A MARKING-BASED

TEXT EDITING SYSTEM

FOR
COLLABORATIVE WRITING

{

)

‘.

\

A Marking-Based
Text Editing System
for
Collaborative Writing

by

Gary James Hardock

Department of Computer Science
University of Toronto
Toronto, Ontario, Canada
MS5S 1A4

A Thesis submitted in conformity with the requirements
for the Degree of Master of Science in the
University of Toronto

copyright © 1993 Gary James Hardock

Abstract

Markings have been used to communicate to people, in the form of markup annotations,
and to communicate to computers, via a machine-understandable marking language, but
these two uses have never been integrated. In order to investigate such an integration of
these two uses of markings, we designed, implemented, and user tested a marking based
collaborative text editing system termed MATE for Markup Annotator / Text Editor.
This exploratory research can be applied to three areas: asynchronous collaborative
writing, the visibility of markings, and interaction languages which can be understood by
both people and computers. In addition to these research topics, we are also interested
how each topic interacts with the others.

Through the design, implementation, and usability testing of MATE, many insights were
made:

» The properties of markings, visibility in particular, have not been fully exploited and
allow marks to be used in many new ways.

+ Common interaction languages are very useful even when the computer can only
understand a limited subset of the language.

» Asynchronous collaborative writing can benefit in many ways from the integration of
annotations and editing commands.

Rather than studying each research area in isolation, we concentrated on a specific
application which enabled us to find new insights in each area from our knowledge of the
other areas.

Acknowledgments

I would not have been able to finish this thesis without the help of many people. I would
like to take this opportunity to thank them:

Bill Buxton, my supervisor, for suggesting this thesis topic, keeping me motivated,
and providing me with countless ideas:;

Mark Chignell, my second reader, for his many helpful comments and for greatly
improving this thesis;

Gordon Kurtenbach for being like a second supervisor to me;
Marilyn Mantei for introducing me to the field of Human-Computer Interaction;

the Input Research Group for providing the research environment within which this
thesis was undertaken;

the DGP system administration staff: Dimitrios Nastos, George Dretakis, and Mike
Bonnell;

all the people in DGP for the friendships and interesting discussions, especially Gord,
Dimitrios, George, Beverly, Chris, George, and Kelly;

Kimeda Sensei, my Aikido instructor, and David A. Burt, my piano teacher, for all
they have taught me, and for helping me maintain a balanced life;

Mihaly Csikszentmihalyi for writing “Flow: The Psychology of Optimal Experience”
(Csikszentmihalyi, 1991);

Neil A. Fiore for writing “The Now Habit” (Fiore, 1989) which helped me overcome
my procrastination habits (and, yes, I did finish reading it);

Marvin Theimer and the people at Xerox PARC for an enriching summer;

Digital Equipment Corp., Xerox PARC, and the Natural Sciences and Engineering
Research Council of Canada for their financial support;

Dimitra Vista for her special friendship, for her many helpful comments on the early
drafts, and for discussing what “My thesis is ...”;

LouAnne Johnson for more than I could even begin to write about here, but especially
for being herself;

Koula Bouloukos for more than I could ever put into words, may we never stop
learning;

my dog Chloe for never asking me when my thesis would be done;

my family for all their love.

My appreciation for all of you goes far beyond what I have written here.

Table of Contents

AABRITBIOE coxscssascusmmnnsssmss mesensmosssessmsenesmssss s emsyssss sEssaREeAa S S DA RSPy R s s iii
ACKNOWICAZIMENLS ...ttt ss st ssee s s ssssssnaseaes v
TADIE OF CONMENTS cicuisussssissomsosocsssmmssmsseansassssssssssssssussvsssssssmsssoomsnessssssepsassssnsevssssoSTaTHS vii
I T AU S—— ix
LISt Of TADIES ..ottt st sscsssnssassnes xi
1 Introduction 1
1.1 Asynchronous Collaborative WIitingcceveevereseeseereesesemsnsessesessnaesens 3

1.2 MATE (Markup Annotator / Text Editor) — General Designcccc..... 5

13 SUMIMALY sossmsinsimssionsonsarsmsonewessrressaarmmessmsrressersnssns BTG 7

2 Markings 9
2.1 WRhY MarKingsccoceeeueeveiiriieresesesesesesesssesesnssssesesesessssessassmsssssssesssssnsses 9

2.1.1 The Everyday Use of Markings.........c.cccceeveervvensurisneenruessnesnseens 9

2.1.2 PLEODEITIBE ..veevocvessponsrvonssasonsonvonsonmensiisi bl GEREaTa S SAIVFRARERIS o TR SEARTTESS 10

2.1.3 Comparison With Other Methodscccceeveevcervinnviinerinneenne. 14

2.2 Current Usage of Markings and Previous Work..........ccocceeeviiiinrieieniennns 15

2.2.1 Making ANNOtAtiONSccecervvesverseeruerruessuesuesuesuesruesseessanenns 15

2.22 Specifying Commandscccceceeveeenverniennennnennrineinienreenneennnes 18

2.2.2 Integrating Commands and Annotationsc.ccevevverivenrnnea 21

2. Nagkup LanBiapes covmmmsvosseosneensmssaesmnmmiusyssessssmassorss sramssios 23

2.4 Integrating the TWO USES.......ccceeueuriiiriiiinininiiiiriienies e essensens 26

DS ISUIIYIYIALY v oo memeoiors 5555845 8RS 5L SRR A B AP AR S AU S S RE RV AT 27

3 Design 29
3.1 Informal Case StUdYccoceeuveririeninininininr i 29

3.2 REQUITEIMENLScvovrueuncseersrserarersassensassassssssssesssasssssassrssssssssssssssssesssssssasassssses 32

3.3 Design ARETNALVESccoinrvrercrnueressnssssssssssssssssssssssssssassssssssssssssasssssasasassssses 32

3.4 Design of MATE (Markup Annotator / Text Editor)ccccccevieninenenninnn. 35

3.4.1 ANNOLAION MOAE ...veinrriiiiiieecireecree e e cetaeee e aresessaesessnsans 35

3.42 Editing Commandsccovuerieieninenniiiiniiesssesiesess e 35

3.4.3 Object Oriented APProachiccccccinissesnsisssisisisissssssios 38

3.4.4 Do /UNd0o / Redo.......c.simsssnsinssiimssmsssiissssssssuseasaisssssssss 39

3.4.5 Conflicting Commandscceesesssesessnsessssasessissssssassosssassssnsonssss 42

3.4.6 Relating the Original and Current VIEWSc.ccoovininincnciccnnnns 47

3.5 SUITIMATY ...ooveveeecrcrimrminiseretessrsssestsasestresstst st b s s sasasa st st s s s s st senes 53

4 Implementation 57
4.1 General Interface Design and Implementationeeecvenininiiiiinncncnnn. 57

4.2 ANNOLAtiON SUPPOTIL.c.ccuiririiiirrrrereritstsessisistitissstststss s sa s s 62

4.3 The Editing COmMAandscccoeveeruernesmsiinmminimiiiiisssssssensceee 63

43.1 DIRIRLE ... vevenaesssossisiisississsisossssisvsnssssessssssessnsssagesarsnnssnns asanasenssass 64

AT IO orwroromon A RS SRS S S a e s omsusmamomsis SR 66

4.3.3 INSEIL eevveeeeceeerrerreseeeeraesssssessesssessessnsssansassasssasssssssssssssssassasosnssnes 2

4.4 Incorporation and Undo SUPPOTLcuurmrmmmssmsissisissisisessiscranncnsissaenss 74

4.5 NAVIZALON ..overecererniaerremsessssssessesersessssss s s s s s 76

- vii -

45.1 Basic NaVIZAtON ...c..ouviimnmersssismsssissses sttt st

452 Relating The TWO VIEWS coociiininiiinciimiiiine, 78

4.6 SUIMITIATY ...couurverreeserssessssssssssssssssesssisssssasssass s ta st bt R s sstbee 80
User Testing 83
5.1 Design of the Usability Studycocoeeeiimiiimmmmsiiine, 84
5.2 Results and RecoOMMmENAAtiONScoverirerreeseisssensnesinessissssusessnsssscsssane 85
5.3 SUMINIATY cooouitiiterteeeiesteeseeeeeesesise bbb s sa s E s 90
Conclusions and Future Work 93
6.1 CONCIUSIONSeieviiireeiinrierrreeiseesirresresebees s b aeessbaae e s sa s aseaessse st sssbatbe s e s bbees 93
6.2 FULUTE WOTK coveiiiiiiiieiiie ittt eecie e errre e s snrbeaeessssissasssaeeesessaeassesesaanssasssnssnsnsane 95
6.2.1 Implementation IMProvementsccoceeeenierinncsiensisinseiiininins 95

6.2.2 Future Research and DeSIZNcocovviiuiiiinieniieniieniineiseinnes 96

6.3 DISCUSSION ..iivviiiiiiiiierieiee it eeitteereeebaeessesesessasasssssaassanssssassaesssssosssnsanasssasns 99
References 101
MATE Usability Study: Documents 105
Al INroductory Pae.......cccoiiiiniiiiiiiiiiiiceiiee ettt ereesesvecseesessesasesansesnes 105
A2 Training INSUCHONSc.eiiiiiititiieiee ettt et etee e sreereeaeseaesaenseessesecsnesnes 106
A3 Training DOCUMENL ..ottt ettt ee e sseseeseseeseeseseessenseeassassens 111
At TaSke IS OIS cuscrnssssinssiissssisseners evarssns s ses sessasssemessss s s gasgs 112
B3 Task DIOCTIMICIIE «csmrersmuisanesnmsss mossinennovermassmsmmsmesss s RS oSSR ERASSSERS 112
A6 QUESHONNAIIEeviiiieieititieet ettt ettt ettt et 114
AT INterview QUESHONSoooiuiuiuiieiieieieie ettt e 122
MATE Usability Study: Results 123
B.1' Training OBSEIVAtONSccuuerueiuemeeeeeenenseseosooeeoeeoeooeoeeoeoeoeooo 123
B.2 Task OBSEIVAHONS w...ouvvuuiiveiiueiinieee oot 125
B.3 Questionnaire Results ..o 128
B.4 Interview Results 134

