45
39 STB 3-8 JPA 46
36 STC 3-8 JPX 6
37 STD 3-8 LDA 2k
Lo ITE 3-46 LDB 25
b1 ITA 3-46 1DC 26
Jite) UNA 3-46 1DD o7
3 SED 3-36 IDE 20
45 Jov 3-32 MUL 76
46 JPA 3-32 NAB 66
L7 JNA 3-32 NOA 6l
5k EXA 3-10 RSX ii:
59 INS 3-48 SAB 72
56 CoM 3-50 scA 70
D TSD 4-g SCB Al
60 CYA 3-42 SED 143
61 CYB 3-k2 SKM 17
62 CAB 3-42 SKX 12
6L NOA 3-40 SPF o1
65 DSA 3-46 S)
66 NAB 3-40 STA 34
67 ADD 3-58 STB 35
T0 SCA 3-38 STE 36
T1 SCB 3-38 STD 37
T2 SAB 3-38 STE 30
Th TLY 3-65 SUB T
15 DIV 3-62 TSD 57
76 MUL 3-60 TLY T4
17t SUB 3-58 UNA T2}

August 1963 3=TT

g
g
=

R e e e e e
o N G

EENEVUE B £ Qs En DRy

AN N YD O OO CONTAY 00 O ON ONID DN 1D

NN W W N ww

(@]

1 1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o) CERPELRBEB -ES

O\

WW FLWLWWWLWWLWWWWWWWWWWUWWWWWUWWUWWWWWWWWW FLWWWWWWWWWWWWWWW
£ N0\ 00U\ NDwwwww H

TX-2 USERS HANDBOOK
CHAPTER 4 - IN-OUT SYSTEM

TABLE OF CONTENTS

4-1 INTRODUCTION

4-2 TX-2 INOUT JARGON
L-2.1 SEQUENCE - SUBPROGRAM - PROGRAM
L-2.2 PLACEKEEPERS, PROGRAM COUNTERS, AND THE P REGISTER
L-2.3 SELECT, CONNECT, TURN ON

4-3 TX-2 INOUT CONTROL LANGUAGE
.L-3.1 CHANGE OF SEQUENCE NUMBER
4-3.2 THE HOLD BIT
4-3.3 START POINTS
4-3.4 DROP OUT - TEMPORARY AND PERMANENT
L-3.5 THE "IOS" OPERATION - "INOUT SELECT"
4-3.6 THE REPORT BIT
4-3.7 "TSD" - TRANSFER DATA
4-3.8 CONTROL LANGUAGE SUMMARY

L_L NOTES ON CODING FOR INTERLEAVED OPERATION
4-L4.1 BRUTE FORCE
h-L.2 HIGH - LOW - MEDIUM PRIORITY SUBPROGRAMS

4-5 UNIT BY UNIT DESCRIPTIONS
No. 41 INOUT ALARMS
No. 42 TRAPPING
No. 47 MISCELLANEOUS INPUTS
No. 50 DATRAC (SAMPLED ANALOG INPUT)
No. 51 XEROX PRINTER
No. 52 PETR (PHOTOELECTRIC PAPER TAPE READER)
No. 54 INTERVAL TIMER
No. 55 LIGHT PEN
No. 56, 60 DISPLAY
No. 61 RANDOM NUMBER GENERATOR
No. 63 PUNCH
No. (65, 66, 71, 72) LINCOLN WRITERS

July 1961 L-1

CHAPTER L4
TX-2 IN-OUT SYSTEM

L4L-1 INTRODUCTION:

TX-2 was designed for 33 "IN-OUT" devices (see chart 7-1). Each channel is identified
by its "Sequence Number" - Zero for "STARTOVER" and h0—77(8) for "normal" channels.

(Sequence Numbers are usually given in Octal.)
The basic In-Out set includes:

For Input: Photoelectric Paper Tape Reader
Keyboard and Reader of Lincoln Writer
Datrac Analog Sampler

For Output: Xerox Printer
High Speed Paper Tape Punch
Printer and Punch of ILincoln Writer
Display Scopes

For Bulk Storage: Variable Speed Addressable Magnetic Tape
(4 units, manually selected at first, about 2 million words

per unit.)

The subprograms associated with INOUT units can be written so that the waiting time for
one unit is automatically used as computation time for others. Only one subprogram is in
operation at any specific time, although the interleaved operation of several subprograms

makes it possible for several INOUT units to be in operation simultaneously.

In a typical program, a subprogram will continue to run until it must wait for its
associated unit to complete a data transfer or until it is interrupted to allow a subprogram
of higher priority to run. Each subprogram has a "placekeeper" to remember where it should
resume operation amdan indicator ("FLAG") to tell when it is ready to run again Since it is
likely that more than one subprogram will be ready (i.e., more than one Flag will be up,)
at any given time, a priority system is provided and is adjustable (by rewiring the "Priority
Plugboard").

Each INOUT channel has, therefore, a "Sequence Number" (40-77 octal) for identification,
a placekeeper (the correspondingly numbered index register), and a one bit register - its
"FLAG" for signaling. Channel number zero is a special case in that its "unit" is the
STARTOVER and CODABO pushbuttons, its "placekeeper" is the Toggle Start Point Register (TSP),
and its Priority is the highest and cannot be changed. (The pushbuttons - STARTOVER and
CODABO - raise Flag #0. "CODABO" also clears alarms, presets all control flip-flops, lowers
all other Flags, and starts the computer. "STARTOVER" does NO MORE than to raise Flag #0.)

o July 1961

Sequence Numbers 76 and 77 have been reserved for non-INOUT purposes. Flags 76 and 77

must be raised and/or lowered by programmed instructions. With the standard priority plug-

board, they have the lowest Priority position. (Sequence number 40 has the highest. The K

register, a 6 bit FF register, holds the sequence number of the currently operating sub-

program.) A hTSD using a non-INOUT Sequence No. will cycle memory one place to the left.

4-2 TX-2 INOUT JARGON

o

e

ez 5

July 1961

SEQUENCE - SUBPROGRAM - PROGRAM

TX-2 is indeed a "Multiple Sequence" or "Multiple Subprogram" machine. This is
to say that it can interleave subprograms - i.e., it can keep track of several inter-
leaved program sequences. This does not say that it can run several interleaved
independent programs. So much colusion and cooperation would be required to inter-
leave unrelated programs that they should probably be done by the same person. One
could then argue that the result would be better described as a multi-purpose program.

The word "Sequence" is often used as a synonym for "Inout Channel.
Sometimes it refers to "Sequence Number". (We often say "Sequence" 77 rather than

"Sequence Number" 77). And it is used in the "normal" sense - i.e., "subprogram".
PLACEKEEPERS, PROGRAM COUNTERS, AND THE P REGISTER

The placekeepers - all 33 of them counting #0, (the Toggle Start Point,) - are
memory devices whose purpose is to remember where each subprogram is to resume
operation when it gets a chance. Placekeepers 40—77(8) are index registers. Place-
keeper "ZERO" is the Toggle Start Point register (TSP) (a row of toggle switches on

the computer console).

The P register is an 18 bit flip-flop control register that always holds either
the location number of the current instruction or that of the next instruetion. Tt

corresponds to the "program counter" or "instruction counter" of other machines.

Index Registers LO-77, the placekeepers, are often called the "program counters".

Occasionally the P register is called "The program counter".

SELECT, CONNECT, TURN ON

To "connect", or "Turn on" an INOUT unit means to set the control flip-flop of
the channel so that data can be transferred, and so that the INOUT unit has access to
its Flag. The unit is said to be "connected to the computer". Each regular INOUT
unit has a "C" flip-flop - and a corresponding console indicator - to show whether it

is "connected" or not.

The word "select" is often used as a synonym for "connect" but it is also more
or less reserved for the day when two or more units must share the same channel.

This will be true, for example, in the magnetic tape bulk storage system.
TX-2 INOUT CONTROL LANGUAGE

TSD - "Transfer Data" and IOS - "INOUT SELECT" are the only INOUT operations. The
channel used for data transfer depends on the "sequence number" in use rather than the unit
connected, for many units may be connected, but only one subprogram is in operation at the

time a given data transfer is initiated.

Control of the interleaving - not strictly an INOUT function is done through:
The hold bit(#4.9), a syllable of every instruction,
Resetting placekeepers via X Memory operations, and

Drop out - permanent or temporary. (See 4-3..4)
4-3.1 CHANGE OF SEQUENCE NUMBER
A change of sequence number occurs whenever:

a) A high Priority INOUT channel takes over by "BREAKING" or

interrupting a lower priority subprogram.

b) A subprogram drops out (either permanently, or to wait for its
unit to get ready for another data transfer) and a lower priority sub-
program takes over. If no other subprogram is ready, no change of
sequence number occurs. The computer goes into "LIMBO", a condition
where it repeatedly scans all the Flags until one is up. If the same

0ld Flag (as indicated by the K register)comes up, no change of
sequence occurs.

bl July 1961

h-3.2

L-3.3

July 1961

When a change of sequence number occurs, several internal registers are affected:

- o
+ -

: 23 :
The E Register => | _ow# | wew# | ser FRoM THE P REGISTER |

Old Placekeeper =—> Reset from the P register same as the right half
of E. This will be "p+l" (one more than the location
number of the last instruction) unless the last
instruction changed P directly. (E.g., by SKX, SKM,
JMP, JNA, JPA, JOV, JMP, SED, JNX, JPX, or TSD) TSD
will leave "p" rather than "p+l" if the data transfer

can not take place.
P Register — Set from the new placekeeper.
K Register $ Set to the new sequence number.

Note that the current placekeeper is changed only when the sequence number is changed.
It can therefore be used as an ordinary index register while its subprogram is in

operation.
THE HOLD BIT

A typical INOUT subprogram is usually written so that it can be interrupted at
any time by another subprogram of higher priority. To do this completely, one would
have to refrain from using the Arithmetic Unit and the E register. Since this is too
severe a restriction, the "hold syllable" or "hold bit" is provided. A hold bit
insures that no "break" or interruption will occur following the completion of the
held instruction.

A break can occur before a "held TSD", but only when the INOUT unit is unable to
handle the data transfer. (This is called "DISMISS and WAIT".)

Since instructions using the E register must nearly always be held, the assembly
program automatically inserts the hold syllable. (LDE, ITE, and JPX, JNX.) (JPX
and JNX are included because their automatic dismiss is usually not wanted. The hold
syllable cancels "dismiss" whether built in (as in TSD, JNX, JPX) or programmed (as

1n Ogxx, P10, Pavp)).

START POINTS
To start a subprogram we need only set its placekeeper to the starting place and

raise its Flag. If the computer is running, the subprogram will start as soon as it
has highest priority among those that are ready.

L-5

L-3.4

"Starting" is particularly easy for sequence number zero. Its placekeeper,
"PSP", is set by hand. If the computer is running or in "LIMBO" the STARTOVER push-
button will suffice. Flag zero will go up and a change of sequence number to #0 will
occur as soon as an instruction is performed that has no hold bit (or when a hTSD that
can not be initiated is encountered). CODABO is used when the computer is not

running, or when the user wants to stop all other subprograms and start subprogram
#0 only.

A subprogram using sequence number zero has highest priority and therefore can
not be interrupted. Sequence number zero is used primarily to start other subprograms.
This amounts to setting placekeepers for the others and raising the Flags of those
that should start. The following operations are used:

For setting placekeepers: RSX, SKX - i.e., the instructions normally
used to change the X Memory.

g, 10
For raising Flag "F": SKX, or IOSF 50 000

For permanent Drop Out: The dismiss bit (4.8) - a syllable of SKX,
JMP, and IOS only. The built in Dismiss
feature of TSD, JNX, and JPX can also be used
for permanent drop out.

Note that the single instruction "3OSKXa 101" (in sequence zero) would start
the subprogram that is at 101 operating under sequence number "o". (Providing, of
course, that @ is not zero.) In fact, the 3OSKXa 101 will work from any sequence

number other than O. (It can not be made to look like "JMP 101".)
DROP OUT - PERMANENT AND TEMPORARY

When a subprogram is finished, it can drop out permanently through the DISMISS
sylleble (bit 4.8) of IOS, SKX, or JMP. When TSD has initiated an output data
transfer or when it has completed an input data transfer the built in dismiss will
cause drop out if "hold" was not used. This drop out will be temporary - the INOUT
unit will raise the Flag. For input units the Flag is raised when the next datum is
ready (e.g., when the next key is pressed or the next line of tape comes up). For
output units the Flag is raised when the data transfer is complete and the unit is
ready for another (e.g., when the character has been printed, or the paper tape has
been punched).

Drop out always lowers the current Flag. It is considered "temporary" if the
unit is about to raise the Flag and "permanent" if the Flag will be raised by another
subprogram (or if the subprogram is finished for good). Temporary drop out can also
occur when a TSD operation is not possible - i.e., when an output unit is still busy

4-6 July 1961

or when there is no datum available from an input unit (e.g., when the next line has
not yet arrived). This form of temporary drop out is called "DISMISS and WAIT" and
can not be prevented by using the "hold bit". In this case, the TSD that caused the
drop out has not been done, the P register is not advanced,and the TSD is done when

the subprogram resumes operation.
4-3.5 THE IOS OPERATION - "INOUT SELECT"

The primary functions of I0S are "Connection" and "Disconnection" of INOUT units,
and the specification of operating modes. Some units have several modes - for example,
the user has the option of punching tape with or without a 7th hole on each line.

I0S is also used for raising and lowering Flags and will eventually be used for
selecting mag tape drives.

The basic IO0S operations are:

IOSJ 20 000 - Disconnect Unit "J" from the computer

IOSJ 3IXXXX - Connect Unit J (if not already connected), and set to
Mode XXXX

108 4o 000 - TLower Flag J

IOSJ 50 000 - Raise Flag J

10S; 60 XXX - Select Unit XXX (Not used yet)

IOSJ 20 000, Disconnect, has no effect on interleaving except that a TSD that
tries to initiate a data transfer will not be performed. (A "Dismiss and Wait" will
occur - waiting for the unit to be ready to transfer the data. In most cases this

amounts to a permanent drop out.)

IOSJ 3XXXX, Connect, has one peculiarity. It will raise Flag J whenever:
Unit J is an OUTPUT unit,
and Unit J was not already connected.
When a mode change takes much time, the unit involved will generate a raise flag
signal to indicate that the change has been made, and no data transfer will be

accepted during the intervening interval. (i.e., the "buffer is busy".)

IOSJ Lo 000,LOWER FLAG J, is not equivalent to drop out if J is the current
sequence number. The subprogram currently in operation will continue to run until
it drops out or until it is interrupted by a unit of higher priority. If such a
BREAK occurs, the interrupted subprogram will not resume operation, for Flag J is

indeed lowered. If J is not the current sequence number, IOSJ 4o 000 prevents

July 1961 L7

4-3.6

subprogram J from resuming operation until Flag J is raised somehow - (perhaps by
unit J or by another subprogram).

108 50 000, (and loSKXJ) will raise FLAG J, but as before, "J = current sequence"
is a special case. Note that:

SKXJ X

IOSJ 50 000

Will change the P register and therefore be similar to a JMP if J is not the current

or 3OSKX DY

20 J

sequence number. But if J is the current sequence number, no change of sequence
number is ordered and the RATISE FLAG cancels the DISMISS. There is effectively no
change. (Except that 3’°s1<xJ Y will set X_ to "Y" but this will be wiped out by the

next change of seguence number.)

J

The Flag of the current sequence is never used. Following each instruction
that is not held, control scans the Flags having higher priority but goes no further.

It does not consider the current Flag. If the instruction was held no scan is made
at all. When a subprogram drops out, all the Flags are scanned until a raised Flag
is found. When no Flags are up, and this scanning is taking place, the computer is
in "LIMBO". As soon as a Flag is found, a change of Sequence Number (see 4-3.1)

takes place and normal operation is resumed.
THE REPORT BIT

A simple I0S has no effect on the E register. If bit 4.k is set to 1, (a
lIOSJ 0 for example) the control flip-flops of the chosen unit are copied into E
before the rest of the instruction is performed. Thus, if lIOSJ 3XXXX is used, E
will contain information on the state of affairs before the mode change. Unused

portions of E are cleared.

The standard report is as follows:

Bit-353 to 3:6 - Sequence Number of Reporting Unit
e - Flag
i-a=g - Buffer Status - 1 = not busy
O = busy
LB - Maintenance
e g - Connect
eoi2b - EIA - Equipment Inability Alarm
Ll - MISIND - Missed Data Indicator
L S e ¢ - Mode flip-flops - same as in the IO0S 3XXXX for most
units.
e dnnla 0 - Special indicators - cleared if not used.

;-8 July 1961

4-3.7 TSD - TRANSFER DATA

July 1961

With a few exceptions (41, 42, 55, 75) each INOUT unit has an INOUT Buffer
Register (IOB) and a Status FF. STATUS = 1 means it is the computer's turn to use
the buffer, STATUS = O means that the "BUFFER is BUSY" - i.e., the unit is working
on an uncompleted data transfer. The buffers range in size from 6 to 24 bits.

TSD - Transfer Data - means either "copy from I0B, to memory" or "copy memory to
IOBk" where k is the current sequence number (i.e., contents of the K register).
Thus for input units, TSD completes the data transfer and for output units, TSD
initiates the data transfer. (For input, the transfer is "unit-to-buffer,” then
'buffer-to-memory"(via TSD) and for output it is "memory-to-buffer" (via TSD), then
"puffer-to-unit".)

Except where TSD is used in ASSEMBLY mode, permutation and activity can be used
in the normal manner. There is no sign extension - subword form is ignored.
“Inactive" portions of an output buffer are filled with +0. The buffer is considered
to be at the far right unless otherwise stated in the unit descriptions.

TSD has two built-in DISMISS features. If the buffer is busy, the TSD can not
be performed and drop out occurs whether a hold is used or not. This is called
"dismiss and wait" and’ comes before the P register index point in the control cycle.
(P is not advanced.) Once the TSD operation is done, the other built-in DISMISS
occurs but this time "hold" is effective. Such a hold is used on input devices to
insure use of the new datum as soon as possible and on output devices to utilize the
processing time without changing the sequence number. It is possible in either case

to use so much time that lower priority subprograms never have time to operate.

If an INOUT unit is not connected, a TSD will find the buffer "busy" and "Dismiss
and wait" will occur. If the unit is subsequently connected by another subprogram,
the flag of the first will be raised and the TSD will be performed as soon as normal
interleaving will allow.

If a TSD is done using sequence number 0, 76, or 77, the specified memory word

will be cycled left once. The configuration syllable is not used - the cycle is a

full 36 bit operation. Unless a "hold" was used, the automatic dismiss syllable of
TSD will take effect. (This is also true for sequence numbers Ior wiaich there is no
INOUT unit as yet.)

Note that for sequence number 75 (Miscellaneous Outputs), TSD does not cycle.
(It will still dismiss if not "held", however.)

4-3.8 CONTROL LANGUAGE SUMMARY

105
0

IOSJ 0 -

0IOS o 20000 -

OIosJ IXKKK -

OIosJ 40000 -

OI 0s T 50000 -

sk

10
SKXJ N -

20
SKXJ No==

30 _
SK'XJ N

DISMISS

Has no effect except to take time. (But note that lIOS is
"Report".)
Disconnect Unit J

Connect Unit J, Set Mode, Raise Flag J if Unit J was a
disconnected Output Unit.

Lower Flag J - Not DISMISS, (i.e., will not cause drop out.)

Raise Flag J

Raise Flag J, Set XJ foslin't:

DISMISS, Set XJ fo-'N:.

Both of the above for J ;4 k. If J = k, there is no drop out.

(k = current sequence number.)

2 20

Bit 4.8 for I0S, JMP, SKX (e.g., “USKX, - 10S)
"Built in" as part of TSD, JNX, JPX

(Otherwise not

available.)

Change of Sequence Number Affects:

Register E

— [ow# [wew# | covrenrs ar 2 |

01d Placekeeper = Contents of Register P

Register K
Register P

Report - oe (bit 4.4 of I0S)
(o))

— New Sequence Number

—& Contents of New Placekeeper X

0 —~ O\ Al e —
= e oA Q a —
- | I | |
*Not Used,J Sequence l*2.3 - 1.1 Mode Bits
Except by Number of
Magnetic Reporting 2.4 - MISIND
Tape. Unit. 2.5 - EIA
2.6 - Connect
2.7 - Maintenance
2.8 - Buffer Status (O = busy)
2.9 - Flag

* Register E is cleared before the report. Therefore, all un-used bits

are zero.

4-10 July 1961

Lok

NOTES ON CODING FOR INTERLEAVED OPERATION

If a program uses but one unit there is no need to interleave any subprograms and the
entire program can be performed using one sequence number. Even if two or more units are
to be used, it is sometimes better to use them one after the other rather than simultaneously.
If the above conditions are true, the only pitfall that may be overlooked is premature drop
out. Careful use of the dismiss bit and built in dismiss features will prevent this error.

Interleaved operation of subprograms requires sharing the following:

Main Memory
X Memory
F Memory
Arithmetic Element (4,B,C,D, and Overflow FF).
TIME
(Listed in order of increasing difficulty)

Main Memory and X Memory must usually be partitioned, except, of course where they are
¥

used for common data. The F Memory can usually be set at the start to some "Standard

Configurations” and left unchanged. Two approaches to sharing TIME and AE are given below.

L-4.1 BRUTE FORCE HOLDING

Whenever the INOUT units involved are slow enough, or are not free-running
(i.e., do not dictate timing) a brute force method may be used. (The Lincoln Writer
Printer and the High Speed Punch are two such units.) The lower priority subprograms
can use a hold bit on all instructions where a break is intolerable, (assuming a
BREAK will change the Arithmetic Element). The only limit is that they can't hold
on all instructions. The highest priority subprogram has no problem other than the
fact that it must drop out now and then to give the others a chance. If it must
wait for a lower unit it can do so by dropping out and relying on the other sub-
program for restarting. Synchronization can be automatic only if the high priority
loop contains a temporary drop out. The easiest way to obtain a temporary drop out
is through regular and, if need be, dummy TSD operations (e.g., non-printing keys on
the Typewriter, blank tape on the punch, etc.). Another method would be to use the
Interval Timer (Unit #5k4).