- viii -

1.1
1.2
1.3
1.4

2.l
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

2:13
2.14

2:15

< |
3.2
3.3
3.4
3.5
3.6
3.1
3.8
8.9
3.10
9:11
3.12
313
3.14
3.15

4.1
4.2
43
4.4
4.5
4.6

List of Figures

The Asynchronous Collaborative Writing SCENario.............c..ovueveveersemesercmseressnns 5
MATE 10 BEAIEMOAE s s s sy 6
MATE 1t Bnnotafion Mode. swmssmmmns s andnummmmsssmmmmssmsssmsens 6
MATE in INCOrPOTation MOGEcccvervrieirereceirnnriesnesessesessesssssssesessesessssessmssanes 7
The Qualitative Distinction Between Marks and Typewritten TeXt...........cceevevens 11
Chunking and Phrasing in a Move COmmand.............ccceeveerereereemsisemsmnsessnesssnes 12
Markings in COMEXLc.ovuevrreumverieuiieresisessesessssessessessasessssessesessssassassssssssssessses 12
The Directness of Markings............cc.c.cveeeuererererernsnsesessssesssesesssscsessismsssassssssseses 13
General Comments Applying to the Entire DOCUMENLc.eveveeercrerininunrereriinsnnens 16
Detailed CorTECtions t0 TeXE..,.cueescssssassersonenensassesssasseusasasesisssivassssssnssissssassasssassssos 16
General Comment Applying to a Particular Section of TeXt.........ccevveeverererueencnn 17
S PECITIC: COTIIINETIES «cucisusvssass cnsnomanioamen oo 0854850866 5 RHRTAI B SIS ER S ARSI ENIA RIS 17
Different Interprefations of the Cifele Matk. cusamasmsmssamsmmmmismsemassssansi 19
A Comparison of Verbal vs. Markup Dialogue..........c.ccccouvueirririeienrnisienescecnncann 20
Symbols Used by Proofreaders in Marking Proof Errors (DuHamel, 1962).......... 22
The Most Common Marks for Ten Editing Operations

(Wolf and Morrel-Samuels, 1987)......coveeerveeeerrenieniiniennniieniesiesnseseesssesssneens 23
Basic Pen Gestures Recognized By PenPoint (Carr, 1991)......ccooeieenriincnnnnnne 24
Editing Symbols from a Mark Based Text Editor

(Welbourn and Whitrow, 1988)......cccceeveeircieiininiiniinieniieniesieniesie s esneecnnees 25
MATE’S MarKing Set......ccoresessrsrasonsrssrorassasssssnssnsssoisssarissssssssassvsssossassrassusssassansuses 25
Combining Multiple Sources of Annotations (Informal Case Study)c.c.c...... 31
The Difficulty in Updating ANNOtAtioNS.........cceeeevererinesesreresneessesisnesssesssnnssisueneens 33
MATE’S Markifig S€1 cessmummemmaromesmmmnrmssrmemsovsmoneyssssseonsaods s imesssaasssisss 36
Moving text across pages using Move to Star and Move from Star..........cc.cc....... 36
The changing relationship between the Annotation and Edit Views...........c.......... 39
Doing and Undoing annotations independent of OTderocuvueiiiiiiinisenniennnes 40
Conflicting COMMEANGSovurvrirmrisreistissisieici s s s 42
Order dependency and compound COMMANGScovvimiriimimmiiiissnissiisisens 43
“Delete which phrase?” An example of possible user CONTUSION wuvsssssssssssssessavssses 47
HighlIZNtNE TEXL.uu.ouuerirenrsusersssirssessisssisssiassssss st s s s 48
ALgNINg the tWO VIEWS .vuvuerireirieiisissimssiss st 49
Separated POINS Of INLETEST.......uvuuurimurriuiriissisissis st 50
JUMPING t0 POINES OF INLETESt...vvvvvevriiiiimsirriisisrssesssseii s 51
Multiple Edit VIEWS...ouuvvrurrieseeeesesiimssssimnsinisssssss st st e 52
Navigation problems between Annotation and Edit VIEWS.......ccceevveiereenneececenneens 53
The Pencept Stylus (Pencept, 1986) ..o 58
The Interface for Annotation MOdEcoveriineninienimiii e 59
The Interface for Edit MOGEcovvevevereriiimimiieesnnesiiiii s cnsnne 60
The Interface for InCorporation Modecovciiiiiiissinissisnnininsnnes 61
Annotation Marking MEMNU c.......cveueumemseimmsemmmisss st s 62
State diagram for the annotation iNEETACHONoucevvmriusiimnsimsirisisnsssnssnisssienincniaces 63

-ix -

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Delete marks recognized by MATEc.ccooviiiiimiims e, 64
Move marks recognized by MATEccocniiimmiemsesiniminnmnisisse st 66
Broken move with move to placeholder and move from placeholder marks.......... 66
The placeholder MArking MEMUcc.ovueeuseusimrmusmsmssmssussssismmsstssissistsssiis s, 67
The implementation of the MOVe COMMANcviiiimeinieeiimmiiii, 68
Loss of context after several move COMMANAScooveverververuesiinnnninisiinsnsininsninnine 69
The use of pointers in the move command to retain CONtEXt........oovrvrueieriseeisunnne, 70
Difficulty in determining independently moved source boundaries....................... 71
Insert marks recognized by MATE.........ccoooiimiiniinininiinii 72
The pop-up insert text entry WindoOWcccceceiereeiieniinnieneeniesscnnecnnienmeieione. 73
Line thickness as feedback for incorporated annotationscceevevuererverveneerennen 74
Undo/ Redo last command and the history listoeswoersssesasssnrsmsssenesenssonarsvaosevase 75
Navigation Marking Menl .u«ossamcammessssmmmmsmmammmasmmssamnerossns 76
Linked navigation MATKScc.ccveeevivieereriiieeriereeereersenseesseesssesssesssesssssesssesssssssoss 77

2.1
3.1

List of Tables

Possible Interpretations By the Reader and the System
Conflicting Command Pairs

-xi-

..

...

...

Chapter 1

Introduction

Pen-based computing is now becoming a reality as pen-based computers, operating
systems, and applications are being developed. Much work has been done in many areas
of pen-based computing; our particular interest is text editing. Several research and
development efforts have examined pen-based text editing (Carr, 1991; Goodisman,
1991; Welbourn and Whitrow, 1988; Wolf and Morrel-Samuels, 1987), but we are also
interested in another aspect of the writing process — the annotating of documents. People
mark-up documents everyday to communicate with each other. This communication is
supported by applications such as Wang FreeStyle (Francik and Akagi, 1989; Levine and
Ehrlich, in press; Perkins, et al., 1989), which have been built to support the marking-up
of documents electronically.

Our motivation is that there is a gap in all this work; as these two uses of markings — for
specifying text editing commands, and for annotating documents — have never been
combined in an integrated manner. The goal of this thesis is to fill this gap by designing
and building a marking-based text editing system which allows users to annotate text
documents, edit text documents, and to incorporate annotations as editing commands,
thus integrating the two uses of markings. This system is termed MATE for Markup

Annotator / Text Editor.

The gap in previous work not only exists in the research of markings, but also in the text
editing process. People use mark-up annotations to communicate with each other in
collaborative writing efforts, but to actually incorporate the changes they must manually
convert the annotations into text editing commands, which they then have to enter
manually. By integrating the two uses, the computer will be able to understand some of
the annotations, and thus reduce the need for manually converting and entering the

commands.

D) Chapter 1: Introduction

Our first research question is how can the integration of the two uses of markings be

achieved. Our answer comes from the observation that marks used for annotations rely
s are visible, whereas visibility is not exploited in marks used for

on the fact that mark
By keeping the marks intended as commands visible, they can

specifying commands.
also be used as annotations.

Along with investigating the integration of the uses of markings, our research can be
applied to the following three areas:

« Asynchronous collaborative writing: This refers to those stages in a collaborative
writing process, in which the members work separately, and thus use annotations to
communicate with each other. Rather than building a system which just integrates the
uses of markings, we use the application of asynchronous collaborative writing to
guide the design and implementation of MATE. This gives us a dual benefit, in that
we are researching the application of asynchronous collaborative writing by building
a system which supports it, and we can gain many insights into the integration of the
uses of markings as many of our initial insights came from this application. A brief
description of the asynchronous writing scenario for which we believe MATE to be
the most suited for is described in the next section.

» The visibility of markings: As mentioned above, the fact that marks are visible allows
them to be used as annotations, and this property has not been exploited in the use of
marks as commands. Our research will allow us to identify and examine the benefits
and constraints when visibility becomes an important consideration for marks used as
commands.

» Common interaction language: Most interactions with a computer are intended
solely for communication with the computer. By using the same marks as both
annotations and commands, a common language understood by both people and
computers results. A key point of such a language is that the user is required to learn
cither nothing new or very little; the computer must learn the user’s language. This
comcept is the main thrust behind Natural Language Understanding research, but our

marking-based approach allows us to investigate this topic from a different
perspective.

Additionally, the interaction between each of the above research areas is important to
inv-cstigatc. Many insights in one area can be found from observation 's 1: HntIl)lo areas.
ThlS‘ wa:s already shown in the dual benefit of designing and implem S m €0 TEcrf "
application of asynchronous collaborative writing. Another exampleeir;ut;]jtfsgnchr:;’“s

Chapter 1: Introduction 3

collaborative writing can be improved if an editing language common to both people and
computers is used, and a common interaction language can be achieved by using
proofreaders’ marks, found in asynchronous collaborative writing.

This exploratory research is carried out by the design, implementation, and user testing of
a prototype system, termed MATE for Markup Annotator / Text Editor. Through this
process we intend to gain insights into research areas mentioned above, as well as the
interactions among them. Because these areas are intertwined, they are covered in
parallel throughout this thesis.

In the remainder of this chapter, we describe the asynchronous collaborative writing
scenario of interest to us, and the general design of MATE. Our use of markings binds
the three areas of research; therefore we examine markings in detail in Chapter 2.
Chapters 3, 4, and 5 describe the design, implementation, and user testing of MATE,
respectively. Finally in Chapter 6 we come back to our research areas and apply the
insights gained from MATE to these.