L-4.2 HIGH-LOW-MEDIUM PRIORITY SUBPROGRAMS

The Brute Force Holding method will not work if the timing of one unit requires
that it receive attention soon after its Flag comes up. In many cases it is necessary
to restrict holding to no more than three consecutive operations. Fortunately, the
index memory operations can be used in place of the Arithmetic Element operations for
many applications. This means that all but the lowest priority subprograms do not
neéed the Arithmetic Element. The rulesfor this method are as follows:

July 1961 h-11

*

For Lowest Priority Subprogram - The only one to use the Arithmetic Element.

L

¥*
a) No more than "n" consecutive holds. (It should be possible to limit
this lowest priority subprogram to holding only on JPX or JNX.)
("Consecutive", here refers to TIME, not storage.)

For Medium Priority Subprograms -
a) No more than "n" consecutive holds.*
b) No use of the Arithmetic Element
For Highest Priority -
a) No use of the Arithmetic Element unless it is saved and restored.
b) "Hold" should be needed only on JNX, JPX, and TSD. In other places,

it has no effect. When used on TSD, care should be taken to insure
that some time remains for other units.

n" the number of permissable consecutive "holds" is determined by the timing requirements of

the highest priority subprogram. "n" = 3 is enough to allow considerable flexibility in the
other subprograms.

412 July 1961

No. L1
IN-OUT ALARMS

IN-OUT ALARMS

DESCRIPTION:

This "device enables operation of an Alarm Subprogram whenever an IN-OUT alarm occurs.

FLAG 41 is raised upon EIA (Equipment Inability) or MISAL (Missed Data) for any of the

devices listed below. TSD is used to determine the type and source of the alarm.

MODE SELECTION:

Ioshl 30000 now be raised upon alarms. TSD will now report alarming

Connects alarm circuitry to central computer. FLAG 41 will

conditions. "MISAL" (Alarm) is suppressed. See Note 1 below.

TSD INSTRUCTION:

TSD T, e S e B R % TSD does not clear alarm. The

oh l ‘ ‘ ‘ offending unit must be disconnected
(1I0S 20000). See Note 3. TSD
“rsp T
4 =21 1085 copies I0B), into Tj'

BUFFER BIT ALLOCATIONS:

NOTE:

J5e

Bit Corresponding In-Out

Octal Integer Alarm
i o 001 MISAL - Datrac 50
1.2 002 MISAL - PETR 52
153 00k MISAL - Mag. Tape 46
1.4 010 EIA - Mag. Tape L6
i3 020 EIA - Camera 60
5.6 0k0 EIA - Punch 63
e 100 EIA - Xerox 51
1.8 200 EIA - Lincoln Wtr. 65,66
120 koo EIA - Lincoln Wtr. 71,72

An unsupressed "MISAL" will stop the computer. The two forms of supression, program
and manual, are independent - both must be off to remove the supression. Programmed
supression does not light the yellow console light, but the red light and gong still
work.

EIA - "Equipment Inability Alarm" - does not stop the computer but it may ring a
buzzer or stop the unit involved.

If an additional alarm is generated before the first has been cleared, IOB) . will be
set but FLAG 41 will not be raised. TSD can be used again to see if this has occurred.
Note that an IOS 30000 following IOS 20000 will raise FLAGS 60, 63 and 51, but not
FLAGS 50 or 52. FLAG 46 is a special case. TSD should be used before disconnecting
the offending unit for it can not report conditions of units that are not comnected.

November 1961

No. L2
TRAP
A=0F 32

The TRAP circuits can be set to raise FLAG 42 (thercby starting a special subprogram)
whenever a metabit is encountered in the operation of other subprograms. FLAG 42 can also
be raised on change of sequence number or upon a signal from the TX-2 Sync System. The
circuits can also set metabits. Since metabits can be encountered in 3 basic ways, there
are several TRAP modes. See below. TSD is not used (but retains its cycle left and
dismiss features). Combined modes are allowed. For example, I0S), 30007 will set to trap
on all metabits encoumtered, whether by instruction,defer cycle, or operand.

MODES
(Programmed) (A1l Pushbuttons OFF.)

IOSL+2 20000
or Clear Clears Mode Selection

IOSh2 30000

IOSLL2 30001 | Trap on Marked Instruction FLAG U2 is raised before the end of the

marked instruction.

IOS&2 30002 | Trap on Deferred Address FLAG 42 is raised before the end of the
instruction using a marked deferred

address.

FLAG 42 is raised after a delay of one
IOSh2 30004 | Trap on Operand to several instructions, depending on

overlap conditions.

FLAG 42 is raised during change sequence
cycle if new Place Keeper (index rcgister)
10S), 30010 | Trap on Change Sequence is marked (2:9 = 1). The "new" (marked)
sequence number goes into quarter 3 of the
E Register, and the "o0ld" into quarter L.

There is no trap when leaving number L42.

The three "set metabits" modes below are partly manual in that the "set metabits"

pushbutton switch on the console must be "ON". These modes do not raise FLAG L2.

IOSM? 30100 Set Metabits of Instructions Sets metabit of all instructions

performed.

IOSAO 30200 Set Metabits of Deferred Sets metabit of all deferred addresses
Addresses used.
IOShq 30400 Set Metabits of Operands Sets metabit of all operands used.

July 1961

No. L2

2=08 -2

MANUAL MODE: (Trap on Sync System Signal)
FLAG 42 can be raised by a signal from the Sync System. The requirements are:

1.
2.

"Sync 1" and "Sync 2" pushbutton switches should be OFF.
The "Sync to Trap" pushbutton switch should be "ON". While it is "ON" all
other trapping modes are not effective. Setting modes still work. When
"Sync to Trap" is turned "OFF", the original mode is reinstated.

"Gate 1 to Sync Jacks" pushbutton switch should be ON. (This is located on
the Sync System Panel.)

July 1961

No. 47
MISC. INPUTS

MISCELLANEOUS INPUTS

Nine one-bit independent irput channels - each with a BCN jack and an ON-OFF toggle

switch are provided. A standard TX-2 transition from -3V to ground will set the chosen

buffer digit and raise FLAG 47. The buffer is cleared upon copying into memory via TSD.

Two Schmidt Triggers with filters are provided on the panel itself, and a 3 channel push-

button pulse generator is also available as a separate, movable unit.

MODE SELECTION

IOSA7 30000 CONNECT This allows inputs to raise FLAG k7.

It does nothing else.

TSD

TSD T, |a S S S T TSD reads IOB into T, and clears ICB.

OR ‘ ‘ ‘ ‘ Permutation is operative - there is no
sign extension - quarter 1 must be active -
T5h ¥] 108

j 47 | activity of g2, 3, 4 is not relevant.

MANUAL. CONTROLS:

Notes:

Filter switches

Schmidt Triggers e—Toggles ("on-off" for each.)

_-<—BCN Connectors - (Standard

Three channel push- TX-2 Inout Transition)

button pulse generator

1. The input signal must be a "Standard TX-2 Transition" (i.e. from -3 volts to ground
with a rise time less than 0.2 microseconds).

2. The Schmidt triggers are completely independent of the rest of the circuitry and
must be cabled to the channel desired. The input to the Schmidt trigger must be
a smooth transition from ground to -3 volts. Since the normal open circuit volt-
age is about -3 volts, a sine wave of about 5 volts RMS, or an opening switch
contact can be used. The filter should be used with the switch contact input or
with any other noisy source. The Schmidt trigger inverts the input signal producing
a standard TX-2 Inout Transition as its output. (The circuit switches at -0.9 volts
going down and at about -2.2 volts going up. The rise and fall time is about 0.15
microseconds.)

July 1961

No. 50

DATRAC

2l 1
DATRAC - Analog to Digital Numerical Input

The DATRAC is an analog to digital converter made by Epsco, Inc. It provides numerical
samples of a continuous electric signal. A measurement or sample is started upon receipt of
a "trigger pulse" from the computer or from an external source. (Such as the Interval

Timer - See No. 54.) Pertinent parameters are as follows: (and see notes below.)

Maximum Sampling Rate: 27 Kilocycles (37 usec per sample)
Measuring Time (Trigger to Raise Flag): 22 usec.
Nominal Input Signal: -1 volt to +1 volt (can be set to *10 volt
or 1100 volt behind the panel.)
Output Signed 18 bit Ones Complement Fraction
OPERATIONS
IOS50 30000 CONNECT IOS50 30000 permits FLAG 50 to be raised and sends
a trigger pulse to the datrac control panel, (wherd
it may be switched to the DATRAC, or not as desired
by the user.)
TSD Tj e :ID_ Tj TSD copies an 18 bit signed ones complement
oR * ‘ ‘ ‘ fraction into Tj along permuted pathways if so
% specified. The reliable precision is, however,
it =] 108,51 iy 8 1o, 11 bib SR SRR, e
is no sign extension in T,. TSD also sends a
trigger to the DATRAC control panel (where it
may be switched to the DATRAC or not as desired.)

NOTE: 1. Do not trigger the Datrac more often than at 37 usec intervals. It is possible
to damage the circuits.

2. TSD copies the measurement taken at the time of the last trigger.

3. A MISAL is created when a trigger arrives at the Datrac before the previous sample

has been transferred to the computer via TSD. (See IN-OUT #41.)

July 1961

No. 50
DATRAC

A0 2
MANUAL CONTROLS:

DATRAC Control Panel

1; Trigger Inputs (Standard TX-2 Inout
5 Transition. i.e. -3
3 to ground in less than
2 0.2 microseconds'.)
k.
Osc. Oscillator Inputs (3 volts RMS required)
Osc.
TSD "Up" connects programmed triggers to
I0S DATRAC. These are internally connected,

General Radio Oscillator (Not an integral part
of the DATRAC system.)

DATRAC Signal Input. (Cannon Connector X131l
required. Pin 1 - Shield, pin 2 - Ground,
pin 3 - Signal.)

"External Trigger Input" This trigger input is
____— not compatible with TX-2. Use the inputs on the
"Control Panel" above. They are internally
connected to this input.

———————___ DATRAC Power Supply The Datrac power is not

left ON. A warm-up time of from 5 to 30 minutes
is required (30 minutes is enough to insure that
it is as stable as it will be.) Users should be
sure to turn the power OFF when they are finished.

July 1961

No. 51
XEROX PRINTER
Joof 3
XEROX PRINTER
The XEROX is an electrostatic, high speed (960 lines per minute) printer. It is
basically a charactron display with automatic continuous xerographic recording. Through
electronic compensation, the display area or frame is held 'Stationary' for about 45 milli-
seconds, and then moved down about 0.1 inch to catch up with the paper. The programmer

must specify the x,y position as well as the code number for each character to be printed.

OPERATIONS

IOSSl 30000 CONNECT "Connect" turns on the xerographic recording
apparatus and raises FLAG 51 when the equipment
is ready. (Warm up time is about 5 seconds.)

Ios51 30010 FRAME SYNC If the unit is not connected, "Frame Sync" will
"connect" it. FLAG 51 is raised at the start of
the next Frame period. (Frame period is U5
milliseconds.)

TS T, e :D:D % TSD causes one character to be printed. Since
i ‘ l ‘ ‘ TSD takes about 750 usec, only 60 characters
0
can be printed within one FRAME interval. See
a
TSD T, D:D: 10851 diagram below for Xerox buffer layout.
BUFFER LAYOUT
g # 0 1o +
e = al QA -
X Position Y Position Character Code

Notes:
1. The "Frame Area" is a rectangle approximately 5 by 1 1/L inches.
The "Origin" is at the left end, centered vertically.
The X position is given by a 9 bit positive integer. (OOO to 7778)
Y position is given by a 6 bit ones-complement signed numeral. (-37 to +378)

voEe D
B
(4]

The First TSD starts the paper motion. The paper will continue to move until 15
seconds after the last TSD or until 15 seconds after the Xerox is disconnected

via IOSSlEOOOO.

6. A TSD that must start up the paper drive is unEredictable due to noise generated by
the paper mechanism. The safe procedure is to print one or two "blank" characters
(e.g. code 100) and an extra Frame Sync (IOS_.30010) to ensure that the paper is
moving smoothly when the data is displayed. 5

July 1961

Numerical Parameters:

Frame Interval

Frame Reset Interval
Character Print Time
Frame Size

Character Size

Paper Speed

Calculated Parameters:

Characters per line
Vertical deflection
Horizontal deflection
Frame spacing

Lines per inch
Suggested X increment

MANUAL CONTROLS

Note:

ON OFF
SWITCH

are "connected".

No. 51
XEROX PRINTER
2of 3

45 milliseconds (approximately)

2 milliseconds

750 microseconds

1 1/4 inches high by 5 inches wide
Nominally 3/32 high by 1/16 wide

2 inches per second

60

.02 inches per unit

.01 inches per unit
.094 inches

10.65

8 units

Low paper buzzer alarm

"Low Paper" alarm causes an EIA indication and can raise FLAG 41 if IO alarm circuits
See IN-OUT Unit k1.

July 1961

CHARACTER
A

b AN TR B T SR DA SRS R - - N P - e GRS NN R TR T, T — T S

(PERIOD)

+

<

[—

! <IGY etd |

Note: Bit 1.9 of the Xerox Character Code is a "size control bit".
"0" means small.

November 1961

XEROX PRINTER CHARACTER CODES

OCTAL CODE

154
142
361
352
313
344
302
354
172
144
143
332
360
370
353
312
160
371
322
153
362
152
343
161
342
162
132
133
220
221
222
351
372
340
363
730
703
720
150
570
140
114
131
103

(ose)071)3456)

(043)
(0s4)
(012)

(157)

(047)062)317)
(oss)o70)345)
(355)

(042)
(145)
(356)
(017)032)307)

(0s57)072)347)

(0s53)
(146)
(0s52)
(147)
(117)

(205)
(208)
(207)

(357)
(os0)
(073)
(445)460)715)
(413)
(415)430)(705)

(555)

(116)

CHARACTER

j

BN R el I

Pt R

SOEEAI N N O DO e

b A T -)

O

4

l‘:—‘-s[j“*’

N

(ZERO)

(COMMA)

(CIRCLE)

Nos 51
0L 3

OCTAL CODE
122 (107)
324 (034)
323 (033)
024

B

112

173

174

163

164

310 (040)
311 (041)
333 (063)
203

334 (064)
023

001

002

003

004

020 (005)
021 (006)
022 (007)
300 (010)
301 (011)
000

202

204

120 (105)
121 (106)
113

714 (444)
373

341 (051)
364 (074)
731 (446)461)716)
704 (414)
721 (416)431)706)
151

5§71 (556)
141

130 (115)
102

104

"1" means large, and

The codes are given above with the "proper" size.

PHOTOELECTRIC PAPER TAPE READER

No. 52
PETR
1 o2

The PETR is a "free running", 400-2500 lines/sec., 7 channel paper tape reader. The

seventh channel and the feed (or sprocket) holes are used for control, leaving a six bit

data word per line. The tape must be loaded into the tape bin (manually or automatically)
and is read as it is pulled past the photodiodes by the reeler. The speed therefore varies
from rest to a maximum that depends on the size of the reel. The tape can not be stopped

between lines. It takes about 100 lines (say a foot of tape) to come to a stop.

OPERATIONS

10352 30000 STOP TAPE 10852 30002, 30004, 30006 are equivalent.
+ CONNECT PETR is connected if not so already.
IOS52 30100 READ NORMAL Starts reeler and reads tape in NORMAL
(+ CONNECT) mode. (See TSD, below.)
IOS52 3010k LOAD BIN AND Starts capstan drive in bin direction.
READ NORMAL Stops capstan when END MARK is detected
(+ CONNECT) (code 73 with no Tth hole), and starts

reeler to read tape in NORMAL mode as for

"Read Normal"above.

READ ASSEMBLY Starts reeler and reads tape in ASSEMBLY
OR READ SPLAYED Mode. (See TSD, below.)
(+ CONNECT)

IOS52 30102

LOAD BIN AND
READ ASSEMBLY
(+ CONNECT)

Starts capstan drive in bin direction.
Stops capstan when END MARK ("73" with
no 7th hole) is detected, and reverts to
Read Assembly mode (30102) above.

10552 30106

TSD OPERATIONS

TSD, in NORMAL MODE, uses permutation and/or
Only the 6 bits of Tj that
correspond to the Buffer are changed. (i.e. Bits

TSD T, [le

or RN

activity.

a
TSD T, EERT08 [ke 1-6)
In Assembly (i.e. Splayed) mode, the con-
TSD-T, < [o T : : S :
j j figuration syllable is ignored. Tj is
OR cycled left one place and the data goes
%rsp T’ 108, into bits sl ally DelES B SN 3T snd-dicyl

B as diagramed. Six TSD Tj operations there-

fore assemble a full 36 bit word in Tj'

July 1961

MANUAL CONTROLS

52
PETR
2 of 2

No.

Note: The manual control
pushbuttons discon-

(This

nect the PETR.
is equivalent to the

I0S

5220000 instruction.)

Maintenance
Switch

SRR

TAPE DIAGRAMS

Inside Edge

Edge
‘ "Normal"
(One line}
To the l
PETR (Read toward the

Reel/Strip Toggle Switch Selects the drive for tape
motion in the "Reel" direction for both manual

and computer operation.

"'Reel" - Up to 2000 lines per sec. Drive
provided by the reeler.
"Strip" - About 400 lines per sec. Drive

by the internal capstan.

Wind Pushbutton - Starts tape movement in the "Reel"
ti Countermands any computer originated
operation. Tape is not read by computer.
Bin P utton - Starts tape movement into the bin,
at about 400 lines/sec via internal capstan drive.
When the "End Mark" (Code 73, no Tth.) is

encountered tape motion is stopped with the mark
on the bin side of the reading point. Any
computer originated operation is countermanded.
Tape is not read.

l (Read toward PETR, inside to outside.)
16 711 olo 1]3 o]z 2]o 6]

LA L BN 1]

=)

End Mark

"Assembly"
Six lines)

To the
Reeler

Tth. hole - i.e.

From inside to
outside.)

July 1961

No. 54
INTERVAL TIMER
150P 2

INTERVAL TIMER

The INTERVAL TIMER is essentially a counter that passes every nth pulse of a pulse

oscillator (the "End Carry Pulse"). The basic counting rate, timed interval, start time,

and stop time are controllable. The output, a string of accurately spaced pulses, can be

used to raise FLAG 54, and (or) to trigger an external device (such as the DATRAC for

example). Control is partly manual, partly by program.

OPERATIONS
Iossh 30000 STOP COUNTER STOPS the counter and hence the output string.
(and Connect)* The count for the interval will now be reset
repeatedly from the buffer (at the counting rate).
(Counting rate is selected manually.)
Iossu 30100 START COUNTER STARTS the counter. The pulse string will start
(and Connect)* after one counted interval and will continue
until it is stopped. In this mode, the string
is available only at the "EC OUTPUT" jack on
the console.
IOSSM 30200 SET TO RAISE CONNECTS output string to raise FLAG 54 at the
FLAG 54 end of each timed interval. This mode is used
(and Connect)* when the interval timer is to be started by
hand or by an external trigger.
IOSSh 30300 START and RAISE This is a combination of the two operations
FLAG (and Connect)*| just above. The first output pulse and raising
of FLAG 54 come after one interval as specified
by the Buffer. (The buffer can be set manually
from toggles, or by a TSD in the program.)
o
A1l IOSSH 30000 instructions "connect" the unit if it is not already connected.
Notes: 1. The buffer is "busy" during "end carry time" - i.e. when it is in use. For 10 kec.,
100 kc., and "Ext. Osc." this is equivalent to the basic counting interval. For
1 mc., the buffer is "busy" during the last 16 counts. If the reset value is less
than 16, the counter must be stopped before the buffer can be changed.
2. Any change in the buffer becomes effective only at the end of the current interval
unless the change is made with the counter stopped.
3. Manual control overrides program control.

July 1961

INTERVAL TIMER

No. 5k
INTERVAL TIMER
2.0f 2

IOSsh 20000

DISCONNECT

This instruction stops the RAISE FLAG signals
but NOT the Interval Timer itself.

“1sD (2

s B o o e
J

on R

I ! el

TSD copies an 18 bit numeral from Tj to the
I0B (In-Out Buffer). Tnis is used as an
18 bit positive integer. It specifies the

number of "counts" per timed interval. (The
basic counting rate is manually selected.)
Permutation and/or activity may be used. Any
inactive portion of IOB is set to +0.

MANUAL CONTROLS:

Toggle Register for
Manual specification
of interval.

1 me
Oscillator 100 ke
Control 0= Ko
External
Oscillator

Maintenance Switch

START pushbutton - Resets the In-Out
buffer from the Toggle Register
and starts the Counter.

STOP pushbutton - Stops the Counter
(Note: When the counter is not
running, it is repeatedly reset
from the buffer.)

l___ External Oscillator Input - (Requires
a 20 volt 1/10 microsecond pulse
oscillator similar to the Burroughs
type 1002 AW)

Output Jack - (Std. TX-2 In-Out Pulses.)

N\\\\\\\\\\\External Trigger. input switch.

External Trigger input jack. (Requires
a standard TX-2 Inout Transition.
i.e. -3 to ground in less than
0.2 microseconds.)

Note: The Standard TX-2 Inout pulse has a duration of about 0.4 microseconds and a rise-fall
time less than 0.2 microseconds.

July 1961

No. 55

LITE PEN

LITE PEN

The LITE PEN is a 1i

ct

sensl

ive device that looks somewhat like a pen. When
"CONNECTED", it raises FLAG 55 whenever it "sees the light", presumably from the scope
(
\

AT TN T i)
display (SEQUENCE NUMBER ©0) .

OPERATIONS
[0S.. 30000 CONNECT Allows unit to raise F
22
I0S.. 20000 DISCONNECT Prevents raise flag s s from unit
22
ToPD-T- NOT USED Same as for non-in-out SEQUENCE (i.e.,
J
. 2 N > m)
automatic dropout and cycle left T,.).

MANUAL CONTROLS:

The pen itself contains a preamplifier with fixed

gain or sensitivity. The sensitivity dial controls
the gain of the main amplifier. The proper setting
depends on the scope intensity and is usually set
by trial and error. The toggle should be thrown

toward the dial.

NOTE: The light pen is sensitive only during the intensification period of Scope #60. It will
not work properly with the second display scope (#56).

July 1961

No. 60
OSCILLOSCOPE DISPLAY
L of2

SCOPE DISPLAY

The "scope" is a cartesian coordinate, high speed (20 to 80 usec) display with 10 bit

precision in (x, y), controllable intensity (4 levels), and a phosphor persistancy of about
2 seconds. Each point must be specified separately and the display must be repeated
endlessly if it is to be viewed rather than photographed. A camera mount, several cameras,

and a film index instruction are provided. The usable display area is T by T inches.

OPERATIONS
IOS6O 30000 SELECT SCOPE If the scope is unselected, FLAG 60 is raised.
(CONNECT) This instruction gives lowest intensity and a
centered origin. See other IOS60 30000 type
operations below.
IOS60 30000 SELECT SCOPE The scope "intensity" is controlled by the
IOS6O 30010 and set duration of the spot rather than beam
IOS6O 30020 INTENSITY intensity.
IOS6O 30030
30000 - Low - 10 usec.
30010 - Med. Low - 20 psec.
30020 - Med. High - 4O psec.
30030 - High - 80 usec.
IOS6O 30000 SELECT SCOPE The origin can be at the center, at the left or
10360 30100 and set bottom edge, or at the lower left corner.
IOS6o 30200 ORIGIN
I0S¢, 30300 LOCATION 30000 - Center - 3
30100 - Bottom Center ==l
30200 - Left Center -
30300 - Lower left Corner - D
108, 3000k INDEX FILM The IO3 is busy until the return signal comes
back from the camera. The return signal also
raises FLAG 60.
NOTE: The IO0S.. 30004 (Index Film) instruction causes an "EIA" (Equipment Inability Alarm) when

the film supply in the camera magazine is low. This raises flag 4l if unit 41 is connected,
lights the "End of Film" light, and rings a buzzer. (See next page.) It does not stop

the computer. The scope and camera can still be used until the film runs out completely.
When there is no film at all, the return signal that frees the buffer is not generated,

TSD operations find the buffer "busy", and "Dismiss and Wait" occurs.

November 1961

No. 60
OSCILLOSCOPE DISPLAY

2 0fx2

T<D Tj e :::: Tj TSD copies from T‘:‘ to the scope buffer. The

10 bit coordinatc; are interpreted as
s l l’ l l ones complement numerals. Therefore, there
“Ts0 35 =R [::] T0B.p | are two zeros - plus zero (all zeros) and
x minus zero (all ones). Moved origin modes
x coord. y coord. are realized by automatic complementing of

the appropriate sign bit. Thus 40 = -0 in

centered origin mode, and OT7T77 s 1000

I ol

—

in moved modes. Permutation ar

=

d activi

may be used.

NOTES

)

In most cases it is easier to use 9 bit arithmetic. In 18 bit arithmetic, one can use

S

L - SR S e |
Fractions

and sense end carry by the SKM instruction, or one can use "integers" and

sense overflow the same way. In the latter case,

cycle or scale to the left

so that the 10 bits will be in the buffer position

L— On-Off Pushbuttons - Display power
comes on after a 05 second delay. It
is best for it to be brought on while
the computer is stopped, for it often
causes a spurious raise flag signal.

“Camera Inversion Switch - "Toward the
wire" is "Normal". 'Away", gives a
vertically inverted display to compensate
for the mirror inversion in the camera
mount.

For best resolution, it is neces- End of Film Light
sary to wait about 20 minutes for the
circuits to reach thermal equilibrium.

L—-End of Film Acknowledgement Pushbutton
This button will stop the alarm buzzer,
but does not clear the ETA flip-flop.
(See In-Out #41.)

Manual Fiyq“;p@eg - Moves the film one

Era.me.

November 1961

No. 61
RANDOM NUMBER GENERATOR

RANDOM NUMBER GENERATOR

The Random Number Generator assembles a 9 bit number "at random" from a radioactive

Cesium Source. The average time required is 57 6 usec - minimum time 28.8 usec.

OPERATIONS

1056l 30000 SELECT AND The select operation also triggers the
TRIGGER generation of a random number. FLAG 61

is raised as soon as the number is ready.

TSD copies the generated number into T,.

10 T, la EEEm . J

g 3 (Permutation is allowed, and quarter one

OR ¢ i l l must be active.) TSD also triggers the

a n generation of the next number. FLAG 61
TSDiT =1 TR -

will be raised when it is ready.

MANUAT, CONTROLS

)

,%/
ﬂ%:wmmmmmmmwmm

On-Off Pushbuttons - There is a 60 Note: The meters should read about half scale.
second warm-up delay. Note: The They are used for maintenance purposes
Random Number Generator should be left only. The maintenance switch is inside
OFF when not in use. the box above the control panel.

July 1961

No. 63
PUNCH
1 of 2
PAPER TAPE PUNCH
The PUNCH is the counterpart unit to the PETR. It is a line-by-line device and can
be programmed to punch at speeds up to 180 lines per second. A TSD must be given for each

line. Four modes are defined below.

OPERATIONS
th
IOS63 30000 NORMAL Sets to punch 6 channels - no 7 hole
No TR (used for blank tape, end marks, and
visual pattern punching.)
1084, 3000k NORMAL Sets for 6 channels with automatic 7 0
WITH Yth hole punch on each line. (Used for tapes
to be listed on off line Lincoln Writers.)
10563 30002 ASSEMBLY Sets for splayed punching - Six TSD
NO 7th instructions punchout a 36 bit computer
word.
Ios63 30006 ASSEMBLY Sets for splayed punching with automatic
WITH Yth 7th hole. Used primarily for Binary
Output.

NOTE: All the above 10363 30000 instructions "CONNECT" (SELECT) the punch and raise FLAG 63

if (and only if) the PUNCH was unconnected prior to the instruction.

TS0 T, |a 1075 T R R
IN NORMAL mode, permutation and/or
OR | | l activity may be used. Only 6 bits of T
aTSD Tj]0563 are copied, Tj is not affected.

In ASSEMBLY mode the configuration

syllable is ignored. The datum is copied

SO T, ™ T as shown (from bits 4.9, 4.3, 3.6, 2.9,
2.3, 1.6) and after the copy the full 36
o bit word is cycled left once (in T,).
“1s0 Tj — TOB = Six "TSD Tj" operations will copy ; 36 bit

word from Tj to tape and will leave T

cycled 6 places to the left.

July 1961

No. 63
PUNCH
22

MANUAL CONTROLS:

- Sounds when tape is low or jammed.

Buzzer
/Buzzer Suppression Switch - Normally to the left
/ (i.e., Unsuppressed.)

Maintenence Switch - "On Maintenance" is to the
o Tight.
Tape Feed Pushbutton - There is a 5 sec. delay

before tape is fed. (Button must be held down.)

Alarm Indicator Light (Low Tape, or Tape Jam)

Maintenance Indicator Light

; \Punch Reeler
\Reeler Control Arm - Normally operated by the

tape as it is being reeled but can be moved

Reeler Switch up by hand to energize the reeler brake when
needed.

"Chad" Basket

Punch Motor Switch - Normally up -

(For use on Maintenance mode only.)

TAPE DIAGRAM:
To the
Punch
Inside
| [[Last
1[o]2]ofo]o TSD
First
Normal Mode - 7SD - 6 7]1 ofo 1[3 o]2 2]o 6]
|

(Read toward the
Tth. hole - i.e.,
from inside to
outside edge.) Tth To the Assembly mode - (Read from bottom
Hole Punch Reeler to top, inside to outside.)

July 1961

No. 65, 66
LINCOLN WRITER No. 71, 72
1 of 2

LINCOLN WRITER

NOTE: Two Lincoln Writers can be ON LINE at once - "65, 66" or "71, 72"

REFERENCE: Group Report 51-8 (6 October 1959)

DESCRIPTION:

The Lincoln Writer Input consists of a double keyboard with automatic case change and
a Soroban mechanical tape reader. They are interlocked so that only one can be used at
a time - the keyboard is inactive while the reader is running. The Output is an IBM
electric typewriter and a Friden paper tape punch.

Manual controls on the Lincoln Writer permit on-line or off-line use and seemingly
both at once. The simplest connection for coding is "pure on-line" i.e., keyboard and

reader connected to the computer alone - not to punch or writer.

In this "pure on-line"mode, there are no timing considerations that can cause trouble.
TSD operations can be written without regard to the elapsed time between them. The only
complication that must be remembered is that "carriage return" resets the keyboard to

"lower case" and "normal script" without transmitting any case or script code.

Note also that a "carriage return” sent to the writer via TSD using Sequence # 66 or T2
will also affect the KEYBOARD'S automatic case memory in same manner. The Lincoln Writer
input is not completely independent of its output! The situation becomes more complex when
the keyboard is connected to writer and/or punch as well. These complex cases are to be

discussed later in a supplement.

Automatic case codes are generated whenever the user changes from one keyboard to
another. The key will remain locked down until two TSD operations have been performed -

the first to accept the case code and the second for the character itself.

July 1961

00

o1

02

03

04

0s

06

07

10

11

12

13

14

15

16

P g

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

TX=2 LINCOLN WRITER CODES

N
N = —

o0
READ IN
BEGIN

NO

YES

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

61

62

63

64

66

67

70

71

72

73

74

75

76

& 4

CAR RETURN
TAB

BACK SPACE
COLOR BLACK
SUPER

NORMAL

suB

COLOR RED
SPACE

WORD EXAM
LINE FEED DOWN
LINE FEED UP
LOWER CASE
UPPER CASE
STOP

NULLIFY

No. 65, 66
250f 2

July 1961

No 65 and/or No. 71

LW INPUT
KEYBOARD
OPERATIONS:
10665 30000 CONNECT This instruction selects the keyboard.
(10571 30000 KEYBOARD Pressing a key will now raise FLAG 65 (or 71)
f th d i t E
Poi oihat i} : £ e keyboard is connected to the
computer through the Lincoln Writer
manual controls.
TSD copies the code number of the
depressed key into Tj' Permutation
TSD Tl [!a D:::l T} may be used, gquarter one must be
oR I l active. The key is released after the
copy. If an automatic code for case
=renT 108
i = 65 | change (75 to UPPER, T4 to LOWER) was
generated, the key will be released by
the second TSD.

MANUAL CONTROLS

1. The reader must be started by hand via the "start reader" pushbutton. It will then
read the line at the read station, advance one line, and wait for the datum to be
accepted (presumably via TSD). The keyboard is inactivated while the reader is on.
"STOP Reader" will re-activate the keyboard Maximum speed is 19 lines/sec and if the
keyboard is connected to the computer alone, it can be programmed to run as slowly as
desired.

2. Other manual controls are more or less self-explanatory and are well covered in Group
Report 51-8.

3. Only the six bits (1.1 - 1.6) corresponding to the buffer are changed by TSD.

July 1961

No. 66 and/or No. T2
LINCOLN WRITER OUTPUT

TYPEWRITER OUTPUT

OPERATIONS
10866 30000 SELECT This operation selects the output of the
(Unit 1) (CONNECT) Lincoln Writer - Typewriter and/or Punch.
S, 30000 FLAG 66 (or 72) is raised if (and only if)
(Unit 2) the unit was unselected prior to the
instruction.
TSD copies 6 bits from Tj to the Lincoln
N T, e P N S Al v Writer, where it is printed and/or punched
oR depending on manual controls. The Buffer
| | | remains busy until the printing or punching
a
TSD Tj L 10855 is over and at that time FLAG 66 (or 72) is
R raised Permutation may be used and quarter
one should be active.

MANUAL CONTROL

1. See Group Report 51-8 for details.

2. "Computer Output" should be switched to "Punch" and/or "Writer".

NOTES: 1.

July 1961

Carriage Return (Code #60) not only returns the carriage and advances the paper, but
it also resets the Lincoln Writer to Lowercase and Normal Script. The Keyboard case
relay is changed too. (In this respect, the keyboard and writer are not independent
devices.)

Certain character codes (1lk, 15,16 17,71,76,77) do not print. (They are labeled on
the keyboard as "WORD EXAM", "READ IN", etc.) When such a code is sent to the
WRITER, it is accepted, and takes about the same time as a regular character, but
nothing is printed.

No. 75
MISC. OUTPUT
1-5of -2

MISCELLANEOUS OUTPUTS

Nine one-bit computer controlled relay contacts with G.R. Terminals are provided.
Channel No. 9 has an high speed output as well. The nine bit word can be shifted left (ring
or open) under manual control at a 500 KC rate if only high speed output is required or at

500 cycles per second if the relay contacts are to be sensed. TSD is not used. (It will not
cycle the memory word, but it will DISMISS if no "hold" is used, and it will change E as if

it were a CLDE operation.)

OPERATIONS

IOS75 30 000 Clear The nine output channels are set to correspond
i 001 SET 1.1 to quarter 1 (the righthand nine bits) of the
Y 002 WD instruction. IOS75 30000 therefore clears all
2 0ok Yeslag nine - IOS75 30777 sets all nine.
o 010 Tl
" 020 " o35 There is no raise flag indication. It may be
" oko o assumed that the relay has changed after 2 milli-
1 100 "o17 seconds. The high speed output "MOM-9" will change
" 200 " 1.8 before the instruction is over.*
i Loo g

*Note: Changing bit 1.9 from "1" to "O" produces a standard TX-2 IN-OUT transition (-3 V
to ground) at "MOM-9". Going from "O" to "1" produces a similar transition from
ground to -3. The rise-fall time for these transitions is less than 0.2 micro-
seconds.

MANUAL CONTROLS

—— Relay Contact Terminals

Shift Control

Maintenance Switch

§igh Sgeed Test Pushbutton - Sets relays to correspond
MOM-9~ Output to the Toggle Reset Register.
Shift-rate Inputs and Input Toggle Reset Register

Selector Switch

November 1961

No. 75

RELAY CONTACTS MISC. OUTPUT

2082
C. P. Clare High Speed Relay - HGS - 1009 - Make before break.

Up to 1/4 amp non-inductive load.
Up to 1 amp reactive load with suppressor only. (Plug-in suppressors are available.)

Cycle rate approximately 500 cycles - 2 millisec. period.

SHIFT CONTROL

1. Ring Shift lLeft
2. Open End Shift Left (all nine, 1.9 is not a sign bit.)
3. No shift

SHIFT INPUT SELECTOR

The shift rate is determined by the external shift input which may be a sinewave or a
pulse train. The shift input selector is a toggle switch which should be thrown toward the
source used - up for "SINE", down for "PULSE".

SINE WAVE INPUT

A 15V RMS sine wave is required (e.g. GR Oscillator 1304). Maximum rate 500 KC for
High Speed ("MOM-9") output, 500 cycles for relay output. Each cycle produces a one bit
shift if "SHIFT CONTROL" is in position 1 or 2.

PULSE SHIFT INPUT

A standard TX-2 Inout Transition (-3 to Gnd) is required. It gives a one bit shift if
"SHIFT CONTROL" is in position 1 or 2. Maximum rate: 500 KC for High Speed Output (MOM-9),
500 cycles for relay output. "MOM-9" should NOT be used to trigger the shift, for it may
not change bit 1.9 or 1.1. (It would shift the others reliably.)

NOTE:

1. The shift and pushbutton inputs are not interlocked and can interfere with programmed

use. Miscellaneous inputs can be used to synchronize the program and the shift input

in use.

November 1961

——— So here is Chapter 5 — Lights & Buttons —

Many TX-2 users have asked for this chapter. Now that it is out, I hope

it teaches them a lesson.

The next installment will be a re-issue of the second part of Chapter L
(IN-OUT). In the past two years, nearly all the IN-OUT units have been

modified or replaced, and a few new ones have been added to the system.

Please do not stand on one foot waiting for Chapters 1 and 2. There

may be some delay there.

A, Vanderburg'

This technical documentary report is approved for distribution.

.// .»’/:.
7 =Yk /

=7 s

//‘/ﬂ/”%" . 'CM e
Franklin C. Hudson, Deputy Chief
Air Force Lincoln Laboratory Office

November 1963

TX-2 HANDBOOK
CHAPTER 5
LIGHTS AND BUTTONS

TABLE OF CONTENTS

5=1 " Computer; Rocm ShRgaiibete e s somor L0, i 0 S St ol ieiie s Leie el e et el e ek tieiie e e D=

5-1.1 FecyichGantont e =it oo Bl an«(Fd o b I e S St iai s o e o e o iD=
5-1.2 POWOTEONEORR Brocediires: (Figs SO Bt S b e v im ol o e v e e et 53
5-1.3 Power Rlarng - Breakers (Fig: 5-3) s oo s snsctiis o v+ vinse e o o o ogri5e3
5-1.k [i (e s sl ove) SR S e SORCPI e Rt S o N e SRR SRS e
5228 “Congole. Tndl catolghbaseR . S-l): o . 20 S8 Lol SR SIRIEC L L v oTagmel s e s 2525
5-2.1 EY I MEAEE SIOECHCRGOYE - o i (o o: /e o b Foia e =oRBOMEIE oSl i0 - o el 0" o e ef s whige e e D=5
(A, B G DR K, PN, QaM, Nj & X, FA & F)
5-2.2 e (Uil R e SRR T G S e SR R N SR e et b
5-2.3 O TR CEEOTS (Figa s 5=b) it s o BB gt L 0 o v b 51k
558 Conpolie IPUENEUGEONE (BIQ. - 5=0)ihe 1o ot o v i obsGiou. iaRledimloons. o L . 5:06
5-3.1 Condition Buttons: (With Lights - "Out" is normal) . . « « « « ¢ ¢« « « + . 516

Suppress Memory - U, T, S
No Overlap
Stop Conditions
Pasofa - (Preset and Start over from Alarm)
Auto Start
Low Speed Repeat
Low Speed Pushbutton
Remote TSP
Suppress Chime

B30 Nobdone Bl bonallEsE R B . oL o ol e v e s e e s e e HalB
Stop
Preset
Clear Alarms, Clear Real Time Clock
Calaco (Clear Alarms and Continue)
Codabo (Count Down and Blast Off)

5-3. 4 Miscellaneous Console Ite€mS « « « + « « « o o o« + « o o o o o o o o o+ o« 5220
Audio Control (Fig. 5-8)
Knob Register - 377620
External Register - 377621

S D e i o e e O T Vs ko) e R B R e TR o s e e SR e e e e e

S-S M a e B e NI COTTTETIGIONIE - o - o/ sl e -Ta* o s wirs Pl eitolies s las tails —sero o oo i bay atse ot n el Eymey
5-5.1 Paper Tape Read-in Programs g S e e NS SIS B fi o g e 4 e e o Ve e o Y
5-5.2 Paper Tape Read-in Programs - Listings « « « + « « ¢ « o+ « o o o o o o« 526

5-5.3 Ta,pePrepa,ration.............................5_28

November 1963 5-1

5-1 The Computer Room

I BEnch I SPARE PLUGINS] | Imis AND wnmsneucel I@ AIR DUCT
DESK
2 D)
_— |
IN-OUT SWITCH |UE T | THIN | CONTROL | ARITH.ELEMENT A o s
POWER " E FILM [8
SR | 5 CONSOLE
- ROOM
COMPUTER LIGHTS IBM TAPE ROOM LIGHTS!
SWITCH nﬁl%:oug'rl
r ROOM INCIDENT RECO!
@ [R ogp iR el
_— @ - PLUGBOARD
AIR iz < 2 MEMORY Lol
CONDIT. @ = PUNCH
CONTROL. 3
AR 3
CONDITION 5
"s* MEMORY = [XEROX
IIII
s.A.| @ D.P.P. x ROOM T
STACKO e LIGHTS Lw-2
TEMP. 3 TAPE
4 Ll PLUGBOARD
53 [SeaRe PLuc-INs | = Orack
ENTRANCE ENTRANCE LOCKED DOORS
A-034 AO26

Fig. 5-1, TX-2 Floor Plan - March 1963

5-1.1 Frame Contents - Floor Plan
F1 - Console - See Figure 5-3, 5-4, 5-5, 5-6, 5-7, 5-8, 5-9
F2 - Main Frame
B - Arithmetic Element, and E Register

C - Control, X Memory, P, Q, M, and N Registers
D - Sequence Control, Thin Film Memory
E - U and T Memories
F - IN-OUT Switch
F3 - S Memory Register Selection Circuits
F4 - S Memory Stack
F5 - S Memory Digit Plane Drivers and Sense Amplifiers

F6 - TX-2 Mag Tape Drivers and Timing Track Writing Equipment

F7 - IBM Tape Control, TX-2 Tape Control, Plotter Control, TX-2 Power

F8 - Lincoln Writer Controls, OB Clock, Display Box, Misc. Inputs Box,
Speech Filters

F9 - Plugboards, Datrac, Interval Timer, Misc. Input, Misc. Output, Ampex
Mag Tape

5-1.2 Power ON-OFF Procedures

Fig. 5-2 - Power Panel (in the Power Room)

Power On:
Hold the button in until the warning horn stops. The computer will

be "ready" in about 1 1/2 minutes. Run "clear memory" once or twice

with parity alarms suppressed. Un-suppress the alarms. the computer

time. (Fig. 5-3) Turn on the Lincoln

should be ready for use. Log the
Writer(s), and the IBM Tape Units. (They have their own power switches.)

Power Off:
Be sure TX-2 tape is at "MAT 0000", before pushing "OFF" button.

Turn off the Lincoln Writer(s), and IBM Tape Units.

Log
the time. (Fig. 5-3)

5-1.3 Power Alarms - Breakers

4—-__‘_‘____________..----—-Circui‘t Breaker Indicators

"Time" to be logged

weusen ® aw e owe s wseess

oy R

Power Meters

A eosfassonased
Marginal] Soilecescssd "
Checking Prssefesssssecs .
Console ¥
sseesesss

s
sasfosnnnnwesf
e

Register 377621

'nlkzz/”’ (External Input Register)
< L]

Fig. 5-3 - Maintenance Console

The circuit breakers are located at the top of each frame. When a breaker
"lets go", a horn sounds and a light comes on at the breaker panel and at the power

panel on the console. The accepted procedure is as follows:

Frame: What to do: If that fails:

S, T or UMemory : F2, 3, 4, or 5 a) Dump Power Call for help.
b) Reset the breaker
c) Bring Power On

Computer Frames: Reset Breaker Call for help.

IN-OUT Equipment Reset Breaker Call for help -
Set Maintenance Switch
on Breaker Panel and

do not use failing unit.

In any event, log the incident stating the time it occurred, which breaker it

was, and what was done.