1.1 Asynchronous Collaborative Writing

Almost everything written today is accomplished through a collaborative effort. Many
works are written by several authors, but even if there is a single author, proofreaders and
editors make comments and changes to the document before it is complete. This
collaborative writing process contains several stages: brainstorming, researching,
planning, writing, editing and reviewing (Posner, 1991). Some stages, such as
brainstorming, are more well suited to group meetings, whereas other stages, such as
editing, are performed individually and then presented to the group or to the person in
charge of the document. We are concerned more with the later stages of editing and
reviewing, in which the collaborators tend to work separately on making changes which
are then later communicated to the rest of the group. Such stages, in which the members
work separately, are termed asynchronous collaborative writing.

The collaborative effort can be organized in several ways (Posner, 1991). If there is a
sole author then that author is in control of making any changes to the document. In
multiple author scenarios, the ownership or control might be given to a single author,
divided into sections or chapters, or subject to group consensus. The scenario of interest
in this thesis is that the document is under the control of one person. In this scenario, the

document moves through the following process, shown in Figure 1.1:

Chapter 1: Introduction
sends copies to th
The principal author creates a draft of the document, and then se P .
e princip: S
other collaborators.

D) . he aﬂnotated

document to the principal author.

anges into the document.

*

3 o o o ‘h
The principal author then incorporates the suggested ¢

Currently, the above process is accomplished by senc!ing p.aper copies g:et::ei :Zcol:::::
back and forth, and by marking up these paper copies \\tlth a ‘[l)en.d o —
principal author and collaborators have access to elect‘ronfc mh:n an‘esq i th;
they will more than likely use a paper copy at some point in the process,

purpose of communicating their suggestions to another collaborator.

Principal Author Collaborators

Creates / Edits
document

Sends copies Annotate
to collaborators document
Send annotated

copy

Reviews annotations and
incorporates into document

Figure 1.1: The Asynchronous

The principal author create
collaborators. The

Collaborative Writing Scenario

s @ document and then sends copies of it to
collaborators then annotate th

to the principal author.
possibly incorporates th

The principal author then
em in the newer v

eir copies and send them Ix:iCk
reviews the suggestions an

’rsion of the document.

Chapter 1: Introduction 5

Wang FreeStyle allows its users to do all their handling of a document electronically.
This is accomplished by creating a bit mapped image which can be transmitted
electronically, and annotated with pen and voice. But the bit mapped image is only an
electronic version of paper; a computer document could and should have many more
advantages. By building a system which integrates mark recognition with annotations,

we intend to improve upon the existing collaborative writing process.

1.2 MATE (Markup Annotator / Text Editor) — General Design

In this section, we provide a general description of how MATE is designed. A detailed
description of MATE’s design and the reasons behind the design decisions is given in
Chapter 3.

In order to integrate the uses of markings and to support our collaborative writing
scenario, MATE allows users to:

+ Edit text documents
« Annotate electronic text documents

» Incorporate the annotations into the new version of the document.

These three functions map into three modes, each supporting one of the above uses.

« To edit text documents, MATE acts as a mark-based text editor (Figure 1.2), such as
(Carr, 1991; Goodisman, 1991; Welbourn and Whitrow, 1988; Wolf and Morrel-
Samuels, 1987).

« To annotate text documents, MATE acts as electronic paper (Figure 1.3), like Wang
FreeStyle.

« To incorporate annotations into the document, MATE uses two views of the
document (Figure 1.4). The left view is similar to Annotation Mode, the right view to
Edit Mode. The main difference is that the user can select a mark in the Annotation
View which is then interpreted and executed as an editor command, with the result
shown in the Edit View. The design of MATE is described in more detail in Chapter

3 — Design.
MATE is not intended to be the best annotation tool or text editor, but rather a first

attempt at a system which integrates both uses. We are mainly interested in the user
interface issues, as it should first be determined how usable such a system is before

Chapter 1: Introduction

dealing with other issues. But other issues, such as how the underlying data structures are

handled, are important and are also dealt with.

This is an example of a piece of text about to

be move@ from the middle of the paragraph

to the end of the paragra

(@)

This is an example of a piece of text about to
be moved to the end of the paragraph from

the middle of the paragraph.

(b)

Figure 1.2: MATE in Edit Mode

(a) A user draws a move command. (b) After lifting the pen, the editing command
is performed, and the mark disappears.

This is a sample document with several

annotations malﬁon it. Not

annotations correspond to-anasie editing
commands.

Whereas others are more general @
comments. ?‘%\blo

Figure 1.3: MATE in Annotation Mode

In annotation mode, users mark up a docu ; .
; ’ ment in M 7
marking up a paper document. ATE just as if they were

Chapter 1: Introduction

ANNOTATION VIEW

EDIT VIEW

This is a sample document with several

annotations malgon it. Not

annotations correspond to-epesific editing
commands. ‘

Whereas others are more general 0@
comments. ?\ Q}nl

This is a sample document with several
annotations marked on it. Note that some

annotations correspond to editing commang:

Whereas others are more general

comments.

Figure 1.4: MATE in Incorporation Mode

In incorporation mode, a user can view the annotated document, and select which
annotations to incorporate. Annotations t(seen in the left window) that have been
"executed" appear as thin lines (e.g.., "ed"). Annotations that have not been
executed appear as thick lines. Annotations are colour coded according to who

made them. Annotations that represent commands can be executed by selecting
them with the stylus. Annotations that have been executed can be "undone” by
selecting them. The current state of the document appears in the right hand
window. The user can navigate (scroll) independently or synchronously in each

window.

By building MATE we intend to do the following:

Gain an understanding of how the integration can be actually achieved

Gain insights into the benefits of the integration

Determine the implications of such a system in the design and implementation of both

the user interface and the rest of the system.

Test the usability of the concepts developed

1.3 Summary

This thesis was motivated by the observation that the two uses of marks, as a means of

communicating between people and of communicating between people and computers,
have never been integrated. This lead to a marking based text editing system, termed
MATE for Markup Annotator / Text Editor, which allows users to annotate text
documents, edit text documents, and to incorporate annotations as editing commands.

. Chapter 1: Introduction

The research involved in designing, building, and testing of this system encompasses
three research areas, asynchronous collaborative writing — the intended application, the
visibility of markings — the catalyst for the integration of commands and annotations, and
common interaction languages which can be understood by both people and computes — a
research topic of which this thesis is an example. In addition to concentrating on one

particular area of research, we are also interested in the interactions among them.

MATE is intended to support the following asynchronous collaborative writing scenario:

« The principal author creates a draft of the document, and then sends copies to the

other collaborators.

« These collaborators review the document, annotate it, and then return the annotated

document to the principal author.

« The principal author then incorporates the suggested changes into the document.

The general design of MATE supports each of the above three functions; it allows users
to edit text documents, to annotate electronic text documents, and to incorporate the
annotations into the new version of the document. It does this by providing three modes
of operation, one for each function.

Chapter 2
Markings

In Chapter 1, we stated our intention to integrate the two uses of markings — as
annotations, and for specifying commands — in a text editing system for collaborative
writing. In this chapter, our reasons for using marks are given, along with comparisons
with other methods such as Graphical User Interfaces, and Speech Based Interfaces.
Next we examine how markings are currently used in making annotations and for

specifying commands. Finally, the theory underlying the integration of annotations and
commands is developed.

2.1 Why Markings

There are several reasons for focusing our research on markings; they are already in
common use in annotating documents, and have several properties which support their
use as annotations, for specifying commands, and for integrating these two uses. But
mouse and keyboard based interfaces and speech based interfaces could also be used, and
are therefore compared with our marking based approach.

2.1.1 The Everyday Use of Markings

People use marks everyday to make comments, notes, etc. This frequent usage provides
the following benefits:

1. people can make marks (A)

2. people understand marks (B)

An additional effect from this everyday use is that a person (A) expects another person
(B) to understand A’s marks. This expectation may actually lead to mistakes, or

misinterpretations by the reader of the annotations. The annotator expects the reader to
interpret the annotation properly, but has no easy way of knowing if the reader actually

10 Chapter 2: Markings
interprets it correctly.

There are also benefits from using a set of markings for commands which come from the

markings in everyday use:

« The skills obtained from this everyday usage are learned over a long period of time,
Therefore it is beneficial to base our use of marks on these everyday skills so that

users require minimal training.

* By using a set of marks which can be understood by both people and computers, a
common language is achieved. Such a language would reduce or eliminate the need
to convert information intended for a person into commands to specify to a computer,

2.1.2 Properties

Markings have many characteristics which make them well-suited as annotations and for
specifying commands.

Markings are useful as annotations because:

* Markings are Easily Made and Understood by Most People: This was noted above in
Section 2.1.1 on the Everyday Use of Markings.

* Markings are Expressive: Markings can convey much information such as position,
size, attributes such as boldness, italics, etc.

* Markings are Qualitatively Distinct from Typeset Text: Markup annotations are
visually distinct from typeset text. This allows one to view a marked up document
and easily distinguish the markings from the text. In fact, the markings tend to stand
out in the foreground as the typewritten text fades to the background. This
characteristic is termed as a figure-ground distinction, and can be noticed in
typewritten documents annotated with a pen as shown in Figure 2.1,

* Markings Provide an Overall View: Someone viewing a marked up document can

the annotations are, how many changes are being
suggested, the overall level of detail of the annotations, etc,

obtain an overall picture of where

Markings are useful for specifying commands to a computer because:
* Markings are Expressive: Expressiveness indicates how much information can be

obtained from a method of input. Marks can specify many parameters in a wide

variety of ways. For example, if an application uses marks to enter characters and

Chapter 2: Markings 11

Mcs about 10 seconds to write diam dgwn, but over a minute to enterohase using
AathType and Microsoft Word on an Apple Macintosh. Much of this time is spent
c alcnu'i:n;.s“ 6"”

keyboard and

'
ang sections of th, typing on the

witching between the subtasks (see Buxton, 1990 pg.
he time differcnccms's importa:t’w
Wlinc-marking method doesn’t present the load of a dozen or s0 SUDLASKS qilSmm

canarlms more common point-and-select method.

13.5 for a detailed analysis).