5-1.4 Air Conditioning
There is a room temperature thermometer on the column at frame 9. It
usually reads about TOOF. There are two thermometers for the S Memory Stack.
One is behind the stack, the other is in the power room. The power room meters

should read as follows: (They are to the left as you enter from the computer room.)

NORMAL CALL for HELP DUMP POWER
Memory Stack 60 - 70 72 or more 75 or more
"MIXED AIR" 48 - 58 75 or more 80 or more

5.4 November 1963

Filament

running.

indicatic

Registers A, B, C, D, E, X
These indicators always show the contents of the associated flip-flop registers.
(K shows the sequence number last used. - See Chapter 4.) They are not affected
by alarms or pushbuttons. The overflow indicators are just above A.
PK Indicators
PKa and PK_ are of interest for the most part to the Technicians. They show

2

the PK, PK,, and PK, :

configuration bits, and Operation Code of the instruction whose read out cycle is

timing levels. PKh, PKc , and PKEp show the hold bit,
in progress.
QK Indicators
QK& and QKﬂ show the QK timing levels. Qch and QKBP show the configuration
read from F Memory and the last operation that required a data reference. Qch
is also used to remember the original Index Register Number on deferred address
cycles. (The original Index Register is used last.)
AX Indicators
AKa and AKB show the AK timing levels. (There is an indicator for each level.
Ach and AKOp show the configuration (minus permutation) Operation Code of the last
Arithmetic Operation.

ASK - The Arithmetic Step Counter

ASK is used to count steps for Arithmetic Operations such as Multiply, Tally, and
Divide which are different for different word lengths.

XWK - The X Memory Counter

XWK sets the timing levels for the writing of the Index Registers.

CSK - The Change Seguence Counter

CSK sets the timing levels for a Change of Sequence, (CSK 3 lo(octal) are the
steps that indicates LIMBO.)

Memory Indicators - Interlocks

Most of these are not of interest to programmers. The PIl P12, PI3’ PIS’ and
DFA are of use in interpreting N (see page 5-10). P12 indicates a defer cycle is

in progress. DFA indicates completion of a defer cycle.

5-6 November 1963

START-STCP Control - SPR, Start Point Register

The left half of this indicator shows the start-stop interlocks and is of
interest mainly to Technicians. The right half is the Start Point Register. It
is set by the RESET, STARTOVER, and CODABO pushbuttons and is used to set the P
register when a change to sequence zero is performed. (See PK2 in the table below.)

Registers P and N

P and N are the selector and buffer for readout of instructions from STUV Memory.
P is also called the "Central Program Counter" and N the "Instruction Register".
At the start of any instruction, they are, of course, compatible - P gives the
address of the contents of N. As the instruction is performed, both are changed.
The extent of such change depends on when, in the cycle, the computer was stopped.

There are two indicators to help interpret P. Their use is given below:

Indicators
"POD" PET™ Contents of P

0 0 2 P gives the address of the last instruction
read out of STUV Memory. (It may have been
changed in N - see PK2 in table on page 5-9.)

0 15 P has been indexed, but not yet used for
read out. It gives the address of the next
instruction.

i 0 "PmODified" - P has been changed radically
and probably bears no relation to N. (As by a
Jump, skip, or sequence change.)

& 1 This situation should not occur. Take
a picture of it.

The interpretation of the N register depends upon the type of operation being
performed, and how far the computer has gone before stopping. Instructions require from
one to five basic cycles. The first cycles for one instruction can be overlapped with the
final cycles of the previous instruction and it is therefore possible for two cycles to
be running at the same time. The stop system (stop button, sync system, and slow speed
control) is synchronized so that once a cycle has started, it must proceed to completion.
There are indicators that tell what cycle is next, but one must exercise ingenuity to

determine which one has just finished. The basic cycles are abbreviated as follows:

November 1963 5-7

Instruction Readout Cycle
(Used by AOP instruction - Instruction Readout followed by Arithmetic
Cycle)

Intermediate Address Cycle (Deferred Addressing)
Final Address Cycle (Deferred Addressing)

Data Reference Cycle

Data Reference followed by Arithmetic Operation Cycle. They are

inseparable, but another QK could start before the AK part is over.

CSK -

Change Sequence Cycle.

In practice, their order of occurrence depends on the operations being performed and

on overlap conditions.

computer operations.

The table below shows the cycles for the three basic types of

Type Op Code (See Chart 7-3) Cycles Required
0-17 (Jumps and IOS) PK,
: B
L, 46, k4, With deferred address P, , FK, , PK3
10 - 57 (Non AE, Non Jump) PK, , @K
2 (but not
Ly, 46, 47) With deferred address PK, , K, , PK3 , @K
(AE operations) PK, , QKAK
3 60 - 7T
With deferred address PK1 5 PK2 ’ PK3, QKAK

The CSK cycle can occur only at the end of an instruction - i.e., only after PKJ.’

PK3, QK, or QKAK - never between PIS_ and PKQ, nor between PK2 and PK

The effect of these cycles on N is as follows:

3°

November 1963

Cycle

Effect on N

This is the initial instruction readout. N will
contain the instruction located at the address indicated
by P.

EXCEPT when the operation is JNX or JPX (codes 6
and 7), for on these two operations the right half of N
is used for the sign extended index increment (18 bits).
(BUT if the JNX or JPX is deferred, the increment is not

added until PK3 so N is not changed during PKl.

The intermediate deferred address cycle (PK2) is
always followed by PK3. The intermediate address is
read out into N using Q as the selector. All 36 bits
of N are changed, but the initial index register number

was saved (in QKIRCF) to be used last (in the PK. cycle).

3

After a PK,- cycle, N contains the contents of the
memory register given by Q. Bit 2.9 of Q will be 1 due
to the defer bit.

The final deferred address cycle does not do a
memory readout. It is known as the "Ultimate Cycle".
DFA will be set to 1. N is further changed by adding in
the index contents to get the final address. Then the
original N, bits are restored and the instruction

J

continues. The rest of N is cleared.

The QK cycle of all index memory operations and
SKM (21l op codes 10-17) clears the right half of N.
For RSX, EXX, AUX, and ADX it is subsequently set from
the right half of E which was in turn set from memory
and may have sign extension. ADX puts the augend from
memory there. The next PK cycle can not be overlapped
with the QK cycle of these operations.

QKAK does not change N

CSK

The change sequence cycle always changes Nj to the
old sequence number.

If the new number is zero, the right half of N is
set to the contents of SPR (Start Point Register). The
rest of N is not changed by CSK.

CSK must be followed by PKl'

November 1963

279

"Control" does not really care about what has been done. It is interested only in
what it is allowed to do. Once it has started a cycle, it goes merrily on to completion,
but before starting one, it must get past a number of interlocks, one of which is the
start-stop system. We can therefore tell what cycle is about to start and with that
information, together with a program manuscript, the P register, and the P + 1 and POf
indicators, we should be able to deduce where it stopped, and therefore what is in N.

The conditions for starting are foretold by indicators PIl, PIe, PI3, PI5’ and DFA as

follows:
"Interlock Indicators" Next Cycle Stopped
PIl P12 PI3 PI5 DFA is After
0 0 0 0 X EKl 0

.
F

0 1 0 0 0 PK3 PK2
0 0 0 0 1 PKl PK3 or QK, CSK
0 0 3 0 X CSK '
1 0 0 0 X QK or QKAK %
Note: "X" meens "It can be O or 1, it does not matter."

"2" means "Any cycle but PKQ".

Registers Q and M

Except for defer cycles, Q and M are the selector and buffer for data references to
STUV memory. The memory references for deferred intermediate addresses use Q as the
selector and N as the buffer (Cycles PK, and PK3).

Indicators NJ and X

The Nj lights are copies of the index tag bits of N (bits 3.6 - '3.1), The X register
is the index memory buffer. NJ and X will always be compatible, for the X memory is

read out even if it is not used.

Registers FA and F
FA and F are the selector (F Address) and buffer for the Configuration Memory. They
are always compatible.

5-10 Novenmber 1963

5-2.2 Alarms

Fig. 5-5, - Alarms, Conditions and Action Pushbuttons

The top row of pushbutton indicators in Fig. 5-5 above is used for the ten TX-2
Alarms, two special indicators, and the Sync System (Section 5-4). All of the alarms
except TSAL, USAL, and the "Mousetrap" can be suppressed by pushing the indicator. These
pushbuttons have two lights each. The upper light indicates the alarm, the lower light
shows that it is suppressed. Suppression of an alarm merely keeps it from stopping the
computer. In the case of parity alarms, the suppression allows the computer to use the
incorrect information and a new, presumably correct, parity is computed and stored. The
light will always come on. The chime must be suppressed separately if not wanted. (See
5-3.1 for chime details.) "MISAL" - the Missed Information Alarm - can also raise flag
41 (In Out Alarms). See Chapter 4, Section 5.

Detailed information on each alarm is given in the table below:

ATARM HAPPENS DURING o WHAT
NAME CAUSE COMPUTER CYCLE TO DO
Parity Alarm on readout of Take a picture.
data from STUV Memory into the M QK or Report failing bit and
S Register. Q gives the address of QKAK whether it was "dropped"
STUV Memory register. This alarm or "picked up". (if
can not be programmed. you know what should

have been read out.)

Try again.
Parity Alarm on readout of Take a picture.
instruction into N (location given PKi Report failing bit as
NPAL by P), or on readout of deferred b "drop out" or "pick -
intermediate address into N up". Try again, alarm
(Location given by Q). PK2 not programmable.
** Because of overlap, another cycle may be running concurrently and the computer will

continue until both are completed.

November 1963 5-11

ATARM HAPPENS DURING WHAT
NAME CAUSE COMPUTER CYCLE TO DO
Parity alarm on readout of Take a picture.
XPAL index register into X. Nj tells Any Report failing bit as
which index register. This alarm Cycle "dropout" or "pickup"
can not be programmed. if you can. Try again.
Parity alarm on readout PKl Take a picture.
FPAL from F Memory (configuration) into QK Report failing Dbit as
. s n " ”" "
the F register. FA tells which F or QKAK dropout” or "pickup .
memory register. Try again.
Check your pro-
gram, this alarm can
P register is set to an PKl be programmed. If
PSAL illegal address. cSK machine malfunction
is suspected, take a
picture and try again.
Q register is set to an PK2, Check your pro-
illegal address - either a data QK, or gram. This alarm can
deat reference or a deferred address. GEAK be;programeeds Bufois
Check chart on page 5-10. peislikelytohe-8
machine malfunction.
Operation Selection Alarm:
OCSAL An illegal instruction was readout PKl Check the program.
into N. Take a picture.
In Out Alarm: This happens Check the device
on an I0OS instruction. The selected you are selecting or
IOSAL device is either broken, on "main- PKl the indicator panel.

tenance", or non-existent. The IOS
has had no affect, even if the alarm
was suppressed. The Nj indicators
should tell what unit was selected.

The in out device is
probaebly on "mainten-
ance'". Unless there
is a "hands off" sign,
throw the maintenance
switch down (i.e., not
maintenance) and try

again.

#%¥ Because of overlap, another cycle may be running concurrently and the computer will

continue until both are completed.

5-12

November 1963

*¥
HAPPENS DURING

ATARM WHAT
NAME CAUSE COMPUTER CYCLE TO DO
Missed Information Alarm: Probably program
This occurs when the program is too trouble. Can happen
slow for the in-out device, and a with PETR, TX-2 Mag Tape,
MISAL new datum or output opportunity has Any A/D Converter, or IBM
come along before the last was used. Time Mag Tape. Take a picture.
MISAL is automatically suppressed if
sequence 41 (in Out Alarms) is
connected.
The T memory selection currents Any Take a picture,
have not died out before a new Cycle report that it Happened,
TSAL register selection was demanded. Except and hope it will go
(T memory is 200,000 to 207,777) CSK away. It can not be
programmed or suppressed.
Same as TSAL, but for the U Any cycle
USAL Memory. (210,000 - LT except CSK Same as for TSAL.
This is an extra alarm
designed to trap any mouse that may
be causing computer trouble. It
Mouse- will be set differently from time Any cycle Same as for TSAL - USAL.
trap to time. As of now, it is set to
catch a missed control pulse.
The following indicators are not true alarms.
A non-standard priority plug- Replace the
Priority board is in use. (The standard It doesn't standard plugboard at
Patch priority is consecutive numerical happen - it Frame 2, Bay D.
Indicator | order--lowest number having highest exists.
priority.)
The computer is running, but It doesn't For most inter-
all selected sequences are waiting happen - it leaved programs, the
Limbo for a flag. exists. LIMBO light will be on,

for some waiting time is
almost unavoidable. If
the program seems to have
stopped completely, check
the interleaving.

** See Footnote on page 5-12.

November 1963

5-13

5-2.3 IN-OUT Indicators

The IN-OUT indicators common to most units -
i.e., "Flag", "Connect", "Status", and "Maintenance" -
are on the main indicator panel - Fig. 5-4 and Fig. 5-6
(to the right). All sequence numbers have a FLAG, but
some have no associated IN-OUT unit and hence no "Connect",
"Status", or "Maintenance" indicators ("F", "C", "S", and

"M"). The indicators are interpreted as follows: (see

also Chapter 4)

Fig. 5-6 IN-OUT Indicators

INDICATOR MEANTNG

F - FLAG The Flag is up - The associated program will be operated
as soon as priority conditions allow.

C - CONNECT The Associated IN-OUT unit is "connected"; i.e.,
selected for use.

S - STATUS If STATUS = 1 ("ON"), a TSD can be performed. If

STATUS = O ("OFF"), a TSD will have to wait, for the IN-

OUT buffer is still busy processing the last datum.

M - MATINTENANCE

If M = 1, the Maintenance Switch (at the unit) is up.
A select instruction (IOS) will cause an IOSAL (IN-OUT

Select Alarm). The unit can not be connected.

The IN-OUT Buffers and special indicators are on a separate panel shown on next page:

(See Chapter 4 also).

5-14 November 1963

(o]
i
m|m
N,
1
)
1
|
1
o
|
o
&
=
H
o
=
n
®
=]
oY
[92]
Lo
@
0
HA
m
=
ol
=
o
(3
o
o
ct
O
=
()

November 1963 5-15

5-3 Console Pushbuttons

Fig. 5-5, - Alarms, Conditions and Action Pushbuttons

5=3.1 Condition Pushbuttons (Fig. 5-5)

The center row of pushbuttons and some of the bottom row will change the mode of

operation and will light up as an indication that the computer is not in its normal mode.

The table below shows what they do:

NAME

FUNCTION

U Memory Off

These prevent the program from using the U, S, or

T Memory Off T memories. When the indicators are ON, a PSAL or
S Memory Off QSAL will be generated if an attempt is made to

use the suppressed memory.

Overlapped programs will run slower with "NO OVERLAP"
No Overlap on, but the indicator lights - especially N - should

be easier to interpret.

No Stop on CSK
No Stop on QK

No Stop on PK2
No Stop on PK1

The computer will not stop before the selected

cycle(s).

PASOFA
AUTO START

"Preset and Start over from Alarm" and "Auto Start"
are usually used together. Auto Start alone is
equivalent to pushing CALACO about a second after
the alarm. PASOFA is equivalent to an automatic
CODABO after alarm. (Except that the alarm is not
cleared.) They are used primarily for maintenance

and computer repair.

5-16 November 1963

FUNCTION

Low Speed Repeat

This circuit inserts a variable delay between the
computer cycles. It operates in conjunction with
the NO STOP buttons (i.e., it does not insert a
delay before the selected cycle(s)). There can be
no OVERLAP when this mode of operation is used. The
inserted delay (and therefore the effective computer
speed) is controlled by the right-hand switch-knob
at the bottom left corner of the control panel

(Fig. 5-5). (It is labeled L.S.R.)

Low Speed Pushbutton

This circuit inserts a "STOP" before each computer
cycle unless the "NO STOP" buttons are on. There

can be no overlap.

Hold on LSPB

"Hold on Low Speed Pushbutton" - In this mode, all
instructions are treated as,if their hold bit were
set. This allows step-by-step operation of a low
priority program without any interruption due to a

change of sequence.

Remote TSP

There is a portable control panel that contains

some of the condition and action buttons and another
18-switch toggle START register. It can be plugged
in at Frames 9, 3, and 2, and also behind the
console. (It contains condition buttons: Low
Speed Repeat, Low Speed Pushbutton, Remote TSP, the
Sync Stops; and action buttons: CODABO, PRESET,
CATACO, and STOP.

No Chime on SUPP AILMS
No Chime on SUPP AIMS

SUPP means "not suppressed". The circuits were
designed for two different chimes but only one tone
is commercially available at present. These

condition buttons have no other effect.

November 1963

=17

5-3.2 Action Buttons

Fig. 5-5 - Alarms, Conditions and Action Pushbuttons

There are six buttons that actually do something. Their use is outlined in the table

below. No informetion registers (Memory or AE) are affected. There is no clear memory

button.

BUTTON

FUNCTION

CODABO

"Count Down and Blast Off" - CODABO is the most
commonly used start button. It is roughly equivalent
to STOP, CLEAR ATARMS, PRESET, STARTOVER, and CALACO
in that order. Its effect is to clear all flags, preset
all interlocks, and start the computer at the memory
location given by the Toggleswitch Start Register (TSP)
or the remote TSP, if selected. There are 9 CODABO
buttons - 8 for the fixed addresses - 377710 to 377717
and the ninth for the two toggle START registers (Console
and Remote). CODABO leaves the SPR (Start Point Register)

set to the chosen starting place.

STOP

"STOP" is synchronized so that the computer will
complete the cycles it has started. Except for start-
stop interlocks, no registers or indicators are directly
affected.

5-18 November 1963

BUTTON

FUNCTION

CALACO

"Clear ALarms and COntinue" - CALACO merely resumes
operation where it left off. If no flags are up, the
computer will go into LIMBO. The combination of STOP
and CALACO has no effect on a single sequence non-InQut
progrem, but will probably upset IN-OUT and interleaved

programs because of the timing.

RESET

There are nine RESET buttons - eight of them load
the SRP with the fixed addresses 377710 to 377717.
The ninth loads SRP from the selected Toggle Start
Register (Console or Remote). RESET has NO OTHER EFFECT.
The SRP is, in effect, a partial placekeeper for
sequence zero. If the program raises flag zero, sequence
zero starts at the place indicated by SRP. SRP is not
changed when sequence zero drops out as the other place-

keepers are. It can be changed only by pushbuttons.

STARTOVER

Nine STARTOVER buttons are available. They are
equivalent to RESET plus a "Raise Flag Zero". STOP
followed by STARTOVER will not do much, for STARTOVER
does not start the computer. If the computer is running
or in LIMBO, STARTOVER will be effective for Flag Zero
has priority over all others no matter which priority
plugboard is in use. STARTOVER followed by CALACO is
similar to CODABO, but does not clear the Flags and
interlocks.

PRESET

There is but one PRESET button. Like RESET, it is
seldom used by programmers. It clears all flags and In-
Out "Connect" flip-flops, and sets all interlocks and
indicators to their proper "PRESET" value. This button
is interlocked so that it is ineffective unless the

computer is stopped.

Clear SUFP AIMS

Clear SUPP AIMS

Suppressed Alarms are handled by separate circuits
and a pushbutton is supplied for each type. SUPP means

"not suppressed".

Clear Real Time
Clock
(Reg. 377630)

The Real Time Clock is indexed automatically every
10 microseconds. It will clear itself every 7.6 days or
so if it is left alone. (The toggle switch to the right
of the indicator turns the indicator lights off but has
no effect on the Clock Register.)

November 1963

5-19

5-3.4 Miscellaneous Console Items:

Audio Controls

Mike Level Adj.

Fig. 5-8 - Audio Controls

For the convenience in trouble-shooting, to reassure users that the machine is running,
and to further the progress of research, TX-2 has been made audible via two separate,
independent, and identical Audio Systems. The Selector switches have ten positions, five
of which are currently in use and wired as follows:

l. Quarter 1 of the X Register (Analog signal decoded from indicator
Circuit.)
2. Quarter 2 of the X Register (Analog signal decoded from indicator
Circuit.)
35 Vertical Display Decoder (Sequence 60)
L, Horizontal Display Decoder (Sequence 60)
Se The Patch Panel at Frame 9.
The inside knob of the selector switch is the main volume control. The microphone input is
mixed in at all selector settings and has its own level control.
Knob Register - (377620)

Register 377620 - The Knob Register - also called the "Shaft Encoded" Register is
located just below display #1. It is similar to a toggle register except that it is set
by four knobs - one for each quarter. The metabit is a lighted pushbutton switch. (Eight
revolutions cover the range 000-T777.)

External Input Register - 377621)
Register 377621 - The External Input Register - is a set of four plugs just to the

right of the marginal check panel (Fig. 5-3). There exists a box with 37 pushbuttons
intended for use with (or as) the external register. These pushbuttons are directly
analogous to toggles except they must be held down if they are to stay a "1". (Unlike the
keyboard, any number may be down together.)

Note: Contact bounce is about the same as the toggle contact bounce - a delay
of 10 ms allows a small safety factor.

Clock Register - (377630)
Register 377630 is a 36-bit counter indexed every 10 microseconds by an external

oscillator. It can be cleared by pushbutton (Fig. 5-5), but not by a programmed
instruction (such as STA or DPX).

5-20

5-4 TX-2 Sync System

R

The Sync System produces an
output signal when certain manually
preselected conditions are met.

For example:
a) When (or if) the program gets
to a prespecified memory

location. (i.e., [P] = preset

value)
b) When a certain memory register
is used for data or deferred

address. (i.e., [Q] = preset

value)
» 3 9% &8 & & &2 & & 3
Z 5 > 6 O6& o ua 4w c) When a certain operation is
5 & SN e N 0N 8N Ees used. (i.e., [PKOP] = preset
g : % value)
s 6 & 8 s & 5
: N S x id st . d) When a certain sequence
& @ &« 8 & & L number is used.
* s s s P s s 8
) v s s 8 o I
P s s Y s s 3 Certain combinations are
possible. The output can be
@8 88 = s ? s : switched to any or all of the
w28 B2 28 2R3 following:
2 88 o0 9 e 8 &
Fig. 5-9 - TX-2 Sync System
OUTPUT SWITCH LOCATION COMMENT
Stop on SYAL #1 Top Row Pushbuttons There are two alarms
(Fig. 5-5) and two condition selectors,
Stop on SYAL # Right next to SYAL 1 but only one set of condition
parameter switches.
Signel to Sync On Sync Panel Uses for scope sync
Jacks (Fig 5-9 above) during computer repair and
maintenance.
Raise Flag 42 Bottom Row Pushbuttons See Chapter 4 - Trap
(trap sequence) (Fig. 5-5) Sequence. This button over-
rides other trap modes.
Sync Stop to Top Row Pushbuttons Used mainly for mainten-
Arithmetic Element (Fig. 5-5) ance to Stop AE operations
within a cycle.

November 1963

5-21

Figure 5-9 shows the two SYNC SYSTEM panels. The lower panel contains the Sync
Parameter Switches; the upper panel the Sync Condition Selecting Switches and the output-
to-Sync jacks pushbutton switches.

Parameter Switches

There is but one set of switches for each parameter even though there are two sets
of selectors. The parameter switches are laid out in four major rows:
INSTRUCTION (PK , N)

CHANGE SEQUENCE COUNTER, and INSTRUCTION LOCATION (CSK, P)
DATA CYCLE (x , Q)

ARITHMETIC CYCLE (AK)

Each parasmeter set is grouped, like the indicators (see Fig. 5-4, and Section 5-2.1)
in columns of 3 for Octal interpretation. The least significant bit is at the bottom.

Condition Selector Switches
There are two SYnc stop ALarms (SYAL 1 and SYAL 2). These are controlled by two
"GATES" (Gate 1 and Gate 2). The "GATES" are controlled by two sets of condition switches -

32 switches each. Either gate or both can supply output pulses to the sync jacks or stop
circuits. (Only the alarm indicators are separate.) ALL the selected conditions must be
met for the output to be generated. (The GATES are AND circuits.)

The conditions available are described below:

CONDITION COMMENT

See upper left corner - Fig. 5-9. PK& refers to

the 32 possible time steps (levels) of the FPK cycle
counter and therefore determines when the sync signal

K will be generated. A setting of 16 is recommended,

(oct)
for it provides a definite time to stop, and is used by

all instructions. PK& is recommended when any of the

"P"-type conditions are used.

This compares the PKOP Parameter switch setting

PKOP with the operation most recently read out of memory.
(Bits 4.3 to 3.7)
This compares the configuration switch setting with
Pch the configuration bits most recently read out. (Bits
4.8 to k.k4)
PKh "h" vrefers to the hold bit of the instruction most

recently read out. (Bit 4.9)

5-22 November 1963

CONDITION

COMMENT

P

x*
P refers, of course, to the P register. The

Parameter switches are in the second major row.

This condition allows selection of the time step
when the sync pulse is generated. A setting of 2 1is
recommended. Q&x and EK& should not be used concur-
rently unless a particular type of overlap condition is
sought.

op

This set looks for a particular operation, just as
does PKop , but only those instructions that require a
data reference will ever get into QKﬁp . (The QKop
indicator lights are at the left - Fig. 5-4. They are
sometimes helpful in debugging, for they tell what

operation made the last data reference.)

Q is used for intermediate deferred addresses as
well as data references, but these two can be separated
somewhat via Qﬁy. With Q@ and QK& selected, the sync
output will occur only for data references since the

PK counter is used for the defer cycles.

k.10

The circuitry is able to detect set metabits on
instructions but not zero metabits. If the parameter
switch is down and the selector switch is up, no sync

pulse can be generated for the gate in use.

k.10

4.10

The data reference metabit (M) can be detected

4.10 above). Note that it can

only when set (just as N
be changed without a memory reference for it serves as
the metabit of the A, B, C, D, and E registers. (i.e.,

MKC) ,, A or MKC) ,, B will change bit 4.10 of M.

"NJ" refers to the "j" bits of the N register and
hence to the index register in use, or to the bit selection

of an SKM operation.

* If the instruction that has been interrupted used a deferred address, CALACO will not
continue the program until the third time it is used. (Since P is not changed until the
last moment, a Sync Stop occurs during the intermediate cycle, and again during the
"ultimate" cycle.)

November 1963

5-23

CONDITION

COMMENT

"AK&" is the Arithmetic Instruction Time Level
counter. There is one switch for each level (it there-
fore makes little sense to have more than one up). The

recommended setting is OFF - it is mainly for mainténance

use.

op

"AKOP" is a 6-bit register that holds the most

recent arithmetic operation (code values are all above
57). It is not changed until another arithmetic opera-

tion is performed.

ASK

ASK is a T-bit counter used for arithmetic opera-
tions that require repetitive steps - for example,
multiply and divide. It clicks along during shifts and
cycles, but is not used.

2.9

X2 9 is the sign bit of the X memory buffer. It

can be used, for example, to detect completion of a JNX

or JPX loop.

2,1

N2 1 is the right half of the N register. It is
4

especially useful for detecting a jump to a specified

location.

K holds the current sequence number. It is often

useful in conjunction with CSK below.

CSK - The Change Sequence Counter - will remain

zero until a change of sequence occurs. A setting of
10 (csxk = 1) detects a change into LIMBO, a setting of
1l is recommended if K is used for the Old Sequence;

a setting of 6 if K is to be set to the New Sequence.
In either case, the CSK cycle will be completed before
the computer stops.

B CoD;
F, MT, IOI

These letters refer to open cables at Bays B, C, F,
of Frame 2, the Mag Tape Frames (F6, 7, 8), and Frame 9
(IOI). They are used by the maintenance technicians for

special conditions cooked up as the need arises.

5-24 November 1963

5-5 Miscellaneous Conventions

D=2k Paper Tape Read-in Programs -

%*
Plugboard Memory (377740 - 377777) contains three standard progrems. They are as

follows:

CODABO
POINT

NAME OF
PROGRAM

COMMENT

3777704y

"Clear Memory"
or

"Smear Memory"

All of S,T, and U Memory is set to +0 in
the Left Half word and each register's own
location in the right. Metabits are not
changed. This program proceeds automatically
to 377750 - Set Standard Config - and then to
377760 - Read in Reader Leader. (See below.)

377750
(8)

Set Configuration

All of F Memory is set to the standard
configurations and the program proceeds auto-
matically to 377760 - Read in Reader Leader

377760(8)

Read In

This program reads the first 21 words
from paper tape into registers 3 through 24 of
S Memory, and then goes to register 3. All
binary tapes start with the "Reader Leader",
a block of 21 words that is the TX-2 Read in
Program. The TX-2 Read-in program will read
any standard binary block and check the sum-
check at the end. (If the check fails, the
program tries again.) The meta-bit of each
word being stored is cleared. See listings
below. See Section 6-3.4, page 6-23 for
Binary Format.

* There are two plugboards:

registers 377760 to 377777.

November 1963

Plugboard "B" - registers 377740 to 377757, and Plugboard "A"

2-25

5-5.2 Program Listings (continued)

"READER LEADER"

TX-2 Paper Tape Input Program [For Binary Format]

LOCATION

t-

NG T e N

dol
12
13
14
15
16
? Ly
20
21
22
‘23
24
25
26
27

*
INSTRUCTION

.JPX56377760

hJNX563777so

14,pQ 27
2
1MKZ4_12400011
RSX573
RTSD 0
36
j JPX5721
QUXSGO

: AUXSGO
STE 16
15

BPQ540

1
1055220000

NUMERICAL FORM

(OCTAL)
000000 000000
000000 000001
000000 000002
011154 000005
360554 000020
421153 000000
013000 000011
360554 000017
402000 000000
003053 000034
410753 000007
360554 000020
400656 377760
400756 377760
140500 000027
o21712 400011
0211527 000003
405700 000000
360657 000021
011056 000000
421056 000000
013000 000016
150554 000000
010452 020000

* Registers 0, 1, and 2 are not part of the Reader Leader itself, but are used as

temporary storage.

5-26

November 1963

*
Program Listings

5-5.2
PLUGBOARD PROGRAMS
NUMERICAL FORM

LOCATION INSTRUCTION (ocTAL)

377740 760,342,,340,000 760342 340000
377741 410,268, .762,761 410763 762761
377742 160,142,,140,411 160142 140411
377743 202,163,,162,161 202163 162161
377744 752,2352,,250.200 732232 230200
377745 605 ,731,,730,733 605731 730733
377746 320,670,,750,600 320670 750600
377747 604,331,,330,333 604331 330333
377750 SPG 377740 002200 377740
377751 4SPG 377741 042200 377741
377752 IOSPG 377742 102200 377742 E
377753 14SPG 377743 142200 377743 é
377754 ZOSPG 377744 202200 377744 §
377755 24SPG 377745 242200 377745 2
377756 JOSPG 377746 302200 377746 =
377757 345PG 377747 342200 377747
377760 1SKX5423 011254 000023
377761 REX,,377763 001252 377763 B
377762 211055230106 210452 030106 3
377763 REX ;5 001253 000005 g
377764 kT505426 405754 000026 8
377765 hssJPX53377764 760653 377764 %
377766 r? X 4377763 410754 377763 o
377767 ldJPQ 3 140500 000003
377770 REX,,207777 001277 207777
377771 DPX77777776 001677 777776
377772 14JPQ 377773 140500 377773
377773 REX 777610 001200 777610
377774 hssJPX77377771 760677 377771
377775 3°SKN4.‘2377744 301712 377744
377776 2750 000077 000000
377777 ‘4JPQ 377750 140500 377750

¥ The X Memory is not changed, but each register is "exercised" to remove possible
XPAL alarms.

November 1963

5-27

]

=53 Tape Preparation

(See Group Report 51-8, dated 6 October 1959)

An sbbreviated manuscript and associated tape is shown below:

This end is inside the reel.
A yard or so of blank tape
is sufficient to reach the

reeler.

"End Mark" - i.e. code T3
(without seventh hole.)

About 2 inches for convenience
Initial Carriage Return

DR R N R

°
®
®
: Initial Carriage Return
°
5 .
e
**TEST e0 o
[X
LDA GG, e > Manuscript
ADD FT, e

Final Carriage Return

1 About 2 inches for convenience

eessccee

STOP CODE - 76 With a Tth hole

About a foot of blank tape for
protection. This is the outside

end of the reel.

RN AR NN N R

U
no
oo

TX-2 USERS HANDBOOK
CHAPTER 6 - TX-2 UTILITY SYSTEM

TABLE OF CONTENTS

6-1 INTRODUCTION - TYPICAL USE OF M4 ASSEMBLY PROGRAM

6-1.1
6-1.2
6-1.3

MANUSCRIPT, DIRECTIVE, LISTING
META LANGUAGE
MACRO INSTRUCTIONS

6-2 M4 PROGRAMMING LANGUAGE

6-2.1
6-2.2
6-2.3
6-2.4
6-2.5
6-2.6
6-2.7
6-2.8

INSTRUCTION WORDS

SYMEX DEFINITION - TAGS - EQUALITIES - AUTOMATIC ASSIGNMENT
RULES FOR SYMEX FORMATION

NUMERICAL FORMAT - USE OF COMMAS

MEMORY LOCATION OF PROGRAM - ORIGINS

RC WORDS - RC BLOCK

WORD ASSEMBLY

SPECTAL SYMBOLS

6-3 META-LANGUAGE FOR CONTROL OF M4 ASSEMBLY

6-3.
6-3.
6-3.
63
6-3.
6-3.
6-3.
6-3.

o O\ F Ww P

6-4 MACRO
6-k.1
6-4.2
6-4.3
6-k .k
6-L4.5
6-4.6
6.7

META-COMMAND FORMAT

M4 OPERATION - NAME, CLEAN, LW READ, RECONVERT, BINARY STORE, GOTO
META-COMMANDS FOR MAKING CHANGES - INSERT, DELETE, REPLACE, MOVE
M OUTPUT - LISTING, DIRECTIVE, ERRORS, PUNCH (BINARY TAPE)

M4 FORMAT VARIATION - DEC, OCT, T = CR, T = TAB, RC STORE, XXX
USE OF SPECIAL KEYS

MAGNETIC TAPE BULK STORAGE - SAVE, READ, TAPE, CORE

META-COMMAND SUMMARY

INSTRUCTIONS

MACRO DEFINITIONS - META-COMMANDS "DEFINE" AND "EMD"
THE MNEMONIC ABBREVIATION LINE OF A MACRO DEFINITION
MACRO NAMES

DUMMY PARAMETERS

MACRO TERMINATORS

THE DEFINING SUBPROGRAM

USE OF MACRO INSTRUCTIONS

October 1961 6-1

CHAPTER 6
TX-2 UTILITY SYSTEM

6-1 INTRODUCTION - TYPICAL USE OF M4 ASSEMBLY PROGRAM

The TX-2 Assembly Program "M4" is a conventional symbolic assembler, but has
considerable flexibility and two types of special features - Meta-Language for control of
the program, and Macro Instructions, a feature that gives M: the essential characteristics

of a compiler. The symbolic tags for address sections can be nearly any combination of
letters, symbols, and numerals (with a few restrictions). Tags used for the configuration
and index syllables are nearly as flexible. M4 will assign all tags that have not been
assigned by the user. The program is designed for on-line keyboard input and control as
well as paper tape input. After checkout has started, a program can be kept in symbolic
form in magnetic tape bulk storage.

Typical use of M4 begins with off-line tape preparation using a Lincoln Writer (See
Group Report 51-8.). During debugging, the program can be preserved in symbolic and/or
binary form on paper tape or in mag tape bulk storage as the user wishes. The symbolic form
saved by the program is called a "DIRECTIVE" and is essentially the same as the original
manuscript. Additions, insertions, relocation, rearrangement, and deletion are all handled

by the Mk system - it is not necessary to retype the manuscript.

In addition to DIRECTIVE output (via Xerox, Lincoln Writer, Paper Tape, or Magnetic
Tape), one can also get a LISTING (via Xerox, Lincoln Writer, or Punch). A LISTING is a
copy of the program in absolute as well as symbolic format (side-by-side). It includes an
alphabetically ordered tag table and a FORMAT FRROR notice if any errors were found. A
LISTING can be obtained on punched paper tape for off-line Lincoln Writer printout, but this

tape is not acceptable as input.

The binary form of the users program can be stored directly in the computer memory,
punched in binary format on paper tape, or stored in magnetic tape bulk storage. When
stored directly, either on mag tape or in memory, the M: program area is protected and the

storage may be incomplete. If a DIRECTIVE exists in core memory it too is protected.

6-1.1 MANUSCRIPT - DIRECTIVE - LISTING

A "Manuscript" is any program prepared off-line. It may exist in printed, hand
written, or punched tape form.

A DIRECTIVE is the symbolic form created by Mi. It may exist within M4 tempo-

rary storage, in magnetic tape bulk storage, or in printed or punched form. A
DIRECTIVE closely resembles the manuscript. The following changes are worth noting:

6-2 October 1961

1.) Any corrections a.nci/or insertions have been made.

2.) All definitions and equalities are at the beginning. (Equalities may be
anywhere on a manuscript.)

3.) Redundancies such as extra spaces are removed.

4.) Fractions are converted to the equivalent integer. The Numeral System is

preserved.
5.) A check sum is added at the end.

A LISTING is a program output in absolute as well as symbolic format. The

format is as follows:

Tag Table (Alphabetical)

Equalities

Macro Definitions

Format Errors

Program (in symbolic and absolute)

RC Words (unless the RC block location was specified within the program.)

(The Tag Table, Errors, absolute program, and RC block are not part of a

Directive.)
6-1.2 META-LANGUAGE

The control of the M: program is accomplished through the MW Meta-Language
instructions. All meta-language commands are to be preceeded by e (two hands).
When used on a manuscript, meta-commands are obeyed on read-in and do not appear on
the directive (Except for those like ww RC, which is used to specify the location
of the "RC Block" - (Register Containing).).

The basic types of Meta-Language Commands are:

Input
Correction-making
Output

Mag Tape

Format

Macro Definition
Direct Storage
Single Pushbutton

October 1961 6-3

6-1.3 MACRO INSTRUCTIONS

A macro instruction is essentially a convenient flexible abbreviation for a
similarly convenient and flexible subprogram. The user writes the subprogram once -
with dummy parameters - as a "MACRO DEFINITION". Tags, and equalities used in the
definition are kept separately and are not part of the program proper. When a macro
instruction is used, only those parameters that are needed should be specified. The
portions of the defining subprogram that refer to unspecified parameters are left out
when the macro is converted. For this reason, and since the parameter of one macro
can be the abbreviation for another, a different set of instructions will usually be
compiled for each use.

Some standard macro instructions will be built into the M4 system. When they
are used on a manuscript, the definition will appear on the M:t Directive and Listing.
Since Macro Instructions can be redefined, it will not be necessary to avoid using

the standard names except to avoid confusion when reading a program later on.

6-2 M4 PROGRAMMING LANGUAGE

6-2.1 INSTRUCTION WORDS

A TX-2 instruction word has U basic syllables and three special indicators as
shown in the diagram below:

2 o @ T ™ N © - o © -
. . . . e o9 18 S] .
< b 0) T <) m NN -~
I BECc e B e k]
= b % ADD , * GEORGE
The three indicators are preassigned symbols as follows:
BIT 4-10 » = meta bit (not part of binary tape format)
BIT 4.9 = hold bit
% = no hold bit (Needed because h is automatically included
with LDE, ITE, JPX and JNX.)
BIT 2.9 * = defer bit

They must be in normal script, and may appear anywhere in the word.

6-4 October 1961

6-2.2

October 1961

The four basic syllables are as follows:

"e" . "Configuration" syllable - a 5 bit word (bits 4.4 - L.8) used as
the F memory address or as an extension of the instruction syllable
(JMP, IOS, SKM, SKX). This syllable must be in superscript or
preceeded by | . It can be numerical or symbolic, but no spaces
are allowed. For SKM, JMP, and SKX it is specified automatically
by the supernumerary mnemonics. (See Table 7-3.)

"3" - "Instruction" syllable - a 6 bit word. This syllable is a normal
seript, 3 letter standard mnemonic abbreviation for the instruction.
It is terminated by a space as well as the standard symex ter-
minators. The mnemonic abbreviations include the configuration
syllable as well for JMP, SKM, and SKX. (See Chart 7-3.) The
instruction syllable may be specified numerically or with a normal
symex but in these cases it is not terminated by a space. A
regular symex terminator must be used. (See 6-2.2, rule #3.)

"3" - "Index" syllable - a 6 bit word used as the X memory address, i.e.,
the index register tag. (Except for SKM where it is used for bit
designation.) The "j" syllable is normally in subscript. It may

be a numeral or a symex, but no spaces are allowed.

"k" - "Base Address" - a 17 bit word. The base address may be symbolic
or numerical and spaces may be used as part of a symex. It is
given in normal script. Redundant spaces are removed upon

conversion.

It is not necessary to use the order shown above. Any ordering is allowed if

the script and symex conventions are carefully used. For example:

[+ 4 a a
ADD 11 or ADD T! or ADD T’"uor T! ADD

SYMEX DEFINITION - TAGS - EQUALITIES - AUTOMATIC ASSIGNMENT

A "Symex" is a symbolic expression. It is converted to a numeral by M4 when a
program is stored, punched in binary format, or listed. A "TAG" is a symex used as
a name for a place in a program. A tag is always terminated by an arrow (=), and
is set to the numerical location of the word that it tags.

A symex can be set equal to a numeral directly - e.g., "apple =

36 bit word.

For example a symex may be set equal to an instruction.

6", or to any

When such a

symex is used as the instruction syllable in a normal word, it must be terminated by

a symex terminator - not by "space" (Only Standard mnemonics are terminated by space.)

A symex that is not used as a Tag nor defined by equal sign will be assigned by
M4 according to its use within the program. See chart below:

Unassigned Symexes:

Used to Specify:

Automatically Assigned as or to:

Configuration Only

Zero

Index Only

The lowest numerical index register value

not already used. (Except Zero and no
higher than 77.)
Configuration and Index Zero

Address only

The numerical memory location of the next
place in the RC words block. The contents
of this RC word are set to zero. This

provision is useful in assigning temporary

storage.
Configuration and Address Zero
Config., Index, and Address Zero

Index and Address Same as Index Only.
Origin (i.e., Memory Location of e

Block)

where N is the numer of words in the

program including the RC Block.

A symex assigned by M4, or by equals sign may be redefined at any point in a

program menuscript, and the latest definition will be used throughout. If the symex

was initially assigned as a Tag - i.e., with an arrow, a re-definition will be
recorded as a double definition error, and will be accepted, but not corrected. The
only way to remove it from the directive is to use meta-language (REPLACE) and refer
to it with a relative address based on a different tag.

6-2.3 RULES FOR SYMEX FORMATION

1. A symex must contain at least one non-numerical character.

2. It may contain as many legal characters as desired.

3. The single letters A, B, C, D and E are preassigned to the numerals 377604 -
377610. (i.e., the AE addresses.)

L. The three letter mnemonic instruction abbreviations can not be used as symexes.

5. The preassigned abbreviations and single letters can be used as part of a
symex if they are not separately terminated. Note that space bar terminates

op codes and single letter AE addresses but does not terminate other symexes.

6-6 October 1961

e.g. "ATYPE" or "TYPE A" are allowed.
"A TYPE" is equivalent to "377604 + TYPE".
. "ADDY" is allowed - "ADD Y" is not. (ADDY is a legitimate Symex -
ADD Y is a two syllable instruction.)

6. The legitimate symbols are:

0517234 6.6:7-89

A through Z

a—p- YA e

t Jknpgqgtwxyz (NOT h)
« (PERIOD) ' (APOSTROPHE)
_—DO and Space Bar.

T. Compound Characters are allowed when the following restrictions are applied:

Only one backspace.
Two or three characters only.
Space bar is allowed.

Any sequence of characters is legal. (Except @ , © , ®)

8. The following symbols terminate symexes:

w/ xNv A
C B ~ K > U N
3 , (COMMA) = - |
#h + -7
SCRIPT CHANGES, TAB, CARRIAGE RETURN, COLOR CHANGES,
LINE FEED UP, DOWN

{rrep*rl

6-2.4 NUMERICAL FORMAT - USE OF COMMAS

M4 will accept integers or fractions in Decimal or Octal. It will not accept
mixed numbers, except as a SKM bit designation. The details are handled by the
position of the period. See chart below:

Periods Numeral Type Example Equivalent Octal Integer
None Octal Integer 431 000 000 000 k31
Preceeding Octal Fraction 431 21k L4oO0 000 000
Following Decimal Integer 431. 000 000 000 657
D Both Decimal Fraction 431, 156 254 020 303
Centered SKM Bit Designation 2.10 000 . 000:-000: 052
(1.e., 10 10102)

Note: The SKM Designation is usually given in subscript and is, therefore, moved

to bits 3.1 - 3.6.