Figure 2.1: The Qualitative Distinction Between Marks and Typewritten Text
In a marked up document the marks tend to stand out from the typewritten

text. This characteristic is termed a figure-ground distinction.

symbols, then the position and size of these characters is given by the position and
size of the mark. To show the difference between this approach and that of a typical
direct-manipulation interface, say we want to enter the following equations:

n .
4= .zkl 3 .2
i=1 2" #3

It takes only about 10 seconds to write them out by hand, but over a minute to enter
these using MathType and Microsoft Word on an Apple Macintosh. Much of this
time is spent selecting menu items, various cursor positions and sections of text,
typing on the keyboard, and most importantly, switching between these subtasks (see
(Buxton, 1991) for a detailed analysis). Time is only one aspect; the cognitive load of
learning, planning, and executing these subtasks is the major drawback of the point-
and-select method. Marking does not require this cognitive load as the task is
simpler.

Often, a single mark is enough to specify all of the parameters of an action. An
example of this is shown in Figure 2.2. In this example, the action, source and
destination are all specified by a single mark.

Marks can have an orientation, thickness, size, shape, position, and other attributes.
In addition each mark can have several segments with their own attributes as is the
case with cursive script. Also marks may form different meanings in association with
other marks. For example a straight line may mean underline a piece of text as shown
in Figure 2.3(a), or it may mean to delete a piece of text as shown in Figure 2.3(b).

12

Chapter 2: Markings

Ideally, we want a one-to-one mapping @

User interfaces should be

concepts and gestures

designed with a clear object the mental model

that we are trying to establish. ¥ Phrasing can

reinforce the chunks or structures of the model.

Figure 2.2: Chunking and Phrasing in a Move Command

A marking allows several components to be "chunked" into one action. The
proofreader’s move marking captures three components normally articulated by
separate commands: the selection (the text to be moved) the command (move),
and the destination (where the text is moved) (Buxton, 1991).

This is an example in which This is an example in which
a word is being underlined. a word is being deteted-
(@) (b)

Figure 2.3: Markings in Context
The meaning of the horizontal line depends upon its placement. Ifit is underneath
a line of text it is interpreted as an underline command, if it is on the text it is
interpreted as a delete command.
Markings are Direct: Markings are specified directly on the object(s) of interest
(Wolf and Morrel-Samuels, 1987). For example, the cross-out mark in Figure 2.4 is
made directly on the word to be deleted. In contrast, with many forms of “direct-

manipulation” the objects and commands are specified separately by first selecting
the object and then the command.

Markings have an Inherent Syntax: The syntax of comm
spatial form of the markings.

ands is determined by the

This is illustrated with an example of the move
command.

Two of the most common are:

Move (from) Source (to) Destination.
Move (to) Destination (from) Source.

Chapter 2: Markings 13

The mark is made Mtly

on the word to be deleted.

Figure 2.4: The Directness of Markings
The command is made directly on the text to be deleted.

destination second, and the move command is specified at the same time as the
parameters, as shown in Figure 2.2. This “natural order of interaction” (Buxton,
1990) is more in line with thinking of the entire command as one process. One
performs actions on or to objects. One way to think of this is that dialogues such as
command-line, point-and-select, and verbal are generally serial, specifying one thing
at a time, whereas a dialogue based on markings is more parallel as many
actions/objects/parameters can be specified at the same time. With a parallel
dialogue, the syntax becomes simpler.

The Visibility of Markings

The fact that markings are visible is the key to integrating annotations with commands.
Markings must remain visible in order to be useful as annotations. This is not necessary
when markings are used as commands — the markings can be removed once the command
is performed. The two uses can be connected by observing that an annotation is a
command which has not yet been processed. Annotations can therefore be thought of as
deferred commands. In terms of the different modes of MATE, Annotation Mode can
also be termed Deferred Mode, and Edit Mode can also be termed /mmediate Mode.

The integration can be carried one step further by keeping the processed markings visible.
This completes the connection as both processed and unprocessed markings can be
treated as annotations and commands. As will be shown in later chapters, this allows
many new features such as Undo by Selection, and a Graphical History Mechanism.

Note that our use of markings is constrained by our reliance on the visibility property.
The main constraint is that the markings must be visually distinct from each other. This
is already necessary for markings used as annotations, but this restricts the markings
available as commands. Marking commands cannot use timing or directional information

for interpreting the markings.

14 Chapter 2: Markings

2.1.3 Comparison With Other Methods

As noted earlier, markings are currently the most common method of annotating
documents. This in addition to the above-mentioned properties makes markings a good
method to use. But there are other viable methods which should be investigated, namely
mouse and keyboard based interfaces , and speech based interfaces.

Mouse and Keyboard Based Graphical User Interfaces

The typical Graphical User Interface (GUI) does not have the visibility property of a
marking based interface, as button clicks and menu selections are not visually persistent.
But this can be circumvented by providing commands to make annotations. One system
which does this is the Collaborative Annotator (Kosarek, et al., 1990). This is a multi-
user document review system which can be used in collaborative writing. First the
document is scanned into the system. Then the users can annotate the document using
the Collaborative Annotator. The Collaborative Annotator is the mouse and keyboard
equivalent to Wang FreeStyle in that they both use scanned in bit mapped images of
documents and only support annotations.

The main difference between mouse and keyboard based interfaces and marking based
interfaces is that with a mouse and keyboard based interface a user must use commands
to make annotations, whereas in a marking based interface the annotation is simply
whatever markings the user makes. For example, a delete annotation can be visually
represented as a horizontal line in both types of interfaces, as shown in Figure 2.3(b). In
a marking based interface, the user just draws the horizontal line, whereas in a typical
graphical user interface, the user would select the text and then apply the delete
annotation to that text usually via a menu selection. The mouse and keyboard method
may seem acceptable in a single example, but this method requires that all types of
annotations be predefined and accessible as commands. It is this fact, that markings do
not require commands, which provides the flexibility to make any type of annotation.

Speech-Based Interfaces

Speech is a very good means of communication among people, therefore it makes sense
to use speech as a method of annotating a document. In fact, speech is actually good for
the types of annotations for which mark-up annotations are poor, namely gcneral
comments and “wordy” or long comments. But speech is not visible and is poor if

specifying locations, and would therefore need to be used in conjunction with a mark-
based or mouse based interface.

Chapter 2: Markings 15

Using speech for commands has two main problems:

currently only discrete speech recognition has progressed far enough to be useful,

+ and speech is poor at specifying locations.

Therefore a more ideal system would use a combination mark-based and speech-based
interface. However, as the speech-based-interface is dependent upon the mark-based
interface, we decided to first see what could be gained with a purely mark-based
approach. A hybrid system is left as future work.

2.2 Current Usage of Markings and Previous Work

Integrating annotations with commands has not been studied before, except for related
work by Goodisman (Goldberg and Goodisman, 1991; Goodisman, 1991). Therefore we
examine the current usage and previous work done with markings used as annotations
and with markings used to specify commands to applications. Finally we examine the
issues brought forth by Goodisman’s work.

2.2.1 Making Annotations

As there are only a few computer applications which support markup annotations, we
examined marked up paper documents to gain further insights. Two useful observations
to note are that annotations can range from very specific to very general, and that the
available space to make the markings is an issue.

Levels of Detail

Annotations can range from very general comments applying to the entire document, as
shown in Figure 2.5, to very specific corrections such as removing the quotes around
“attached”, Figure 2.6. There are several factors that characterize the various levels of

detail. These are:

« Position Attachment: Annotations apply to a specific section of the document,
ranging from the entire document — Figure 2.5, to a paragraph — Figure 2.7, to a single
character — Figure 2.6.

 Length of Comment: Some comments are brief — “Mush” in Figure 2.7 and “what
37 in Figure 2.8. Others are very long and contain much information — Figure 2.5
and “there is also” in Figure 2.8.

o Comment vs. Action: Some annotations are to be treated as a discussion between the

16 Chapter 2: Marlcings

annotator and the reader — Figures 2.5, 2.7, and 2.8. Whereas some annotations are t,

be treated as specific editing commands — Figure 2.6.

Each of the various methods for annotating documents tend to be stronger at Supporting

certain levels of detail over others.

Speech is very good for more general, lengthy comments applying to sections of text of
paragraph size or larger. Speech is also good for replacing text, but is very cumbersome
for specifying details such as punctuation. Speech also requires support to attach the
annotation to a particular section of the document.

Typed annotations are reasonable for general comments. They generally take more time

Table of Contents

1 Introduction

Figure 2.5: General Comments Applying to the Entire Document

These comments do not apply to any one section of the document, but rather to the
whole document.

Vanesdes o Levels of Detal 2o = <M T -
Since e -
%ﬂ—w be captured mmmﬂa “ ﬁlll’klngs cm “ .m"m‘ o

specific’or they can be very gmm'al7 @r an M.an w Jo noY

force, oc ide the affond for, the user to use any oae level of detail, Thivss in
contmst to, uy,typed or spoken womdm1 attached® m ﬁc piece of text even

when applya 10 a largerarea of text. 355”2\? good for mese general
comments, but becomes cumbersome when st details such as punctuation.

Y
bowt e docmny) eerell stuuce

Figure 2.6: Detailed Corrections to Text
These annotations are detailed corrections to the

usually apply to words, such as “attache
large | larger” .

text. Annotations at this level
d”, and characters “applies | apply ,

Chapter 2: Markings 17

Convey Qualitative Information

Because of the expressive power of markings and the lack of any constraint on the user,
\}. / qualitative information such as importance, a necessary vs. suggested change, etc. can be
conveyed through the use of exaggerated size, linc thickness and other writing stylcs.

2.7 How the Two Uses can be Combined
We have shown that there are bencfits to using markings for specifying commands and

Figure 2.7: General Comment Applying to a Particular Section of Text
The comment “Mush” applies to a single paragraph.

1%
Sty
Two systems which have bocn developed recently are Wang's FreeStyle((ref And the
Collaborative Annotator (ref Koserak). Wang Freestyle follows the pen and paper
analogy, but also adds voice to the annotations. The Collaborative Annotator uscs the
muwandkcyboudnndtlwmdldonddhwtmmipﬂadm type of interfacs,
“ e @ dar n pan f e @l Vo, /o B mae /u.u..r‘.’