October 1961 6-T

Note:

Commas

a)

b)
c)

d)

are
a)
b)

c)
a)

The meta-command »w»DECIMAL reverses the meaning of a "following"
period. "= O0CTAL restores it to the above.

The two parts of an SKM Bit Designation are Decimal integers.
Numbers may be preceeded by Plus (+) or Minus (-). For example:
(Octal Integer 400 000 000 000 = - 377 777 T77 T77-)

ML converts fractions to Integer form for Directives. The Numeral

System is preserved.

used to specify separate subwords as follows:

The word is set to +0. (Any unspecified portions will therefore
stay at +0.)
The word is assembled from left to right.

The numeral (or any other word) is converted to a 36 bit binary word.

This 36 bit word is inserted into Memory according to the comma chart.

COMMA CHART

COMMAS BEFORE | COMMAS AFTER CRAM DIAGRAM EXAMPLE

RN

0 1 ‘r’,,——”’ LR
F e

0 3 ;r’ﬂ‘//,// 3335 290 17

T 3 + ‘ ‘ L4y 333 222
2 0 ‘ { = = poes 3y
2 1 2 = 111

2 3 \ = S g e

PN T e e s B b |

L -

w w w w
n
I

6-8 October 1961

For example: To specify 1/2 in each quarter, write

200 oopo. oon 200
g 00 OO0 oD% 000
ali o Al b

or bl 23 bR} (3T

To specify an instruction in the right half word as well as its normal position
in the left, write

(-4 a
’ LDABODO LDABooa

6-2.5 MEMORY LOCATION OF PROGRAM - ORIGINS

The location of the first word of a block is to be specified in numerical or
symex form and is terminated by a vertical bar. It may be on a line by itself, as
it will be on DIRECTIVES, or it may preceed a normal word. The symex may be
recursive - i.e., set equal to another symex. If the recursive symex is circular
(i.e., eventually equal to itself,) or if it is undefined, the block will be located
incorrectly, and no alarm is generated. (It will appear to be located a "n", where
"," {s the number of words in the program, but the RC words are assigned as if it
were located at zero.) If there is no origin (i.e. no vertical bar), the whole

program is located (correctly) at 200 000(8). See the examples below.

HAGS | HAG6=77
LDA BOSY
STA HUPG
22 JAC» JPQ MOUSE
HAG6+100 |
+413,,5
-563,51
516 LDE TOMM
STE JERRY
H-> JPQ HEHE

If the origin is specified by a symex (as "HAG6" above), the block may be moved by
redefining the symex via equal sign. If the origin was assigned numerically (e.g-
516' above) it can be changed by REPLACE, counting back from an honest tag. For
example, to move the block at 516 to location 5516, the proper metacommand would be

wwREPLACE H=3 ss16|
Note that the Origin itself counts as a full line.

October 1961 6-9

6-2.6 RC WORDS - RC BLOCK

Since it is often more convenient to specify an operand directly rather than by
its address, M4 interprets any word within brackets, e.g. {3456} as an operand by
providing a register containing the bracketed word, and using its address wherever
the same word is used within brackets. (Bracketed words are called "RC Words"
from "Register Containing".)

The "RC Block" is made up of RC words, i.e. bracketed expressions and temporary
storage assigned to unassigned symexes used in address sections. It is located at

the end of the last program block unless otherwise specified by meta language.
Examples:

suB {w} "w'" can be any 36 bit word.

Words within the RC Block may be Tagged. i & i
such a word is changed via meta language, the
change should be made where it is used (i.e. at
DICKe LOE {SEORGE"LOA T) "DICK") rather than inside the RC Block

i (i.e. at "GEORGE").
A change made within the RC Block will not
appear on a subsequent DIRECTIVE. To be
lasting, such a change should be made outside

the block.
wwREP DICK LDA {GEORGE~ 3} **PERMANENT
wwREP GEORGE GEORGE-3 **TEMPORARY

"RC Words" may contain other RC Words - i.e. the brackets may be "nested".

For example:

LDA {LDE{-13}}

The brackets must balance - there must be as many right hand brackets as there are

left hand ones.

6-10 October 1961

6-2.7 WORD ASSEMBLY

The address syllable is formed first as a 36 bit integer using normal integer
arithmetic. It may contain parentheses, the arithmetic symbols: + - X /, and the
logic symbols A ("ana"), v ("or"), @ ("exclusive or"). The symbols are in-
terpreted from left to right. (i.e. not quite "normal" algebra)

For example:

Le + 5R/6 is interpreted as E%E

Le + (5R/6) is interpreted as 4G + 25

Parenthetical expressions may be nested, but the parentheses must balance - i.e.

there must be as many left parentheses as right. For example:
(77 -(4c + (5R/6)))
The use of another symex is equivalent to using parentheses. e.g.,
R DR <
LG + @ is interpreted as 4G + g if o= 5R/6
The 36 bit address syllable is united (inclusive OR) with the others (configuration,
operation, index) . Extra syllables of the latter group are also united into the

word. The one bit syllables are set last, "not hold" (h) being the final one..

6-2.8 SPECIAL SYMBOLS

"The current Location" - The symbol "#" is a special symex which always is
equal to the current location. Thus "JMP #" is a jump to itself, "JMP # + 1"
is a"jump-to-the-next-register”. If # is used within brackets, it refers to

the RC BLOCK rather than the current address.

** "Start of Comments" - A double asterisk - ** - is used before comments or
annotations. All symbols are legal in the comment section except wwXXX and
} , and comments are saved and included in Listing and Directive Printouts.
A carriage return terminates the comment section. A comment may be used

within an RC word and another on the same line outside the bracket.

?le i uival . t be i b ipt.
| The notation ’I'T is equivalent to ’{T'}* The ,]. mus e in subscrip

For example: REX,) TAGE is equivalemt to REX, {TAGG,}*-

- A carriage return immediately preceded by minus sign (-) will not terminate
the line. This feature is needed because complex nested Macro-instructions

often require more than one line of print. It can not be used for comments.

October 1961 6-11

6-3 METALANGUAGE - FOR CONTROL OF M4 ASSEMBLY

The M4 conversion - assembly process is designed for input and control from the key-
board or from paper tape. Since keyboard use is more flexible and tape is faster, the
normal procedure is to use both. "Metacommands" are instructions directed to the Mk

program itself covering the following areas:

Paper Tape Input

Alterations

M4 Output

Direct Storage

Format Variation

Magnetic Tape Bulk Storage
Macro Definition (Section 6-L4)

6-3.1 METACOMMAND FORMAT

Metacommands may require one line or several, and no address section, or as
many as two. The address section refers to the "Directive" of a program and may
specify one line, or a block of consecutive lines. Note that a line of a directive
may correspond to several program words (c.f. MACRO, Section 6-4) or no program

words at all (e.g., origins and comments).

There are three formats for address sections:

"n ”n
1. AA - The line at "AA".
AA+n - The n°® line after AA.
e - The nth line before AA.
"AA" should be an honest tag (defined by an arrow), rather than a
numeral or symex defined by equal sign.
2. AAln n lines beginning with the line at AA
AA+q|n (or AA + q).
s AA - BB The block of lines from AA to BB including AA

but not BB. (Or from AA + g to BB + p.)

A typical metacommand is as follows:
=wREP GEORGE+7 ESTE T

It will replace the line at "GEORGE + 7" with the word "hSTE TT".

6-12 October 1961

Similarly, the meta-command

wwMOVE AA-BB GEORGE

will move the block "AA to BB" to just before George.
To reduce typing, the following conventions are allowed:

1 RN is equivalent to the end of the program.

2. AA- means "From before AA to the end". (Do not use this
with DELETE.)
3 -AA means "From the begimning up to AA". (Not including AA)

4., The name of a metacommand can be abbreviated to just the first three
letters.

5. Tab is used to terminate syllables.
6-3.2 My OPERATION - NAME, CLEAN, LW READ, RECONVERT, STORE, GOTO

There are two versions of the Mi program - "M4 from mag. tape" on the Golden
Reel and "Mk from paper" on the White Reel. They are essentially identical except
that the paper tape version will ignore all metacommands that use magnetic tape
bulk storage.

Mhi is located at registers 160 000 - 174 010 (octal) and uses the rest of
memory as temporary storage. 157 777 down towards zero is used for storage of
your Directive. 174 000 - 200 000 is used for various tables.

There are two CODABO start points:

160 000 - Fresh start, new program, Mt is reset completely, a New Name
is required.

160 00L - Continue same old program. M4 is reset to OCTAL, and T = TAB.
(see section 6-3.4)

Upon read-in of either reel, M4 will type NAME and then will wait for the user

to respond by typing his "M4 Name" on the keyboard. The situation is the same as

that produced by the metacommand "NAME" described below:
wwNAME DAD
NAME is the metacommand used to identify the user. The users "name" is

required by M4 to identify output and to determine which part of the M
Magnetic Tape is to be used. A1l paper tape, and printed output is identified

October 1961 6-13

by the user's M4 initials and a 4 character word derived from the check sum
of his directive.

When "M4 from tape" is used, the users name determines which portion of
Bulk Storage is available. Most individual users are assigned tape storage
equivalent to one S memory. Groups of users may combine by using the same
name, thereby extending their available bulk storage to several memories.

Bulk storage is used in blocks of 200(8) words. See section 6-3.7 for further
details.

Note:
1. M4 names are three characters long.
2. The special name "FRE" is reserved for users who have no name.
3. "NAME" does mot clear Mk.

= CLEAN
CLEAN (CL) restores M4 to its pristine state. It is equivalent to
CODABO 160 000 except that CODABO 160 000 types NAME and waits for one, while
CLEAN does not.
==LW READ
LW READ (Iw) (Special Key "Readin") switches M4 input from Keyboard
to PETR. The PETR will be in its "Bin and Read" mode (IOSEQSOIOh). When
stop code (76) is read by the PETR, M4 input is switched back to the keyboard.
Al1]1 Metacommands may be used on tape except ww READ and »» RECONVERT.

wwRECONVERT
RECONVERT (REC) expands the stored directive into free storage in a
form similar to its printed or punched version. It then forms a new directive.

The result is the same as punching a paper tape directive, cleaning M4, and
reading in the new directive. All redundancies are removed, the RC Block is
corrected, - the directive is shorter than before. When there is insufficient

free storage, this command will produce QSAL and do nothing.

wwBINARY STORE AA
BINARY STORE (BIN), (Special Key "BEGIN") completes the conversion

process and stores the program directly in memory. If an address "AA" is
given, a "n JPQ AA" is performed with sequence number 7O selected. The user
can therefore save the return point, run his program, and return to M4 auto-

matically. "AA" must be within the program area.

"BINARY STORE" does not destroy M4 or the directive. If a program is
to be located within these areas of storage, a binary tape should be made -
see section 6-3.4 under "PUNCH BINARY".

»wGO TO AA
"G0 TO" executes an '"h JPQ AA" with sequence 7O selected. It makes
it possible to go to the user's program and return automatically to M. The

address "AA" must be within the program area. NOTE: M4 leaves STANDARD CON-
FIGURATIONS in F memory only when its use is terminated by GOTO or BIN. When

the user starts his own program with CODABO F register #37 is not standard.

6-14 October 1961

6-3.3 METACOMMANDS FOR MAKING CHANGES - INSERT, DELETE, REPLACE, MOVE

October 1961

wwr INSERT AA ONE LINE
OR
ww INSERT AA
wwEND
INSERT (INS) puts the new program lines just before "AA". When only

one line is to be inserted or when the next line will be a metacommand from

this group, the terminating command "END" is not needed.

~wDELETE AA
wwDELETE AA-+BB
wwDELETE AA|n

DELETE (DEL) removes a section of the directive. Symexes that were

assigned within the removed area are now undefined. The RC words used only
within the deleted area are not removed from the RC Block. If an Origin is
removed, subsequent words are located relative to the Origin preceding the

deleted area.

wwREPLACE AA
wwREPLACE AA-BB
wwREPLACE AAIn

REPLACE (REP) is a combination of DELETE and INSERT. It can remove an
arbitrary number of lines and put a different arbitrary set in their place.
Note that it deals with lines - not words. For example, to replace an in-
struction at a tagged location, one must be sure to replace the tag also, for
the whole line is removed. If only one line is to be inserted, the new line
can be typed on the same line as the REP instruction. If several are required
they must go on succeeding lines and END (or another meta-command from this

group) must be used as a terminator. See examples below.

wwREP Gé Ge-"LDA T, (To correct one line.)
wwREP AP->AP+6
S (To replace cne set of lines
:::: with a different set.)
wwEND

wwMOVE AA cc

wwMOVE AA-BB CE

wrMOVE AA|n (5

MOVE (AA to CC in this case) is a combination of delete and insert where
nothing is lost.

6-15

In the example below, a few "second thoughts" have been indicated in hand

written form.

£ K SAMPLE PROGRAM For Wunss Mamdla k

START| START=400
TEST~» SKzZ 3-:PR
_Coiw Comm > JPQ BL Bomiy, W+
10S ¢4, 30000
ouT» TSD TABLa
SKz, , IND Be = /000
MKN, PR 73 pops R ane
RE~ LDA {o} §-%
STA RESET
The correction tape for the above is shown below. A complete listing of
the corrected program is given in the next section.
BL=1000
00PS=2000
wwREP FESS TEST*SKZs‘lPR
wwREP OUT=1-0UT+1
COMM=> JPQ BL
30
SKX66#+1
IOSsssoooo
ouUT» TSD TABLa
SKZ, S IND
JPQ O0OPS
wwEND
wwREP RE RE-+LDA {~1}
ww INS TEST=1 **SAMPLE PROGRAM FOR USERS HANDBOOK

Note: The symex "START" could not be used in the last metacommand because it is not an

honest, arrow-defined tag. To insert before an origin, one must count back

from an honest tag.

6-16 October 1961

6-3.4 M4 ‘OUTPUT - LISTING, DIRECTIVE, ERRORS, PUNCH (BINARY TAPE)

ww LIST AA

wwLIST AA-BB LIST (LI) (Special Key - WORD EXAM) - List pro-
ww LIST AA|n duces a "M4 Listing" via the Xerox Printer.
wwrPLIST AA

wwPLIST AA-BB Plist produces a listing via Punched paper tape.
wwPLIST AA|n

werTYPE AA

wwTYPE AA-BB Type produces a listing via the Lincoln Writer.
ww TYPE AA|n

October 1961

A LISTING tells what M4 did with the Manuscript or Directive received.
Macro instructions are given in expanded form. The program is given in OCTAL
as well as symbolic and is usually preceded by various tables. The overall

format is as follows:

LISTING FORMAT

SYMEX TABLE Given only when the first word of the
EQUALITIES TABLE Program is included in the area requested
MACRO DEFINITIONS by the Metacommand.
ERRORS _ _______
PROGRAM
SYMBOLIC ABSOLUTE
RC BLOCK
SUMCK (Paper tape versions only.)

The SYMEX TABLE is printed in octal, in three columns and is in alpha-

betical order (4 letters) as if there were but one page. Symexes with an

asterisk were assigned by M4 because they were left unassigned on the manu-
script, or because they were used within a Macro Definition. Symexes with
a hand (») are MACRO names. Symexes used only within macros, and those

defined by equals sign, are listed, but no equivalent numeral is given.

The EQUALITIES TABLE is in one column in alphabetic order. (First Letter)

Symexes with an asterisk are those assigned by Mh. An equality definition
can not be deleted but it will be replaced if repeated. The last definition

is the one that is used, and such repetition does not constitute an error.

MACRO DEFINITIONS are listed as defined originally. They can not be

deleted or changed but they may be re-defined.

6-17

The ERROR PRINTOUT is of two types - FORMAT ERROR and DOUBLE ASSIGNMENT.
An error printout is given on the first listing only - it is not repeated on
subsequent listings even though the error may still exist. A line containing
a FORMAT ERROR is reprinted in the error printout and the error deleted from the
Directive. (It therefore can not reoccur.) A DOUBLE ASSIGNMENT occurs when
a symex is assigned both by equal sign and by arrow, or twice by arrow. The

printout gives the location of the first assigmment. The second assignment
is used and can be found in the symex table. If both definitions were by
arrow, the offending tag will appear in two places on the directive and on the
listing, but only the last assigmnment will be used throughout the program and
in the Symex table. To delete the first one, it is necessary to count from
some other tag. If the second one was wrong, it can be deleted directly, and
the first one will take over in subseguent Listings and Directives.

The error printout format is shown by the examples below:

DOUBLE DEFINITION]| BADTAG **%FIRST LOCATION

FORMAT ERROR] LOCATION **BAD LINE

Format Errors include such things as an attempt to define an op code (e.g.

LDA = DAD 6), extra meta-commands (especially END), and improper symbols in
MACRO DEFINITIONS. In meta-commands, the line is removed; in other cases, only
the offending character is deleted.

The PROGRAM is printed in symbolic form at the left, on two lines if
necessary. The octal numeral form is given at the right with its octal

memory location.

The SUMCHECK occurs only on paper tape versions of Listings and Directives
(Plist and Dir). It is given as a meta-command, e.g. wwSUM 436521
The sum is checked on M4 Read-in(wwLW READ)and if an error is found, the
word "SUMCK" is printed on the Lincoln Writer. The user can proceed at his

own risk, or he can try again.

wwERRORS

ERRORS will type the error block if there are less than 8, or if there
are more, it will print them on the Xerox. Once this is done, the error

block will not appear on subsequent listings.

6-18 October 1961

Example 1

Here is a listing of the program of the previous section - before the correction tape was
used.

BL=000407 RE=000404 TABL=000412
OUT=000402 RESET=000411 TEST=000400
PR=000410
START= 400
a= 1
FORMAT ERROR|] TEST+1**COoM~» JPQ BL
START|
TEST- SKN . , PR |301761 000410|000400
COM JPQ BL |145700 000407| 401
ouT- TSD TABL, |oos7o1 o0o0o0a12| 402
MKN _ PR |os1761 00o410| 403
RE= LoA { o} | 002400 000406 | 404
STA RESET |oos400 000411 405
0 | 000000 000000] 406
BL- 0 |0ooooo 0o0o00o00| 407
PR- 0 |000000 000000|000410
RESET- o |oooooo o0ooooo| 411
TABL- o | 000000 0o00o0oo| 412
=wSUM 037602

October 1961 6-19

Example 2

Here is a listing of the same example, made after the correction tape was used. Note that

the error notice is always printed once, even if the error is corrected later on. If a listing

is made between tapes, the error notice is not included on the second listing.

COMM=000401
IND=000414

BL= 1000

00PS= 2000

START= 400

QUT=000404
PR=000415
RE=000410
RESET=000416

FORMAT ERROR| TEST+1%**COM-

START |
TEST—
COMM—

ouT—>

RE=

IND—>
PR-
RESET=>
TABL=->

wwSUM

TABL=000417
TEST=000400

JPQ BL

**SAMPLE PROGRAM FOR USERS HANDBOOK

BT . ra

JPQ BL
30

SKX 66#+1
10S = 30000
TSD TABL
SKZ . IND
JPQ O0OPS
MKN ., PR
LoA {-1}

STA RESET

=1

- SRAY - SHIE - AR

056632

6-20

|201761 0004
|140500 o010
|301266 0004
|oooss6 0300
|oos7o1 o004
|201763 0004
|140s500 0020
|os1761 0004
| 002400 0004
|oos400 0004

|00oooo o000
|777777 7777
|oooooo o0ooo
|oeoooo o000
|ocoooo oooo
|ecoooco oooo

15]000400
oo| 401
os|-5-402
oo| 403
17| 404
14| aos
oo| 406
15l 407
13]|000410

16| 411

oo| 412
76| 413
oo| 414
oo| 415
oo a1s

oo | a17

October 1961

wrDIR
wr D IR
wwDIR

»r TDIR
» TDIR
w TDIR

ww LDIR
ww LDIR
m= LDIR

AA
AA=BB
AA|n

AA
AA-BB
AA|n

AA
AA-BB
AA|n

Directive via Punched paper tape.

Directive via Typewriter.

Directive via Xerox.

The format of a DIRECTIVE is as follows:

EQUALITIES TABLE

MACRO DEFINITIONS

SYMBOLIC PROGRAM

ww SUMCHECK

(No Asterisks or Hands)

432170 (Looks like a Meta-command)

There is no symex table, error table, octal program, or RC Word block. The

sumcheck is a 6 digit octal number.

If the tape has been damaged or spliced

so that the sumcheck is wrong, M4 will type "SUMCK" on the Lincoln Writer,
and control of M4 will return to the Keyboard.

Partial Listings and Directives

If no address section is given in the Listing and Directive type meta-

commands, the entire program is included in the output. In a partial Listing

or Directive, the tables and macro definitions are included only if the first

word of the program is included in the section indicated by the address given.

October 1961

6-21

(Directive Before Corrections)

START= 400
START|

TEST— SKN _ , PR
COM JPQ BL

ouT— TSD TABL,
MKN PR

32

RE- LoA { o}
STA- RESET

mrSUM 011516

(Directive After Corrections)

BL= 1000
00PS= 2000
START= 400
**SAMPLE PROGRAM FOR USERS HANDBOOK
START]
TEST~ SKZ oot PR
COMM~ JPQ BL
30ckx _ #+1
66
10S 30000
66
ouT— TSD TABLa
SKZ IND
gy
JPQ O0O0PS
MKN . PR
RE= LA {-1}
STA RESET
wrSUM 021762

6-22 October 1961

wwPUNCH
ww=PUNCH AA

PUNCH produces a punched paper tape in Binary Format. If an address is
given, a JPQ AA goes into register 2’7(001_“). If there is no given address,
JPD 27 is used. Since the readin program ends with an 1055220000 (DISCON-
NECT PETR) in register 26(00,5') the "AA" is essentially a starting address
for the tape. AA must be within the program.

Binary Tape Format is as shown below:

To the Bin To the Reeler
- —
Last First Start Reader :
Block .
°"'Progra.m'"""“""“”""‘Progra.m"'"‘fax',""""leader sessssssees
Tth Block* Block* Register (23 words) .
Hole 2’((oct)
End
Mark

October 1961

*There is, in general, one block per M4 Origin.

The "Reader Leader" is the binary version of the Readin Program itself. The
Readin Plugboard Program reads the reader leader into registers 0-26 (octal)
and then jumps to register 3, the start of the readin program. The first
word of a block tells where the block is to be located, and how many words
are therein. The last word is an 18 bit check sum and an address telling
the readin program where to go next. For all but the last block, this
address will be "3", the start of the readin program. For the last block it
will be 26(oct'). Registe{k26 contains "1055220000" and 27 will be either
JPQ AA (if AA is given) or ~ JPD 27 if no address was given. The readin
program therefore will jump to the new program with sequence number 52 chosen,
and with the PETR DISCONNECTED. If there is no given starting address, the
readin program leaves the computer in LIMBO.

6-23

Note: Metabits are not set by the readin program. They are cleared

wherever the readin program stores new words.

Note also: The special block for register 27 comes before the program
on the tape. Program material that is to go in register 27 therefore super-
cedes this special block created by Mh.

6-3.5 M4 FORMAT VARTIATIONS - DEC, OCT, T=CR, T=TAB, RC STORE, XXX

wwDECIMAL (== DEC)
w=OCTAL (== 0CT)

A1l numerals in an M4 manuscript are considered to be of the same numeral
system unless they are followed by a period (in which case, the other numeral
system is used). DEC and OCT remain effective until changed and are not saved
for inclusion in the Directive. M4 preserves Decimal Integers by reproducing
them with a "following period". Octal is the "normal" mode - CLEAN or CODABO
160000 (Pushbutton) will reset the numeral interpretation to Octal. Note also
that the right hand numeral in a SKM bit designation is always Decimal.

ww T=CR
ww T=TAB

When a table of constants is part of a manuscript,.it may be easier to type it in
several columns by "tabulation". "T=CR" allows this by making TAB a word termi-
naetor similar to Carriage Return (CR). 1In this mode, tabs can not be used with-
in words. T=TAB returns M4 to normal.

Note: These meta-commands are not included on a Directive. A table that

was typed in several columns will be reproduced as one column on the Directive.

»wRC STORE (==RC)

RC STORE means "Put the RC BLOCK here". The RC Block will be at the end of
the program if this meta-command is not used. RC STORE can be inserted via wwINS
and need not be deleted for Mi automatically deletes an existing RC STORE when a

new one is inserted.

6-24 October 1961

wwXXX (or Special Key "NO")

XXX has complete control. It wipes out all input information back to the
previous carriage return and forward to the next CR (or tab if T=CR). It can be

used on any line, anywhere even within a comment, but not after backspace.
6-3.6 USE OF SPECIAL KEYS

The top row of keys on the Lincoln Writer has five special keys which have no
machine function or associated character. They are extras, and can be used for
any purpose. The M4 system uses them as abbreviations for certain meta-commands.
These special keys terminate the line as far as Mt is concerned. If an address

is to be used, it is to be typed first. The keys are assigned as follows:

WORD EXAM (T71) LIST

YES (17) MOST RECENT OF TYPE, TDIR, DIR, LIST, PLIST, OR LDIR.

NO (16) XXX (This works backwards only - It does not delete
forward.)

BEGIN (15) BIN (BINARY STORE)

READ IN (14) LW READ

STOP (76) The stop key means "stop". It is always active. If Mk

is printing too much, if it is "hung-up", or if it is
performing a function that is no longer wanted, the
stop key will return control to the keyboard and stop
whatever is going on.

October 1961 6-25

6-3.7 MAGNETIC TAPE BULK STORAGE - SAVE, READ, TAPE, CORE

The M4 Magnetic Tape Bulk Storage reel contains a copy of the M4 program
itself (in Binary and Directive form, and with 3 Binary back-up copies), and
working space about 30 times the size of S Memory. Working space is assigned in
200 word blocks, the average allotment being 1000 blocks - i.e. one S Memory.

Mk does all the detailed tape coding. A standard tape format is used with an

18 bit check sum for error detecting. Tape malfunction is automatically reported
on the typewriter - the report includes missed data detected by the alarm circuits
(Sequence #41) as well as check sum errors. The users "M4 Name" is used to
determine the proper working space, and M4 automatically protects the rest of the
tape. The four Meta-commands listed below permit the user to store and retrieve
his program or other material in Directive Format (Save-Read) or in straight
Binary (Tape-Core).

M4 Answers to Mag Tape Meta-Commands

When M4 can not perform the given command because of programming limitations)
it types NO in red on the Lincoln Writer, and it ignores the command. No data

is transferred.

When M4 can and does complete the given command, it tells the user which tape
area was used, and the associated four character identification derived from the
check-sum. The tape area is specified by the block number of the first block and
the block number of the next free block. For example:

0100 - 0107 TY7J
means that blocks 100 through 106 were used. "TY7J" is the identifying word.

If there is a tape equipment malfunction while M4 is in operation, the words
"TAPE ERROR" are printed in red on the Lincoln Writer followed by pertinent data.
This print-out should be saved for the Tape Engineers, and the incident should be
duly reported.

wrSAVE 100-200 **SAVE CURRENT DIRECTIVE

If all is well, M4 stores the current directive on Mag tape beginning at the
specified block number (100 in this case), and reports back via the typewriter the
tape area used, and the four character identification. This will be the same
identification as that used on Listings. Saving and retrieving a Directive on
Magnetic tape does not "clean it up" the way it does when paper tape is used. The

6-26 October 1961

Directive comes back exactly as it was. To "clean it up", the meta-command
"RECONVERT" should be used before SAVE. The second block number is protected.
If the directive will not fit in the specified area, M4 types "NO" in red. If
the second number is omitted, the remainder of the user's allotted working space
is assumed fo be available. If both numbers are omitted, address "zero" is
assumed. If M4 types "NO", the command has been ignored.

wREAD 100 **READ DIRECTIVE FROM MAG TAPE

If the address given is the start of a Directive, "READ" will clean M and

read in the Directive from tape. Tt will then type the tape location (i.e. first

block and the one after the last block), and the four character identification.

If the address given is not the start of a Directive, "READ" types "NO" in

red and does not clean M4 nor read from tape.

TAPE - CORE (Binary Storage and Retrieval)

TAPE and CORE deal with Binary (i.e. Absolutely Numerical) information and
therefore require two address sections - one for the working space on tape and the
other for core memory. (The word "to" is understood - i.e. it is TO TAPE and
TO gggg.) Both address sections must be numerical and the tape address comes
first.

»wTAPE 200-300 0=17777
(TAPE AREA) (MEMORY AREA, INCLUSIVE)

TAPE copies from core to Tape. Working space on tape is used a block at a
time - i.e. in 200(8) word sections. If the second tape block number is omitted,
the rest of the user's allotted working space is assumed to be available. If
the data from core will not fit, none of it is copied and M4 types "NO" in red.

If it does fit, M4 types the first block number, the one after the last, and the
four character identification derived from the check sum that is used on tape.
The rest of a partially filled block is set to zero. The memory address is
inclusive.

wwCORE 100 0-17777
(TAPE AREA) (MEMORY AREA, INCLUSIVE)

CORE copies from tape to core until the specified core area is full. TP all
is well, M4 will type the usual message - i.e. tape area used, and four character

identification word. If the meta-command asks for words beyond the user's allotted

October 1961 6-27

6-3.8

space, or if the M4 program itself is threatened, M4 types "NO" in red.

located at 160000 - 174010.)

part of a section is retrieved or if a program is stored in several pieces and

retrieved by one command.

META-COMMAND SUMMARY

Clean
LW Read
Reconvert

Name

Insert
Delete
Replace
Move

List

Type

Plist

Directive punch
Tdir

Ldir

Binary Store
Punch Binary
Goto

Decimal
Octal
T=CR
T=Tab
End

RC

Sumck

Read
Tape

Core

Define

Demo

Input

>- Changes

>' Output

>- Format

Mag Tape

Macro

BIN
CLEAN
CORE
DEC

DEL
DEMO
DIR

GOTO
INS
LDIR
LIST
W
MOVE
NAME
OoCT
PLIST
PUN
RC

REC

SAVE
SUMCK
TAPE
TDIR
TYPE
T=CR
T=TAB

6-28

Binary Store

(M4 is

The identification word will be different if only

— Clear M4 Directive Storage

Tape to Core
Decimal

Define

Delete
Demonstrate
Directive Punch

End of Multiple Word Meta-Command

End of Macro Definition

Go To User's Program

Insert

List Directive on Xerox

Print Listing on Xerox

Lincoln Writer Read-in

Move Program Block

Set User Identification

Octal

Punch Listing
Punch Binary
RC Store

Read Directive from Tape

Reconvert

Replace

Save Directive on Tape

Sum Check

Core to Tape
Type Directive
Type Listing

Tab equals Carriage Return

Tab equals Tab.

October 1961

N

MACRO INSTRUCTIONS

A macro-instruction is an abbreviation for a flexible subprogram which is written by

the user (as a Macro Definition) and is inserted into the program by M: wherever the Macro
Instruction is used. The subprogram is written in terms of dummy parameters and when it
is copied by Mi, only those portions that correspond to specified parameters are used.

For example:

If the definition of "DO A,B,C,D" is

wwDEF po|A,B,C,D
A
B
B
C
D
ww EMD

And if the program is:

100 |

LINE 1> DO|LDA T;,ADD TT, ADD BB, STA CC
LINE 2- pojLDB T,

LINE 3- 00| ,6

Then M4 will produce:

100]|
LENE 2> DOILDA T}.ADD TT,ADD BB,STA CC
LA T, |oo2401 o0o00112]|000100
ADD TT |oos700 000113] 101
ADD TT |oo6700 000113 | 102
ADD BB |oos700 o0o0110| 103
STA CC |oos400 000111 104
LINE 2= pojLoB T,
LD8.: T |oo2502 000112 105
LINESSS DO,6
6 |oooooo 000005 | 106
6 |oooooco ocoooos| 107

October 1961 6-29

6-4.1

6-4.2

6-4.3

Macro Definitions — Meta-commands "DEFINE" and "EMD"

As shown by the example above, two meta-commands are used with Macro Definitions —
ww DEFINE (DEF is enough) and ww EMD (End of Macro Definition.) A macro definition has
two parts — the abbreviation itself, and the defining subprogram. The Macro Definition

must precede the use of a Macro instruction.

The Mnemonic Abbreviation Line of A Macro Definition

A Macro Definition starts with the "Macro Name" and dummy parameters as follows:

wwDEF DO|A,B,C,D

The "Macro Name" here is "DO", the "dummy parameters" are A,B,C and D, and commas were

used as "Macro Terminators". A Macro Definition must be terminated by the Meta-command
" wwEMD" (End of Macro Definition).

Macro Names

There are two kinds:

a. Any EEEE& may be used as a Macro Name. It may be used alone, or followed by a
terminator and parameters, (each of which is separated from the other by termi-
nators) .

b. A compound character may be used. It may consist of two or three superposed
non-alpha-numeric characters — e.g., B or ;4 or s . It may not be @, @, or ©-
(These are reserved for Mi.) The characters may be typed in any order. A

compound macrc name is itself a terminator — i.e. parameters may come before as

well as after. For example:

= DEF A, a8 »pouc

The Macro Name is B 3

6-30 October 1961

6=k L

6-U.5

6-k.6

Dummy Parameters

Dummy Parameters may be any symex (even three letter mnemonic codes and the single

letters A, By C, D and) 3 A Dummy Parameter may be included as a mnemonic aid and need
not be used in the defining subprogram. Dummy Parameters must be separated by macro
terminators.

Macro Terminators

The following symbols may be used.
W s bl istmh Xt Stiasus f e vieA
Other symbols may not be used.

The Defining Subprogram

The defining subprogram is written using the Dummy Parameters and must be terminated
by == EMD (End of Macro Definition). Note the following rules and conventions.

1. Symexes defined by equal sign (=) or by arrow (+) within the macro definition

are not part of the program proper and refer only to the macro subprogram.

2. A symex that is not defined within the MACRO will refer to the main program and
if it's not assigned there, it will be assigned automatically in the RC Block.
(But only if the Macro is used in the program proper.)

3. The single letter symexes A, B, C, D, E will refer to the AE unless they are used

as Dummy Parameters.

4. An instruction in a definition may use a parameter harmlessly so that it will be

left out when the parameter is not used. One way to do this is as follows:

oA * T, + (0P) - (0P)

("DP" is the dummy parameter.)

5. A Dummy Parameter may not be used as a tag within the defining subprogram. (You

can, of course, write JPQ DP, but not:

D P> LDA “T’

6. A line that uses two Dummy Parameters will be left out if either is left out

when the macro is used.

October 1961 6-31

T. A line that uses a dummy parameter may be kept in with that parameter equal to
zero when the parameter is not used. This is done by using another symex that

is set equal to the dummy in question. For example:

LDA DUM1 +DUM2

can be written as:

LDA DUMI + Gs
Ge = DUM2

6-4.7 Use of Macro Instructions

A macro may be used as a Pseudo Instruction by itself, or "nested" as a parameter of
another macro. It may even be used as a parameter of itself. It may be an RC word.
When used as an RC Word, it will use several registers of the RC Block and the location

of the first of these will be the associated address. Consider the examples below.

Example 1. A Macro used within brackets — i.e. as an "RC Word"

wwDEF TBS|@
a
a
a
a
a
wwEMD
100]
USE~ LDA {T5-TBS| o} %*%s BLANK RC WORDS
LDA TOMM
STA TS+3

The program is expanded as follows:

100]|
USE=- LDA {Ts-T8S|o} | 002400 000103|000100
LDA TOMM | 002400 ooo110]| 101
STA TS+3 |oos400 0oo106| 102
TS T8S|o
0 |oooooo 000000| 103
o |0ooooo 000000| 104
o |0ooooo o0o0oooo| 105
o |0ooooo 0o0oo0oo| 106
o | 000000 00o0o00o| 107
TOMM~> 0 | 000000 00oo0oo|ooor10

6-32 October 1961

Example 2, A Macro used to generate a table of squares.

If the manuscript is as follows:

wwDEF sQlA
A
A
wmEMD
100]| NSQ= (#~TABL) x (#-TABL)
TABL- sq| (saf (se] (NsQ))

M4 will produce the program shown in the "Plisting" below.

TABL=000100

NSQ= (#-TABL) x (#-TABL)

mwDEF SQ|A
A
A

»wEMD

100]|

TABL~ sq| (sef (se] (NsQ))
(NSQ | 000000 000000000100
(NSQ) |oooooo 0o0o0o0o1| 101
(NSQ) |0ooooo 0o00o004]| 102
(NSQ) |0oooco 000011 103
(NSQ) |ecoooo 0o0o20] 104
(NSQ) | 000000 000031 105
(NSQ) |eooooo 000044 106
(NSQ) |cooooo 0ooco61| 107

wroSUM 025015

October 1961 6-33

Example 3. An open subroutine for index memory "integer" multiplication.

The macro below finds the righthand 18 bits of the full product of two X Memory
words (o & B), provided that said product is no larger than 17 bits and sign. The
product goes into X Register "', "TXX" is cleared, X Register "B" is ruined, and the
symexes "TXX" and "FX1" are "used up". (Since symex "S" is defined within the macro,

it is not "used up".)

TXX=000110 USE=000100

FX1= 1

S=

=wDEF MULX,ax8
DPX TXX
TExx TXx
4

S-» SZZI_ITXX
INXG'B
INXBIB
RSXFXJTXX
JPXFXJS

wwEMD

100 |

USE~ . MULX,1x2
DPX TXX |oo1600 00o0110|000100
fExx , TXX |o11401 o000110| 101
fs33 {055 TRE |261721 ooo110| 102
INX 1o |o21201 400107 103
INX 4|2 |o21202 400107| 104
RSX Ly, TXX |cozr101 o0oo110| 10s
JPX o, S | 400601 000102] 106
- |0cooo2 o0ooooo]| 107

TXX=> o |eooooo 000000 |000110

mSUM 037643

6-34 October 1961

Example 4. An open subroutine for "exclusive or" using a compound macro name.

In the macro below, the result goes into X Register "o, TXX is set to (@), c(B),

and X Register "B" is not changed. An underline was used in the macro name because

the symbols @ , © , and ® are not available as macro names.

TXX=000106 USE=000100

BILL= 1
TOMM= 2
wwDEF a@8
1
DPX,TXX
2
h DPX“TXX
»'7com €
RITE TXX
hRSXaE
2
AUXaE
wwEMD
100|
USE= TOMM@BILL
1
BEK Lii o TRX |o11601 000106000100
2
h
DPX Loum TXX |421602 000106| 101
#'7com |s7s600 377610| 102
RITE TXX |404000 000106| 103
B
BSK i & |401102 377610| 104
2
AUX Loum E |o21002 377610 105
XX~ o |cooooo coo0oo0o| 106
wrSUM 036551
October 1961 6-35

e

=3

7-6

=T

TX-2 USERS HANDBOOK
CHAPTER T - VARIOUS TABLES

TABLE OF CONTENTS
IN-OUT SEQUENCE NUMBER ASSIGNMENTS
STANDARD CONFIGURATIONS
OPERATION CODE MNEMONICS
META-COMMAND MNEMONICS
XEROX CHARACTER CODES
LINCOLN WRITER CHARACTER CODES
M4 COMMA CHART

AVERAGE DURATION OF INSTRUCTIONS

October 1961 7-0

IN-OUT SEQUENCE ASSIGNMENTS FOR TX=2

0o STARTOVER

40 60 DISPLAY NO- 1

41 ALARM, IN=0OUT 61 RANDOM NUMBER GENERATOR

42 TRAP 62 PUNCH NO- 2

43 63 PUNCH NO- 12

44 64

45 IBM MAG TAPE 65 LINCOLN WRITER INPUT NO- 2

46 MAG TAPE BULK STORAGE 66 LINCOLN WRITER OUTPUT NO- 12
47 MISCELLANEOUS INPUTS 67

so DATRAC 70

51 XEROX 71 LINCOLN WRITER INPUT NO- 2

52 PETR 72 LINCOLN WRITER OUTPUT NO- 2
53 73

54 INTERVAL TIMER 74 PLOTTER

§5 LITE PEN 75 MISCELLANEOUS OUTPUTS

56 DISPLAY NO- 2 76

57 77

Table T-1

October 1961

TABLE 7-2
STANDARD CONFIGURATION SET
a Fle| DESCRIPTOR « Fle| DESCRIPTOR
o 000 4321“1‘ 20 200 1_32““
1 340 4 3.2 1 ILL 21 230 4 3.2 1 ‘ ‘
2 342 2 Twd3 E__! 22 232 2 ie g ‘4/
3 760 4:3-2-1 ;.L 23 752 2:1-4.3 l_“/
4 761 1:4:3.2 \Lu 24 733 3-2-1-4 l_./
5 762 2:1:4:3 \t‘ 25 730 4+3:2-1 ‘L
6 763 w202 08 \ 26 731 Teq=3 2 \L_l
7 410 a5 a1 L |y 27 605 icaaea o
LS e uly il
10 411 143-2)9(30 600 43241 iii‘i‘
11 140 £x 3 i‘ 31 750 4+3:2-1 ‘
—
12 142 2143 l\# 32 670 4-3-2-1 J_,
13 160 43 21 } 33 320 4 52 1 ‘ *
? LG SR A
14 161 1432t__\.l 34 333 3 2.1 4 /
2 - —e
15 162 a5 \, 35 330 4 3:2 1 ‘
16 163 3214;_>_| 36 331 1 4.3 2 \
- - CHhn ¥
17 202 21-43 |_>_;,§_, 37 604 a2 R
TANDARD PERMUTATIONS
| 1 T el | X\X | D€ DX AL
0 2 3 4 5 6 7
October 1961 Table T-2

10 TX-2 Users

FROM: Alex Vanderburgh

The attached chart (7-=2A) will be used by the new TX-=2 Executive
System, and its users. The old one (7-2) still applies to everyone else.
Therefore, if you are not a member of the official farmyard (Hens,

Chickens, Studs, etc) you need not worry at all.

February 1964

*
TABLE T7-2A
STANDARD CONFIGURATION SET
a Flel DESCRIPTOR a Fle| DESCRIPTOR
=1 2 1 b g
0 000 &8 8 20 .
s ||| | Sos. e] | |
1 340 4 3.2 1 = 21 ST T e a
2 T T e T, 22 G2 G ren e
3 760 4e3.201 i‘ 23 671 1e4e3.2 /
2 1 b3 2
4 oede3o . °
761 l1e4e302 \|_1 24 672 2414403 '_‘/
762 - o4 e e20]oe
5 6 ©lede3 \L_‘ 2s 673 3e2414+4 |_./
6 o4 ede]e
e e o 604 asseper K DO
7 26 ad s | | | 27 605 1e2+3¢4 ><,
A L | LAyl e SR o
b3 2 e o
10 411 1 4 3.2 30 g60 adedar F 1 |}
L J e, 8 o il [E5LH AR B
11 160 TN S} = 31 750 4+3.201 |
L) . = (LN
12 T o o e, e, N 32 750 4e3.201]
s L | - —J
13 166 43 81 | 33 670 4¢3.201 |
— L) o [AN |
R |
14 161 e s . \, 34 To be assigned by the user
15 162 2 1 ‘ 3 \ 35 " " " n " n
-— —
16 163 s 21 i l\J 36 1" " n " "]
To be assigned by the user, but
17 202 2 l1+4 3 37 also used by Executive System.
e ; .
(So use hold bit.)
STANDARD PERMUTATIONS
0 2 3 L 5 6 7

*For use with the TX-2 Executive System Only.