[expand description of Wang Freestyle and Collaborative Annotitor] et Mty

~ L3 Problems With Current Methods
(}//@of the above methods only support the communication amongst the
W collaborators. The actual cditing task still nceds to be performed using a scparate cditing

Figure 2.8: Specific Comments

These comments apply to specific items within the document. They can range in
length from brief, comments such as “what 37", to long comments, such as
“thereis also a ...”.

and effort than speech, but they do have some advantages over spoken annotations.
Typed annotations are very good for replacing text including punctuation and spelling
corrections. Also typed annotations are visible, which allows the reader to have an
overall view of the annotations.

For general, lengthy comments, markings take more time and effort than both typed
annotations and spoken annotations. Markings are more well-suited for annotations
which are more detailed, and especially for annotations specifying actions. But the
important fact is that markings can support all levels of detail reasonably, whereas spoken
and typed annotations are poor for certain levels of detail.

These observations support the conclusion that a system combining the various forms of
annotations is the best approach. In fact, both Wang FreeStyle and the Collaborative

13 Chapter 2: Markings

Annotator support several forms of annotations. As mentioned earlier, this thesis is only

concerned with marking annotations, a system with other forms of annotations is left a5

future work.

Markability

Markability refers to how easy it is to make marks in the space available between the
lines of a text document. One way of thinking about markability is that visible
information, such as the text of a document and the changes to or comments about this
document, requires space. On paper, markability is facilitated by the use of double and
triple spacing in draft versions of the document. But what if one wants to make marks on
a formatted version of the document? There is not much that can be done in this case.
However, solutions for electronic documents do exist. For example, a text editor could
have a draft mode which places more space between the lines to allow marks.
Markability may force the working version of a document to be different than the
presented version of a document. This is an issue which needs to be considered for all

systems which use markings.

2.2.2 Specifying Commands

Markings are used to specify commands for a wide variety of applications, such as Text
Editing (Welbourn and Whitrow, 1988; Carr, 1991; Wolf and Morrel-Samuels, 1987),
Musical Notation (Buxton, et al., 1979; Wolf, et al., 1989), Mathematical Notation (Wolf,
et al., 1989), and Educational Applications (Chow and Kim, 1989). There are many
issues which need to be addressed when using markings for commands; the two that
affect this thesis the most are the Dependence on Recognition Technologies, and the
Management of the Interaction Dialogue.

Dependence On Recognition Technologies

Many marking-based applications require state of the art technologies in order for them to
be realized and thus much research is being conducted in the areas of character
recognition (Tappert, et al., 1990; Ward and Blesser, 1985), and marking recognition
(Rubine, 1990; Kim, 1988). Even as the recognition technologies improve it is important
to realize that the recognizers will make mistakes, and that the interface must be able to
allow users to correct erTors.

Character Recognition: Recognition rates for the recognition of boxed discrete
characters has reached over 95% (Tappert, et al., 1990). The recognition rates for non-

Chapter 2: Markings 19

boxed characters and cursive script is much lower and usually must be adapted for each
user. These recognition rates place restrictions on the way that recognizable characters
can be written. Also, the fact that the recognition rates are not close to 100% accuracy
means that error recovery and feedback become very important, Deferring the
recognition of the character amplifies this issue of feedback and error recovery, because
the user who writes the character does not receive any feedback. Also, the user viewing
the marks has no way of knowing if the recognizer is conveying the annotator’s

intentions. This is an important issue and is dealt with in more detail in the Design and
Implementation sections.

Marking Recognition: Marking recognition refers to the recognition of all markings
which are not characters. As opposed to characters, markings may vary in size, shape,
and orientation, which make recognition more difficult. Another problem with mark-
recognition is that it is usually not sufficient to simply recognize a mark; characteristics
of the mark also need to be extracted. For example, the move mark shown in Figure 2.2
specifies the source and destination in addition to the action. All of these parameters
need to be extracted from the mark.

One would expsct the letter But@):ircle could also select

‘Ch" to be in a piecef text. @ piece of text.
(a) (b)

O O
O O

A drawn circle could specify

a circle in a diagram.
(c)

Figure 2.9: Different Interpretations of the Circle Mark

Depending upon the context, a circle mark could be specifying (a) the letter “O’,
(b) a selection of text, or (c) a circle.

20 Chapter 2: Markjngs

Most mark recognition techniques are different than character recognition techniques.
This causes problems when both characters and marks are allowed, because a mark mighy
be recognized as both a character and as a mark. For example, the circle in Figure 2.9
could be specifying a scope, a circle, or the letter “O”. If both a character and a mark
recognizer are used, a means of comparison is necessary to choose the fina]

interpretation.

Dialogue Management

Most dialogues with a computer are sequential in nature. In contrast, interactions using
markings are more spatial. To better understand this distinction, consider entering a
command to sum the squares of the numbers from 1 to 100. In a command-line or verbal
interface, the command would look something like what is shown in Figure 2.10(a). Note
that the command would be typed or spoken in the order shown and followed by an event
to perform the execution. In contrast, the markup command would look like what is
shown in Figure 2.10(b). What is important to note is that any of the parameters could be
entered in virtually any order as long as they are placed in the correct position.

The fact that interactions with markings are more spatial than temporal, brings about
many issues which are not normally present in temporal dialogues. Rhyne (1987) points
out syntactic compression, contextual effects, closure, and embedded dialogues as some

of these issues.

» Syntactic Compression and Segmentation: Syntactic compression refers to the ability
to specify several parts or all of a command with a single mark. These marks need to
be separated into their constituent parts, which can be a complex process. Figure 2.2
is an example of compressing a move command into a single mark. Syntactic
segmentation refers to the fact that several marks may make up a single character or

(Q0

a 2
Sum the squares of the numbers
from one to one hundred enter - L
=1

(a) (b)

Figure 2.10: A Comparison of Verbal vs. Markup Dialogue

The verbal dialogue (a) follows a sequential order, whereas the markup dialogue
(b) is spatially ordered, the sequence in which the terms are written is irrelevant.

Chapter 2: Markings 21

part of a marking. This occurs when one “crosses the t’s” and “dots the i’s and j’s”
after writing an entire word or sentence,

* Contextual Effects: For a spatial dialogue, the spatial context — where the mark is in
relation to other visible objects, may be more important than the temporal context —
when the mark was made in the current command specification. GO uses spatial
context to distinguish between circles, selections, and oh’s (Carr, 1991).

* Closure: This refers to the method which signals the end of a dialogue. This could
be an explicit event such as pressing the enter key on a keyboard, or the lifting of the
stylus. It could also be an implicit event such as a certain period of time elapsing.
GEdit is an example of a system which uses a combination of implicit - elapsed time,
and explicit - pen lifting, closure (Kurtenbach and Buxton, 1991a).

* Embedded Dialogues: There are many cases in which the user may temporarily
interrupt one dialogue and start another sub-dialogue. A good example of this is in a
move command for in which the source and destination are far apart. In this case the
user would specify the scope, i.e. source of the command, perform some type of
navigation command, and then finish the move command by specifying the
destination. Embedded dialogues are difficult for the computer to handle because it
must constantly make a decision on whether an event belongs to the current dialogue
or is the beginning of a sub-dialogue.

Recognition technologies and dialogue management are not the central issues of this
thesis, but must be dealt with in order to address the integration of markings as
commands and annotations. These issues are taken into account in our choice of the set
of markings used for commands and in the design and implementation of MATE.

2.2.2 Integrating Commands and Annotations

Goodisman (Goldberg and Goodisman, 1991; Goodisman, 1991) has developed a stylus-
based text editor which allows the execution of markup commands to be deferred. In
Goodisman’s system the user first selects the editing marks to perform, and then has them
all performed at once. Although his emphasis — deferring commands in a text-editor, is
different from that of this thesis — integrating annotations and commands, the works are
related and he discusses several important issues.

o The need for feedback: The user requires some kind of feedback to be able to know
how the system interprets the mark.

2 Chapter 2: Markings

(e 2]

« Non-chronological undoing: Most editing systems only allow the last “n” commands
to be undone. As will be shown in later chapters visible marks allow the arbitrary
undoing of commands.

« Disorientation: Users may lose track of what the document will look like after the
editing changes are made. In fact, users tend to manually confirm that the changes
have been made, which can be difficult because there are no longer any marks by

which to locate these changes.

Scmicolon Sw Leave as it is

/< /\ Carct—left out, insert @ Turn letter
—— Cupital lctters X Damaged
——— Small capitals Snac
4 Space
'e. C. Lowercasc % # I:qual space between words
= [talic (ﬂ Delete
Sy
Aan~nn Bold face (.9)#‘ Delete space and close word
S~
/07 . Roman type (-9' Delete letter and close up
~
M}# Wrong font N
- Transposition
o Period 2 Run on
/7\ Comma [or :] Extend or move over (left)
2 Apostrophe
b P :] ar [’\ Fxtend or move over (right)
: Colon ﬂ Ligature
.
7
c Hyphen
Cﬂ Paragraph

(/) Parentheses G Push down space

E/ 1 Brackets &a(({, Push down lead

| - | Dash
@El Insert words left out
a’/ lnsert lester /// Align letters

{./6 e Quotations ?ﬂutho, Question to author

Figure 2.11: Symbols Used by Proofreaders in Marking Proof Errors (DuHamel, 1962)

Chapter 2: Markings 23

Each of the issues brought forth by Goodisman’s work are addressed in this thesis.

2.3 Markup Languages

To design the marking set for MATE we examine markup languages for annotations and
for commands. Our constraints are the available character and marking recognizers at the
time of implementation, the fact that the markings must be visually distinct from each
other, and that the markings be understandable to the user.

There are many standard proofreaders’ languages, such as the one shown in Figure 2.11
from (DuHamel, 1962). But most people do not learn these standards and use more
intuitive, but less functional languages. Wolf (1987) conducted a study to find out what
marks were actually used by people for annotating text. The most common of these are
shown in Figure 2.12.