February 1964

Numerical Order Alphabetical Order Supernumerary Mnemonics

0 ADD - 67 (1) e - %oup
1 ADX = 15 i
2 AUX - 10 e ?m
3 COM - 56 JPS - “JMP
oot CAB - 62 3
5 = F1) CYA - 60 S
6 - JPX CYB - 61 JPQ -~ JMP
= INE DIV - 75 15
10 - AUX DPX - 16 e
11 - RSX DSA - 65 JES -~ JMP
=R ls o e EXA - 54 20
13 EXX - 14 =
Ty T FLF - 31 BRD -“"JMP
15 - ADX FIG - 32 22
16 - DPX INS - 55 S0e QSJMP
17 - SKM (3) FOSE= b BDS -"-JMP
20 - LDE ITA - W
21 - SPF ITE - 40 0}
22 - SPG JMP - 5 (2)RH'QSEX'SKX
23 JNA - 47 INX - “SKX
24 - ILDA INX - 7 3
25 - LDB JOV - Lk DEX - uSKX
26 - LDC JPA - 46 D) e B
27 - LDD JPX - 6 =6
30 - STE ILDA - 24 SXL 7SKX
31 = TR LDB - 25 SXG = 'SKX
32 - FIG THC:=26 10
33 DD - 27 RXF 2Osxx
34 - STA ILDE - 20 BT ST
35 - STB MUL - 76 30
36 - sTC NAB - 66 ML= S
37 - STD NOA - 64 5
40 - ITE REXs =410 (3) sKkM - “skM
41 - ITA SAB - T2 e
42 - UNA SCA - 70 e ESKM
43 - SED SCB - 71 Make MKZ - “SKM
Ly - Jov SED - 43 3
45 SKM - 17 o
46 - JPA SKX - 12 SKU -~ SKM
47 - JNA SPF - 21 A
50 SPG - 22 S 0
51 STA - 3k SUZ -"“SKM
52 STB - 35 o -L3sxm
55 STC - 36 > 20
sh - EXA STDS- 3T Skip SKZ -215KM
55 - INS STE - 30 & sze -2 lexu
56 = Ui G i Zero { 22
57 - TSD TSD - 57 S77 -““SKkM
60 - CYA TLY - T4 23
61 - CYB UNA - k2 >SZN 3OSKM
62 - CAB Skip SKN -~ SKM
€3 on SNC -3131(M
64 - NOA s { 32
65 - DSA SNZ -~"SKM
66 - NAB 33
67 - ADD - hSKM
70 - SCA (CYR - 'SkM
T =508 =0
72 - SAB MCR 6st
T3 MZR - ~SKM
Th < TLY Rot S
75 - DIV o ate<Ml\IR 31+SKM
76 - MUL SNR -~ 'SKM
7T =508 - -?'hsm
EUR -lusxm

OPERATION CODE MNEMONICS

Table T7-3 October 1961

7-4 META-COMMAND MNEMONICS

Clean
IW Read
Reconvert

Name

Insert
Delete
Replace

Move

List
Type
Plist

Directive punch

Tdir
Ldir
Binary Store
Punch Binary
Goto

Decimal
Octal
T=CR
T=Tab
End

RC

Sumck

Save

Read

Core

Define

Demo

October 1961

Input
i
\
> Changes
o
\

r Output

=,
\

>- Format
=
)

> Mag Tape
=

Macro

BIN
CLEAN
CORE
DEC
DEF
DEL
DEMO
DIR

GOTO
INS
LDIR
LIST
Lw
MOVE

OCT
PLIST

Table T-U4

Binary Store

Clear M4 Directive Storage
Tape to Core

Decimal

Define

Delete

Demonstrate

Directive Punch

End of Multiple Word Meta-Command

End of Macro Definition
Go To User's Program
Insert

List Directive on Xerox
Print Listing on Xerox
Lincoln Writer Read-in
Move Program Block

Set User Identification
Octal

Punch Listing

Punch Binary

RC Store

Read Directive from Tape
Reconvert

Replace

Save Directive on Tape
Sum Check

Core to Tape

Type Directive

Type Listing

Tab equals Carriage Return

Tab equals Tab.

CHARACTER

Note:

A

ORI I S PR S SR o R ag R Y M AT — N AR - W e i et R SR TR - V) LR EOR - A B -

Nt e — CHEV Y

~ 1

/
v

(PERIOD)

XEROX PRINTER CHARACTER CODES

OCTAL CODE

154
142
361
352
313
344
302
354
172
144
143
332
360
370
353
312
160
371
322
153
362
152
343
161
342
162
132
133
220
221
222
351
372
340
363
730
703
720
150
570
140
114
131
103

(os6)071)(346)

(043)
(054)
(012)

(157)

(047)062)317)
(oss5)070)345)
(355)

(042)
(145)
(3586)
(017)032)307)

(0s7X072)347)

(053)
(146)
(052)
(147)
(117)

(205)
(206)
(207)

(357)
(0s0)
(073)
(445)X460)715)
(413)
(415 430)705)

(555)

(1186)

CHARACTER

j

O SR - S TR B ehet s ROy WOl wutl e SN

o B - D AR WL R G A SR IR R AR O

> AU T - IRE

O

ld ~O0= &% > 2

~—

(ZERO)

(COMMA)

(CIRCLE)

Bit 1.9 of the Xerox Character Code is a "size control bit".
"0" means small.

OCTAL CODE
122 (107)
324 (034)
323 (033)
024

I

112

173

174

163

164

310 (040)
311 (041)
333 (063)
203

334 (064)
023

001

002

003

004

020 (005)
021 (oo0s)
022 (007)
300 (010)
301 (011)
000

202

204

120 (105)
121 (106)
113

714 (444)
373

341 (051)
364 (074)
731 (446)4a61)716)
704 (414)
721 (416)431)706)
151

571 (556)
141

130 (115)
102

104

"1" means large, and

The codes are given above with the "proper" size.
s

Table T-5

October 1961

TX=2 LINCOLN WRITER CODES

o0 o0 » 40 Q «

0T 7E 41 R A

o2y 220 42 S #
03Iz} 43T ¢

04 4 / 44 U h

05 5§ x 45 V >

06 6 # 46 W 8

07 7 > 47 XN

10: - 8% §0 Y A

58 e 817~
12 o A S |

13 -0 537)v}

14 READ IN 54 + =

15 BEGIN 55 = =

16 NO C IS

12 NS 57, e %

20" Am 60 CAR RETURN
21 5BC 61 TAB
2230V 62 BACK SPACE
25 D¢ 63 COLOR BLACK
24 =pey 64 SUPER

28 - FEit 65 NORMAL

26 G w 66 SUB

275 0Ha% 67 COLOR RED
3507 4 70 SPACE

F1 T)N 71 WORD EXAM
32 K= 72 LINE FEED DOWN
332 73 _LINE EEEDUP
34 ‘Mw 74 LOWER CASE
35 N n 75 UPPER CASE
38 03 76 STOP

37 =PAw ZZSNUEETRY

October 1961 Table 7-6

7

T-7 M4 COMMA CHART

COMMAS BE

COMMAS AFTER CK

EXAMPLE

O
-
—
-
-

I

J

¥
e
o
A

n

n

no

=

n

rn

: >
/// 333 2o -

{

K

/

n
i

5 1 1 S
22 111 Lhk

AN

n

Table T-T October 1
F=4

7-8 AVERAGE DURATION OF INSTRUCTIONS

This duration chart was made by TX-2 by timing the duration of 8000 repetitions of

each operation with various combinations of memories. The columns are labled as follows:
P MEM The memory used for the instructions.
OP Code The instruction being timed.
A The memory used for intermediate deferred address (if any).
Q MEM The memory used for final operand (if any).
MMS Average duration in microseconds.

The abbreviations used within the columns are as follows:

T Gl

S memory

T memory

Flip-Flop part of V memory (A,B,C,etc.)
Toggle Memory

The instructions are listed in numerical order (by op codes).

October 1961

Table T7-8

P MEM OP CODE s Q MEM MMS

S AOP 167000 840
T AOP 167000 640
S I10S o 9.2
T 10S 0 7.2
S JMP 7.6
T JMP 56
S JPA 8.0
| JPA 60
S JNA 8.0
1 JNA 640
S Jov 8-0
T Jov 6.0
S JNX 96
T JNX 746
S JPX 9.6
T JPX 706
S SKX 10+0
15 SKX 8.0
S SKX S 20+4
T SKX S 18+4
S SKX 5 % 18+4
T SKX T 16+4
S AUX & 13-6
T AUX S 1146
s AUX VFF 1244
T AUX VFF 10+4
5 AUX VT 120
T AUX VT 10+0
S AUX 1] 11+6
T AUX 11 9+6
S RS X S 12+8
i RSX S 108
S RSX T 10-8
T RS X T 8-8
5 RS X VFF 11-6
T RS X VFF 96
S RS X VT 11+2
T RS X vT 9ste
s ADX S 16-0
T ADX S 10+0
3 ADX T 1020
T ADX T L <20
N ADX VFF 10-8
T ADX VFF 8.8

Table 7-8, pg. 1 October 1961

P MEM OP CODE - Q MEM MMS
S ADX VT 10+4
T ADX vT 8+4
s DPX s Fon
i DPX S 76
s DPX T 76
i | DPX T 10+0
S DPX VFF 84
T DPX VFF 6.4
s DPX vT 8.0
ik DPX vT 6+0
S EXX S 14+0
T EXX s 112
S EXX T 11+2
Ir EXX T 1040
S EXX VFF 11+6
T EXX VFF 946
s EXX vT P
T EXX VT gai
S SKM s 14+8
T SKM S 9.6
S SKM T e
T SKM T 10+8
S SKM VFF 104
;¢ SKM VFF pak
S SKM vT 10+0
T SKM VT 8.0
S SKM S S 25+2
1 SKM S S 200
S SKM S T 2040
T SKM S T Sqen
s SKM s VFF 20+8
T SKM S VFF 188
> SKM S VT 20+4
T SKM S vT 18+4
S SKM 15 S 232
T SKM 1 S 1840
S SKM T T 1840
1] SKM T T 19+2
S SKM T VFF 18+8
0 SKM 11 VFF 1648
S SKM (] 1448
g SKM o 96
S LDA S 12+8
1F LDA S 64

October 1961 Table 7-8, pg. 2

o D H N H N H NN H =N N NN - WA= VAV A AN -0 A0 AW o

MEM OP CODE - Q MEM MMS

LDA T 648
LDA T 8.8
LDA VFF 6+8
LDA VFF 5.2
LDA VT 648
LDA vT 4.8
LDB S 128
LDB S 64
LDB ; 648
LDB 3§ 8.8
LDB VFF 68
LDB VFF 52
LbDB VT 648
LD8B vT 4.8
LDC S 12+8
LDC S 644
LoC 1 6+8
LDC ¥ 88
LDC VFF 6.8
LbDC VFF 502
LDC VT 68
LbC VT 4.8
LDD S 12+8
LDD S 64
LDD 1§ 6.8
LDD 1% 8.8
LDD VFF 68
LDD VFF 5.2
LDD VT 6+8
LDD vT 448
LDE S 12+8
LDE S 6+4
LDE T 6+8
LDE T 8+8
LDE VFF 648
LDE VFF 5e2
LDE VT 6.8
LDE VT 448
SPF S 128
SPF = 946
SPF T 9+6
SPF il 8.8
SPF VFF 10+4
SPF VFF 84

Table 7-8, pg. 3 October 1961

P MEM OP CODE a Q MEM MMS

S SPE vT 10+0
1} SPF VT 8.0
S SPG S 128
T SPG S 9+6
S SPG iF 9+6
T SPG X: 8.8
S SPG VFF 10+4
T SPG VFF 8.4
S SPG VT 100
¥ SPG VT 840
S STA S 140
T STA S 746
S STA T 6.8
1L STA T 100
S STA VFF 6+8
T STA VFF 5.2
S STA VT 68
T STA vT 4.8
S STB S 14+0
T STB S 7.6
S STB T 6+8
i STB i 1040
S STB VFF 6+8
i 7 STB VFF 5.2
S STB vT 6+8
T STB vT 4.8
S STC - 1440
1L STC S 746
S STC T 648
X STC T 10+0
S STC VFF 6+8
T STC VFF 5.2
S STC vT 6+8
T STC VT 448
S STD S 1440
¥ STD S 746
S STD T 648
i} STD 1% 10+0
S STD VFF 68
T STD VFF 5.2
S STD vT 648
1 STD VT 448
S STE S 14-0
1 STE S 7+6

October 1961 Table 7-8, pg. 4

MEM

= v H VAV A AV -V AV AV H VA VAV H VAV H VWV H V- WV - V-V - oWn o

OP CODE

STE
STE
STE
STE
STE
STE
EXA
EXA
EXA
EXA
EXA
EXA
EXA
EXA
ITA
ITA
ITA
ITA
ITA
ITA
ITA
ITA
UNA
UNA
UNA
UNA
UNA
UNA
UNA
UNA
DSA
DSA
DSA
DSA
DSA
DSA
DSA
DSA
ITE
ITE
ITE
ITE
ITE
ITE

Table 7-8, pg. 5

Q MEM

VFF
VFF
vT
vT

VFF
VFF
VT
vT

VFF
VFF
vT
vT

VFF
VFF
vT
vT

VFF
VFF
vT
vT

VFF
VFF

MMS

6+8
10+0
6.8
§e2
6+8
4.8
1440
746
6+8
10+0
6-8
5.2
6.8
4.8
12+8
6.4
6+8
8.8
6-8
52
6+8
4.8
1248
604
6+8
8.8
6.8
5e2
6+8
4.8
12+8
64
6.8
8.8
6+8
52
6.8
4.8
128
6+4
6+8
8.8
6+8
5.2

October 1961

P MEM OP CODE & Q MEM MMS

S ITE vT 6+8
1F ITE VT 4.8
S SED S 1248
¥ SED S 96
S SED T 946
T SED T 8.8
S SED VFF 104
T SED VFF 844
S SED vT 10+0
T SED vT 8.0
S FLF 5 14-0
T ELE S 7.6
S ELFE T 6.8
T ELF T 1040
S FLF VFF 68
T ELE VFF 640
S ELEE VT 6+8
i ELF VT PRy
S FLG S 15+6
T FLG S 8.8
S FLG T 8+4
T FLG i 11+6
S FLG VFF 844
T FLG VFF 840
S FLG VT 8+4
) FLG VT 6.8
S TSD S 14+4
15 TSD S 8+8
S TSD T 746
T TSD T 10+4
S TSD VFF 746
T TSD VFF 8.8
S TSD VT 746
T TSD vT 8+8
S INS S 15+2
T INS S 8.8
S INS T 6+8
W INS 1k 11+2
S INS VFF 6+8
T INS VFF 64
S INS VT 6.8
T INS VT 640
S COM S 14+8
1 COM S 844

October 1961 Table 7-8, pg. 6

P MEM OP CODE & Q MEM MMS

s COM T 68
T COM T 10+8
s COM VFF 6+8
T COM VFF 64
S COM VT 68
T COM VT 640
S ADD S 12+8
T ADD s o
s ADD T 6.8
T ADD T 8+8
S ADD VFF 6+8
5 3 ADD VFF 5+6
S ADD vT 6+8
T ADD VT 4.8
S SuB S 1248
T suB s 64
s sUB T 68
T suB T 8-8
s sUB VFF 68
15 SuB VFF 5.6
S sus vT 6+8
i sus VT 448
s MUL s 20-8
T MUL s 20-8
S MUL ¥ 19+6
% MUL T 20-0
s MUL VFF 19+6
T MUL VFF 20-8
S MUL VT 19+6
| MUL vT 192
s 7MuL s 17+6
T 7HUL S 17 +6
S 7MUL £ 1644
T 7MuL T 1592
s “MuL VFF 16+4
T 7MuL VFF 16+0
s 7MuL vT 164
¥ 7MuL VT 16+0
s TmuL s 1640
T TmuL s 1444
s InuL T 11+6
T TmuL T 1240
s InuL VFF 132
T TmuL VFF 1248

Table 7-8, pg. T October 1961

P MEM OP CODE a Q MEM MMS

s Tmu vT 13+2
T TmuL vT 12+8
s SMuL s 12+8
T SMuL s 112
s SMuL T 1040
T SMuL P a-8
s *MuL VFF 100
T SMuL VFF 9.6
s SmuL VT 100
¥ *MuL VT 9+6
S DIV S 80+0
T DIV s 80-0
S DIV 1F 772
T DIV T 7746
S DIV VFF 788
% DIV VFF 78+4
S DIV VT 772
37 DIV vT 78+4
S 7DIV S 60+8
T “p1v s 608
S 7DIV T 59+6
T “p1v T 60+0
S 7DIV VFF 5946
T 7p1v VFF 608
S 7DIV VT 5946
¥ “p1v VT 59.2
S ‘DIV S 432
T Iprv s 432
S Ip1v T 42+0
T fprv T 4029
s Ip1v VFF 4240
T Iprv VFF 4146
s Iprv VT 4240
¢ Ity VT 41+6
s 3p1v s 2244
T *prv s 224
S 3pr1v T 19+6
T *prv T 20+0
s *prv VFF 21+2
T *pr1v VFF 20+8
s ®p1v VT 19+6
T 3p1v vT 20.8
s TLY s 1942
T TLY s 1942

October 1961 Table 7-8, pg. 8

P MEM OP CODE - Q MEM MMS

S TLY T 16+4
T TLY T 1648
s TLY VFF 1840
T TLY VFF 17+6
S TEY: VT 1840
T TLY VT 17+6
s 9y s 160
¥ 7TLy s 1640
S 7TLY T 132
T T3y T 1346
S ey VFF 14+8
T 7TLY VFF 14+4
S 7TLY VT 13+2
T 7Ly VT 14+4
S xTLY S 128
15 lTLY S 112
s roy T 10+0
T Iroy T 120
S ‘TLY VFF 10+0
T oy VFF 11+2
s IrLy VT 10+0
T 1Ly vT 946
s 1oy s 12+8
: 3TLY S 8-0
$ 1Ly T 68
- i R T 8.8
s s { & VFF 6+8
T ot 12 VFF 8.0
s Ly VT 68
T 1Ly VT 8.0
S SCA S 12+8 1072
T SCA S 80 1072
S SCA T 6+8 104+4
T SCA T 8.8 104+8
S SCA VFF 6.8
T SCA VFF 8+0
s SCA vT 6+8 10640
T SCA VT 8.0 105+6
S 7SCA S 12+8 1072
T 7SCA S 8.0 107 2
s 7sca ¥ 648 10444
T 7sca T P 104+8
s 7sca . VFF 68
T 7sca VFF 8.0

Table 7-8, pg. 9 October 1961

P MEM

-im-lm—im—-lm—lm—(w—(m-lm-lw-im—lm—lm-imdmdm—(m—im-im—lm-lm-im—im

October 1961

OP CODE

7sca
7sca
Isca
Isca
Isca
Isca
tsca
Isca
Isca
Isca
3sca
SCA
SCA
SCA
SCA
SCA
SCA
SCA
scB
sCB
SCB
1
sCB
sC8
SCB
sCB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB
SAB

W e e e W W

TR e T, G NORE Rt MRS,

1
1

A

Q MEM MMS

vT 6.8
VT 8.0
S 12-8
S 8.0
i 68
ik 8.8
VFF 68
VFF 8.0
vT 6.0
VT 8+0
S 12+8
S 8.0
T 6.8
T 8.8
VFF 68
VFF 8.0
vT 6+8
VT 8.0
S 1248
S 8.0
T 6.8
& 8.8
VFF 6+8
VFF 8.0
vT 648
VT 8.0
S 12+8
S 840
T 6+8
T 8.8
VFF 6+8
VFF 8.0
VT 648
VT 8.0
S 1248
S 8.0
1 6.8
T 88
VFF 6+8
VFF 8.0
vT 68
VT 8+0
S 12+8
S 8.0

Table 7-8, pg. 10

106+0
105+6
107 -2
1072
1044
10448

1060
105+6
1072
107 -2
1044
1048

106+0
105+6
1072
1072
104+4
104+8
10640
10546
10640
10546
107 +2
1072
104+4
104+8

10640
1056
107 +2
1072
104+4
104-8

106+0
105+6
1072
107 -2

OP CODE -

Isps

SAB
IsaB
‘sns
tsas
Isns
*sas
SAB
SAB
SAB
SAB
SAB
SAB
SAB
cYs
cYs
cYs
cYs
cys
cYs
cYs
cYs
7cys
7cys
7cys
7cys
7cys
7cys
7cys
7cye
Icys
Icys
Icys
Icys
Icys
Icys
Icys
Icys
3cys
3cvs
3cys
3cys
3cys
3cys

1

W e e e e e

Q MEM

VFF
VFF
vT
vT

VFF
VFF
vT
vT

VFF
VFF
vT
VT

VFF
VFF
vT
vT

VFF
VFF
vT
vT

VFF
VFF

Table 7-8, pg. 11

MMS

68
8+8
68
8+0
68
80
128
8-+0
6+8
88
6+8
80
6+8
840
12+8
8+0
68
88
68
80
68
8-0
128
8.0
68
88
6+8
8+0
6+8
8+0
128
8+0
6+8
8.8
68
8-0
68
80
12-8
8+0
68
88
68

8+0

10444

104-8

1060
105+6
1072
1072
104+4
104+8

106+0
10546
10742
10742
104+4
10448
10640
105+0
10640
10546
10742
107 -2
10444
104+8
10640
105+6
106+0
10546
10742
107 2
10444
104+8
10640
10546
10640
105+6
1072
10742
104+
104+8
10640

105+6

October 1961

P MEM

- W H VAV AN AN AN H AN AH N D H W H N H V- H WV A n -

October 1961

oP CODE

3cvs
3cvs
CYA
CYA
CYA
CYA
CYA
cYA
CYA
CYA
CAB
CAB
CAB
CAB
CAB
CAB
cAB
CAB
NOA
NOA
NOA
NOA
NOA
NOA
NOA
NOA
NAB
NAB
NAB
NAB
NAB
NAB
NAB
NAB

A

Q MEM

VT
VT

VFF
VFF
vT
vT

VFF
VFF
vT
vT

VFF
VFF
vT
vT

VFF
VFF
VT
vT

Table 7-8, pg. 12

MMS

6+8
8+0
1248
8.0
6+8
8.8
6+8
8:0
6+8
840
12+8
8.0
6+8
8.8
6+8
8.0
6+8
8+0
19+2
192
1840
1844
1840
192
1840
1746
33.6
33+6
3244
32.8
32+4
3346
32+4
3240

106+0
10546
1072
1072
104+4
104+8
3842
388
106+0
1056
1072
107 +2
1044
104.8

38-8
106+0
105+6

128
8+0
6+8
8+8
68
8+0
68
8+0

12+8
8«0
6.8
8+8
6+8
8.0
6+8
8+0