Delete Charncter Delete Word Delete Phrase

The word” The avord— Thasosdie
much oo loag

Insert Character Insert Word Insert Phrase
n - vert big
1;: word mhword The Rvord
Move Word Move Phrusa

n The word 1!
ur gie

Add Space Position Phrase
vipaca’

The first part The fust pant

The secom.f/ |¢=The second part

Figure 2.12: The Most Common Marks for Ten Editing Operations
(Wolf and Morrel-Samuels, 1987)

Chapter 2: Markingg
24

d as commands to computer applications are different than those used for
as I

e 'use Two sets of mark commands are shown in Figures 2.13 (Ca.rr, 1991) ang

annot;t;o;lbs. nd Whitrow, 1988). The main reason for the differences is that people

2.14 (Welbourn a * ' 0 thei iti
nd computers have different strengths and weaknesses 1n their recognition capabilities,

a

One important point is that many marking and character recognizers use timing and

direction information to distinguish between marks. For example, the three PenPoint

marks: tap, press-hold, and tap-hold look the same, the only difference is in their timing,
Such marks cannot be used as they do not meet the constraint of being visually distinct,

The Marking Set Chosen for MATE

The marking set chosen for MATE consists of the insert caret, a horizontal line for delete,
and the move mark , shown in Figure 2.15. The reasons for these three commands are
discussed in Chapter 3. Note that each of these marks are common annotation marks
(Figure 2.12), and have been implemented in a text editor (Figure 2.14). A character
recognizer was not available at the time of implementation, instead characters are typed
into a text entry box which appears when the insert caret is made.

CORE PENPOINT GESTURES
Tap N .] Select/Invoke
wpressnh;;m o & Initiate drag?%;e“ WI_p; tthUs;f_\) .
;>Taphold - w o Initiate drag (copy) ”“
Flick (fourdlrec.tionsi.m -~~-—~|~-~) —"-“‘SZJIBrowsew S
Cross out o "32‘ ” \;.“W—”Wm-w T
ws";r;tch om é ._,.~..,....__.-__,~.~D_eTet_e__.___.,..m_._m_.n..q
e D" s
L e Y T e
SGat A - ‘T.{;;T““""'””"*”
S S ——]
_ %racketf \ﬁ__}[____ 1 Select 0b|e<:t adjust selectlon
LPlglall”(Avemcal) . __{o’ L Delete charac;e; T
S BN S nsenspace)

Chapter 2: Markings

25

delete character
delete word

delete phrase

insert character
insert word

insert phrase

Join

split

move word

move phrase

new paragraph

A sin?(lc line)<) /

The-detete symbol = > ===

A straight horizontal (/) A
hne

The ar:éw head ~ XK 11
Th{gﬁ\(gol XN ALt
Thcx%‘a’d's%e NS
develop ment o 0 /

baseion [A >

The n____ ()7
The words for(are
-

much to long)
this exam plqu

This is the ﬁrstl‘l‘his T 1 C

is the second.

Figure 2.14: Editing Symbols from a Mark Based Text Editor

(Welbourn and Whitrow, 1988)

The marking set chosen for MATE consists of

the «m command¥ asrerizomntattie-for the

insert

delete command, and the caret for the insert

AN

command.

Figure 2.15: MATE’s Marking Set

MATE’ s marking set consists of the move mark, a horizontal line for delete, and
the insert caret. Characters are typed into a text entry box once the insert caret is
recognized.

5 Chapter 2: Markings

2.4 Integrating the Two Uses
The theory behind the integration is that annotations can be treated as deferred editing

commands. This is possible from the fact that marks can be visibly persistent. But there

are many practical issues that need to be dealt with in order to achieve the integration:

« Static vs. Dynamic Documents: Annotations are made on a static document, whereas

editing commands are made on a changing document. This presents many problems,
for as a document changes, the annotations may have a new meaning or become
obsolete. This is one of the central issues of this thesis and is dealt with in Chapters 3

and 4.

« Constraints on the Marking Set: The constraints placed on the marking set are that
the markings are visually distinct from each other and that the marking commands do
not rely on timing or directional information. These constraints restrict which marks
are available, and how the marks are recognized. These restrictions are taken into

consideration in Chapter 4 — Implementation.

« Different Marking Sets Between Annotations and Commands: As shown in Section
2.3, marks which have traditionally been used for annotations are different than those
being used as commands to computer applications. Although some overlap exists, it
may not be enough for the integration to be useful. Due to the restricted recognition
technology available at the time of implementation, the marking set chosen is small.
This issue is examined in Chapter 5 — User Testing, but cannot be fully dealt with
until a larger marking set is implemented.

Central to our research is to determine what are the benefits of integrating annotations
and commands. From the theory developed in this chapter, we can already expect certain
benefits:

* Enhance the Annotation Reader’s Understanding: The annotation’s creator eXpects
the reader to understand the markings, but the reader could possibly misinterpret of
fail to understand the writer’s intentions. The computer’s ability to understand the
edit marks can lessen the possibility of a misunderstanding between the annotatiOf"s
writer and reader. Table 2.1 shows how this is accomplished. Also the writer of the

annotations can verify the computer’s interpretation of a mark, thereby reducing the
chance of the computer misinterpreting a mark

Enhance the Annotation Writer's Understanding: The exact results of annotations
may n ions’
y not be clear to the annotations’ creator. With a mechanism to preview the results

Chapter 2: Markings 27
|Understanding eader
omputer nderstands MisInterprets Does not Understand
Understands mutual understanding Computer understands,
may help the reader
understand the marking
MisInterprets user will ignore user and computer may User may accept the
computer’s have different computer’s
misinterpretation misinterpretations, which | misinterpretation
may cause the user to
possibly try a different
interpretation
Does not computer neither aids nor
Understand hinders user interpretation

Table 2.1: Possible Interpretations By the Reader and the System

The reader of an annotation is able to verify their interpretation by examining the
computer’s interpretation of that annotation. This can improve the reader’s
understanding in some cases, and thus helps reduce the possibility of
misinterpreting the annotation.

of these annotations, the annotator can gain a better understanding of the annotations’

consequences. This mechanism also encourages the annotator to use marks which the

computer will understand to gain its benefits.

e Reduction of Effort: With the integration, the need to convert the annotations into

editing commands is reduced, which in turn reduces the effort required in editing the

document.

o “What if?" Scenarios: Having deferred edits which can be selected and unselected

allows one to try various changes and return to the original state of the document.

This can be particularly useful when a user is incorporating annotations from several

sources and wishes to compare the results of each.

2.5 Summary

Markings have several properties which make them well suited for annotations and for

specifying commands. In particular, the fact that marks are visible provides a way to

integrate annotations and commands. An annotation can be considered as a deferred
command. Therefore MATE’s Annotation Mode can also be called Deferred Mode, and

Edit Mode can also be called Immediate Mode.

A comparison with mouse and keyboard interfaces and speech based interfaces revealed

that a hybrid marking and speech based interface would be the best. However, we

28

Chapter 2: Mafkings

decided to concentrate our efforts on just a marking based interface first, leaving a hybrig

system for future work.

MATE’s marking set is shown in Figure 2.15. It consists of the insert caret, horizong
line for delete, and the move mark. As a character recognizer was not available at the

time of implementation, a keyboard is used to type characters into a text entry box.

There are several practical issues concerning the integration:

L]

Static vs. Dynamic Documents: As a document is edited, the annotations made on a

specific version may have new meanings or become obsolete.

Constraints on the Marking Set: The markings in MATE’s marking set must be
visually distinct from each other and the recognition techniques cannot rely on timing

or directional information.

Different Marking Sets Between Annotations and Commands: Integrating the two
uses may not be practical if there is not enough similarity or if a common marking set
cannot be developed between those used for annotations and those for specifying

commands.

Several benefits can be expected according to the theory developed in this chapter:

Enhance the Annotation Reader’s Understanding: As shown in Table 2.1, the
computer’s ability to understand the edit marks can lessen the possibility of a
misunderstanding between the annotation’s writer and reader.

Enhance the Annotation Writer's Understanding: With a mechanism to preview the

results of one’s annotations, the annotator can gain a better understanding of the
annotations’ consequences.

Reduction of Effort: With the integration, the need to convert the annotations into

editing commands is reduced, which in turn reduces the effort required in editing the
document.

“What if?" Scenarios: Having deferred edits which can be selected and unselected
allows one to try various changes and return to the original state of the document.

Chapter 3
Design’

The general design of MATE was described in the preceding chapters. To summarize:

* MATE is intended to support the collaborative writing scenario in which one person
is in control of the document.

* By designing and implementing MATE, we intend to determine how annotations and
commands can be integrated, and to identify the benefits and constraints of such a
system.

« MATE supports the collaborative writing scenario through three different modes of
operation:

» Edit Mode (Immediate Mode) supports the editing of text documents
* Annotation Mode (Deferred Mode) supports the annotating of text document

« Incorporation Mode supports the incorporation of annotations into a text

document

In this chapter the reasons for these design decisions and a more detailed description of
the design are given. First an informal case study of the collaborative writing scenario is
described and studied. Next, the requirements that MATE should satisfy are explained.
Finally, the designs of the overall system, Annotation Mode, Edit Mode, and

Incorporation Mode are given.

3.1 Informal Case Study

In order to gain more insights on how the system should be designed and on issues that
might occur in the collaborative writing scenario, an informal case study was done. Paper
copies of a version of a conference article were given by the principal author to five

T An earlier description of the design of MATE is given in (Hardock, 1991).

30 Chapter 3: Dcsign

collaborators. Each collaborator then annotated the document by writing with a distinc ty
coloured marker on transparencies overlaid on each page of the paper copy. These
annotated versions were then given back to the principal author who incorporated the

annotations into the document to produce the final version.

There are several points to note about this study:

« Except for the use of overlaid transparencies, the study followed what is common in
everyday practice.

By using transparencies, one could place annotations from different sources on top of

each other.

+ The document was not in its final formatted state but rather in a triple-spaced draft

version.
The results of this study were:

+ The process of carrying out the study was useful in itself as it helped produce a
finished document.

+ Viewing annotations from several sources at once is very helpful. However,
overlaying annotations from several sources, as opposed to placing them side by side
made the annotations difficult to read in some cases as shown in figure 3.1(c).

* Those markings which could be directly translated into editing commands were
similar to those found in previous studies, such as Wolf and Morrel-Samuels (1987).

One noteworthy observation is that four of the collaborators knew the technical aspects of
the document, whereas the fifth was a professional proofreader not familiar with the
content of the document. The technical collaborators gave more general comments about

the structure and wording of the document. In contrast, the professional proofreader gave
more detailed corrections concerning punctuation and grammar

The general comments did not translate directly into any specific editing action, rather
they required the principal author to rethink what was written and possibly rewrite, delete
or add entire sections. The more detailed corrections often translated directly into editing
actions by the principal author. It is these types of annotations which are well suited ©
Pcing interpreted by the system into editing commands. Therefore the usefulness of
interpreting mark annotations into editing commands increases as the annotations beco™
more detailed, which tends to occur closer to the end of the writing process.

Chapter 3: Design 31

It takes about 10 seconds to write them down, but over a minute to enter these using
MathType and Microsoft Word on an Apple Macintosh. Much of this time is spent

selecting menu items, selecting various cursor positions and sections of textAtyping on the

fve ’I'ﬂ*ﬂ‘% w8lesbs o vogtived and o 0:50/Coqot GNJ
kcybom%mw (sec Buxton, 199
Oé m i

13.5 for a detailed analysis). L&Wlso the i \ ¢ .

WS S f 04wy
‘vﬂvaoq
s esninet, e ”ob‘t, nethed s¢ veoy ofsvagh, T Taf . ks,

(a)

"\!gakes about 10 seconds to write eivermmdessm, but over a minute (0 enter=vowe using

and Mlcrosggt ;’ord on pale }‘lacmtosh,ama this time is spent
s ting menuy ite andscctions of xt, typing on the
keyboard and grnchmg between the subiaﬁs (see Buxton, 1990 pg.
13.5 for a detailed analysis). mc time difference WP s importa)m
Tm:linc-marking method doesn’t present the load of a dozen or so subtasksywe=e

COMPEETTIR more common point-and-select method.
(b)

*n.kes about 10 seconds to write thema down, but over a minute to entemsthase using

MathType and Microsoft Word on an Apple Macintosh xﬂ of this time is spent
G

secuons of fext,&yping on the

sired ond a ooo.QJc-.J

M

keyboard (see Buxton, 199 &
13.5 for a detailed analysis). s ""'* ' ¢
MM P f.g.a
o aq,,
3a ssnimrt, e ""*"‘Q noMllnsvery oivoat T Var %ot

(c)

Figure 3.1: Combining Multiple Sources of Annotations (Informal Case Study)

(a) and (b) show annotations from two collaborators. The issue of markability
(Section 2.2.1) is apparent by the small hand printing and notes in the margins.
ed markers were used in the study, the situation of

Although different colour
overla)%ng {Ze two sets of annotations is not much better than that shown in (c).

. Chapter 3: Design

3.2 Requirements

There are four main requirements that MATE should satisfy. These are:

1. To allow users to annotate text with markings.

2. To accept text-editing commands in the form of markings which are visually distinct

and consistent with the markings used for a corresponding annotation.

This requirement implies that the type of markings allowed is restricted. No temporal
information is available to the user to distinguish various markings; all the
information of the marking must be conveyed visually. This means that information
such as tapping of the stylus, and other time dependent input cannot be used as part of
an editing command. However, this does not mean that temporal information cannot
be used in MATE for other purposes such as navigation and file handling.

3. To achieve a smooth transition from using marks as annotations and as editing

commands.

One of the central ideas of this thesis is that by combining the two uses of markings
some effort will be saved. It is not enough to simply have a system that can be used
as both an annotation tool and a text-editor. These two uses must be integrated in a
way that reduces the effort required to incorporate annotations into a document. This
smooth transition will inevitably depend upon the cooperation of the users, as it is up

to them to use annotations which can be interpreted as editing commands by the
system.

4. To allow users to view annotations in a legible manner from several sources.

From the informal case study and from what is commonly found in collaborative
efforts, the principal author needs to see the annotations from several collaborators
jux‘taposed with each other. As noted in the case study, legibility becomes more of a
problem when dealing with several sets of annotations at the same time. Therefore

MATE must provide a way such as selectively showing / hiding annotations to ensure
the clarity of the annotations.

3.3 Design Alternatives

The as i iti i
ynchronous collaborative writing scenario, and therefore MATE, maps into 3 maif

modes of operation: i iti i
peration: annotating, editing, and incorporating annotations. The designs g

Chapter 3: Design 33

the Edit and Annotation Modes are relatively straightforward, and are discussed in
Section 3.4. However, there are several possible ways to design Incorporation Mode, the
main design decision being the number of views or windows to use:

» Single view: A single window containing the current edited version of the document
and the annotations.

* Two views: One window for the original version of the document containing all of
the annotations, and the second window for the current edited version of the
document.

* Multiple views: Similar to the two view approach, but there is a window for each set
of annotations.

Single View

This alternative has the advantages of requiring the least screen space, and of having the
annotations shown directly on the current version of the document. But there are several
issues which arise due to the attempt to show the annotations on the current view of the
document. As the text of the document changes, so must the annotations. For example,
suppose that we have the situation shown in Figure 3.2. If the delete marking is
incorporated into the document, what should happen to the move marking? And vice
versa? And if the move is executed, what should happen to the comment “which”? If the
answer is unclear to the user, we cannot expect the computer to know what to do either.

which?
A
Given{the-ma+ked-up ddffuminbshewa in this figure . . .

Figure 3.2: The Difficulty in Updating Annotations

If the delete marking is incorporated, the move marking will need to be changed,
and vice versa. Also the comment “which *“ should be moved by the move

command. There are many more problems, such as what happens to “which” if
“document’ is deleted, and conflicts among commands such as what happens to

the move command if “Given the” is deleted?

This is a very difficult problem as almost all of the marks may need to be changed or
moved. It assumes that enough information can be gathered from the marks to make the
correct adjustments, which is usually not the case for marks not intended as editing
commands. One way to think of this problem is that annotations are associated with

pieces of text. If this text is modified, segmented or removed, the original meaning of the

34 Chapter 3; Design
annotation is lost.

Two Views

This alternative does not have many of the problems that the single view alternative has,
as the annotations remain on a static view of the document. Whereas the single view
alternative must interpret every annotation in order to modify it, the two view alternative
only needs to interpret those annotations intended as editing commands when they are

selected for incorporation.

One observation is that the two view alternative can be considered as a combination of
the Annotation and Edit Modes, the main difference being that editing commands can be
specified by selecting annotations in the Annotation View. This allows Incorporation
Mode to be used for all three functions, annotating, editing, and incorporating.

Although the annotations are not visually modified, their interpretation needs to be
converted from the original version of the document to the current version. In some
cases, this conversion may not be possible. Such cases are a result of conflicts among the
annotations and commands and may cause user confusion and system confusion.
Problems with navigating through and relating the two versions will also occur as they
become more and more different.

Multiple Views

This alternative has similar problems and benefits to the two view alternative. Its two
main problems are that it requires more screen space and that the difficulty in finding
mappings between the views increases as the number of views increases.

Discussion

The three alternatives are not mutually exclusive, in fact the best solution might be to use
the single view approach as much as possible, but allow the user to switch to a two vieW
or multiple view approach when needed. But the first step in building such a system is to

develop the two view approach first as some of the issues concerning the single Vi
alternative may not have solutions,

The. twcl) view alternative’s issue of conflicting annotations is handled in Section 3.45 and
navigation is discussed in Section 4.5, The sin

. 5 ft
le vi its issues are I¢
for future work. gle view approach and 1

Chapter 3: Design 35

3.4 Design of MATE (Markup Annotator / Text Editor)

Of the three modes in MATE, Incorporation Mode is the only one which has never been
designed before and therefore required the generation of design alternatives, discussed in
the preceding section. From this design generation, we decided upon the two view
alternative for Incorporation Mode.

Annotation Mode and the constraints placed upon it are discussed in Section 3.4.1. Edit
Mode is similar to previous marking based text editors, except for the special constraints
on its marking set, which is covered in Section 3.4.2. An object oriented approach,
discussed in Section 3.4.3, provides the framework for designing MATE as an integrated
system. The selection mechanism for incorporation leads to a method for Do / Undo /
Redo by selection (Section 3.4.4). Finally the issue of conflicts among commands and

annotations is examined in Section 3.4.5.

3.4.1 Annotation Mode

In addition to the requirements of most of the previously built annotation tools,
Annotation Mode must also support multiple sets of annotations, and store the
annotations and text in a form which can later be interpreted as editing commands.

Multiple sets of annotations can be supported by storing each set of annotations separate
from the other sets of annotations and from the text. This allows each set of annotations
to be retrieved independently of the text and other sets of annotations. Also, by colour-
coding each set, the user is able to visually distinguish among the sets of annotations.

To enable an annotation to be interpreted as an editing command, it is stored as the
sequence of events which created it. This allows the annotation to be analyzed and

interpreted as an editing command at any time.

3.4.2 Editing Commands

As MATE is intended to be a prototype system, only the three most common annotations
were chosen as MATE’s set of commands, delete, move, and insert. The marks used for
these commands are shown in Figure 3.3. These marks were chosen based upon what is

found in common usage, and the following three constraints:
+ All editing marks must be visually distinct from each other.

o The marks used for editing commands should be the same as those used for

36 Chapter 3; Design

annotations.

« In Incorporation Mode, the Edit View must be able to interpret markings sent to it by

the Annotation View.

The marking set chosen for MATE consists of

thekn ommand” a-rerizomtattime-for the

insert
delete command, and the ,caret for the insert

A,

command.

Figure 3.3: MATE’s Marking Set

MATE' s marking set consists of the move mark, a horizontal line for delete, and
the insert caret. Characters are typed into a text entry box once the insert caret is
recognized (From Figure 2.15).

Broken Move and Placeholders

In some cases the source and destination of a move are on different pagesf. There are
several ways of dealing with this in a text editor, such as cutting and pasting, or dragging
the source text through several pages to the destination. In an annotated document, the
common method is to specify a move from the source to a placeholder symbol such as a

star, as shown in figure 3.4(a), and then a move from this symbol to the destination as
shown in figure 3.4(b).

This is This is the destinatiom

moved to "star".

which "star" is moved to..

(a) (b)

Figure 3.4: Moving text across pages using Move to Star and Move from star

When annotating a document, the move annotation is sometimes broken into two

parts. In (a), the source text is “moved” t / et
parts. In ; . 0 a placeholder symbol such as a star-
the(d)e 1 :a’tnigr‘f command is continued by specifying the placeholder symbol and

For the purposes of this thesi . ; i f2
text window. €815, a page means either a page on a piece of paper, or the viewing a4 g

Chapter 3: Design o7

There are several ways to specify the placeholder symbol:

Specify placeholder symbol for both source and destination: The user draws the

symbol for both halves of the command — move o star and move from star, similar to
the way the annotation is usually made.

Specify placeholder symbol for the source only: After the user draws the placeholder
symbol for the first part of the move command, the symbol remains visible in the
margin. To specify the destination, the user draws a line from the visible symbol to
the destination. Note that the symbol remains visible until the command is
completed, even if the user navigates over several pages.

* Use a standard set of symbols: Instead of drawing a symbol, the user chooses one
from a list of available symbols. The user makes the selection for both the first and
second parts of the broken move command.

There are advantages and disadvantages to each of the above. Specifying the symbol for
both source and destination requires mark recognition, but is the most similar to what is
done in annotating documents. Specifying the symbol once does not require mark
recognition, and allows user defined symbols, but keeping it visible clutters up the margin
and is likely to cause problems. Using a standard set of symbols from a menu or list also
does not require mark recognition, but it does not allow user defined symbols. We chose
the last method — using a standard set of symbols, because we were able to design and
implement a simple interaction technique for it. The other two methods are left for future

work.

In contrast to the other editing commands, the broken move command consists of two
separate marks. Therefore, it requires some type of dialogue management. We have
designed three possible dialogues that could be implemented:

o Two distinct move commands: The first and second halves of the broken move could
be treated as “move to placeholder” and “move from placeholder” respectively. In
this case the two halves are simple move commands with a special destination or

source.

« Pending broken move — Unforced: The first half of the broken move remains
unprocessed until the user specifies the second half, at which time the entire move
command is processed.

« Pending broken move — Forced: Similar to the unforced pending move, however, the

user cannot specify any intermediate commands except navigation actions.

38 Chapter 3; Design

The two distinct move commands dialogue 18 similar to cut and paste commands, with the
exception that the user can use multiple clipboards and specify the identifying symbg|
associated with each clipboard. With these multiple user-identified clipboards, the power
of the broken move command is extended. However, several issues arose in deSigning
and implementing these clipboards. In particular, the clipboards need to be editable, and
be made visible upon the user’s request. Instead, the forced pending broken move

dialogue was incorporated into MATE. Multiple user-defined clipboards appears

promising and is left as future work.

3.4.3 Object Oriented Approach

The main problem with incorporating annotations is that the annotations apply to a
specific version of a document, but incorporating applies them to the current version of
that document. Therefore, the key to incorporating annotations is in translating an editing

command from one version of the document to another version.

In order to accomplish this translation there must be enough information linking the two
versions. Most text editors base their commands on the locations of text and on strings
stored in buffers, such as “paste whatever is in the first buffer after line n”. This
approach will not work for MATE as the locations of text in the current version are
constantly changing with respect to the text in the original annotated version. Figure 3.5
shows an example of why using the location of the text will not work.

Our solution is to treat each character as a text object. By assigning the following
attributes to each text object, a translation between the two versions of a document can be
made:

+ the letter or symbol of the character,

+ the character’s location in the original, annotated version of the document,

« the character’s location in the current, edited version of the document.

Other attributes are needed to handle the translation of specific commands. For example

Ob_].CCtS are never deleted, they are only marked for deletion by setting the deleted
attribute. These additional attributes are identified and described in Chapter 4.

Usi e

T;;ng the object-oriented approach, MATE can handle the above example in FIgu® >
m :

o b?ve command in (a) changes the current character position attribute of the mey
objects and any text objects that follow it. The delete command in (b) finds the 1

Chapter 3: Design 39

objects associated with current. These objects are then marked as deleted and will not be
displayed in the current version.

As will be shown in the next sections, our object-oriented approach enables powerful Do

/ Undo / Redo mechanisms — Section 3.4.4, and provides straightforward tests for
conflicts among commands — Section 3.4.5.

Annotate View Edit View

Please note thatjn the Edit Window Please note that in the Edit Window
¢

ithe.cum.view:g is different than the

the current view is different than the

Annotate View

Edit View

Please note that)n the Edit Window
I

{the-cusrent.view: is different than the

Please note that the current view in

the Edit Window is different than the

(b)
Annotate View Edit View
Please note that}jn the Edit Window Please note that the view in the Edit
thecumview}; is different than the Window is different than the original
(c)

Figure 3.5: The changing relationship between the Annotation and Edit Views

The two views start out the same in (a), but as commands are executed, move in
(b), delete in (c), the Edit View changes. Note that the deletion of current must be
independent of current’s location in the Edit View.

3.44 Do/Undo/Redo

To select an annotation for incorporation, the user simply taps on the annotation with the
stylus or pointer. A logical extension is to use this same tapping interaction for Undoing
annotations which have already been incorporated. To make the interaction work, the
underlying text editing mechanisms must be properly designed. This design must satisfy

40 Chapter 3: Design

the following requirements:

« Order Independence: The effects of a set of commands should be independent of the
order in which they are incorporated. For example, in Figure 3.6, the result (c) shoulq
occur irregardless of the order of incorporating the move and delete commands.

e Undo equals the Inverse of Do: All commands must have an inverse, and this inverse
command can be applied at any timef. The results of the inverse command should be
the same as if the command was never incorporated at all. For example, in Figure
3.6, the result (d) should occur irrespective of whether the delete command was Done

and Undone, or never Done at all.

Please note thatfin the Edit Windo is different than the

(@)

Please note that in the Edit Window the view is different than the

(b)

Please note that the view in the Edit Window is different than the

(c)

Please note that the current view in the Edit Window is different than the

(d)

Figure 3.6: Doing and Undoing annotations independent of order

The initial text is shown in (a). (b) is the result after the deletion is performed.

() is the result after the move is performed. After undoing the delete command,
the desired result is (d).

These requirements can be satisfied by following two rules:

+ the text is treated as set of objects
¢ commands only modify the attributes of these text objects
For example, the delete command marks the selected text objects as deleted by setting

their deleted attribute. The inverse of delete simply resets the deleted attribute back to t°
initial state. The specific implementation of each command is described in Chapter 4

T This is not enti i i
irely true as intermediate comm i i i g
Conflicts are covered in Section 345, Frds Taay causs confict wilh the M

Chapter 3: Design 41

Comparison with Undo - Skip — Redo

Our Do and Undo mechanisms are functionally equivalent to Undo, Skip and Redo

(Vitter, 1984), but the interactions needed to achieve the same result are very different.
This can be demonstrated by the following example:

Say the user has already done the following:

* delete the word “current” in Figure 3.6(a), resultihg in Figure 3.6(b)
* move the text “the view” resulting in Figure 3.6(c)

and wants to undo the delete command resulting in Figure 3.6(d).

With the Undo, Skip, and Redo method, the user would go through the following process:
* Undo the move,

* Undo the delete,

» Skip the delete,

* Redo the move.

In contrast, with our Do / Undo mechanism, the user would simply select the delete
annotation to Undo it.

Unlimited Undo | Redo Last

An additional benefit of the Do / Undo by selection mechanism, is the capability for an
unlimited Undo / Redo last command mechanism. With the requirement that all
commands must have an inverse, and by keeping a history of the commands performed,
MATE has sufficient information to undo all of the commands back to the beginning of
the editing session. Very little information is required to store each command in the

history list, allowing the list to be virtually unlimited in length.

There are two important differences between the Do / Undo mechanism and the Undo /

Redo Last mechanism:

« Undo / Redo Last can work both in Incorporation Mode and in Edit Mode, whereas
Do / Undo can only work in Incorporation Mode.

« Do/ Undo has the equivalent functionality to Undo, Skip, and Redo. Undo / Redo

Last would require the Skip capability to match this functionality. This capability has
not been designed nor implemented into the current version of MATE.

42

3.4.5 Conflicting Commands |
As the document, changes from its original version there may be situations in which g
annotation is ambiguous or is no longer applicable to the current version of the docume t

These situations are termed conflicts and may be any of the folloH

« the annotation is ambiguous or meaningless to the user

« the annotation is ambiguous or meaningless to MATE

« MATE’s interpretation is different than the user’s

The ideal situation is that MATE and the user are in agreement with the meaning of an
annotation, and find the same situations ambiguous or no longer applicable. By treating
the text as objects, we hope to achieve this situation. To accurately determine how close
MATE is to our ideal would require large scale user testing, which is beyond the scope of

this thesis.

In terms of the design of MATE a conflict can be defined as a situation in which a
command cannot be translated from the original version of a document to the current

version. An example of such a situation is shown in Figure 3.7.

one M@ five

Figure 3.7: Conflicting commands

Once either of the move commands is incorporated, the meaning of the other
becomes ambiguous and can no longer be translated into a meaningful command.

Order Dependency and Compound Commands

Certain pairs of annotations seem to function together. For example, in Figure 3.8(a), the
move and the delete command are really meant to work as a replace command. Such

command pairs are termed compound commands, as they are formed from two Of frigE
simple commands.

If we try to execute the compound command by executing each of its constituent
commands, we notice that the order of execution is important. In our example in Figur®

3.8, the replace command works if the delete command is performed first and the pe¥e

Chapter 3: Design 43

command second (b), but it does not work if the order is reversed (c)t. However, as
commands cannot be order dependent, (b) cannot be allowed if (c) is not allowed.

The solution is to incorporate the entire compound command at once. But in order to do
so, we must solve the issues of syntactic segmentation mentioned in Section 2.2.2. In
particular, MATE must be able to identify and recognize compound commands, and also
be able to distinguish a selection of the compound command from a selection of one of its
constituent commands. In the current implementation of MATE, compound commands
are treated as conflicts; the design and implementation issues concerning them are left as
future work.

one ﬁ one three two
(a)

j one ﬁ one three two
(b)

j one three<eur—two—five- i one three
j one three<eus two =five- i one three two

(c)

onefiwo e fouHive-

(d)

Figure 3.8: Order dependency and compound commands

The result of the delete and move commands depends upon the order in which
they are executed. In (a) they are treated as a compound replace by move
command. In (b), the delete is executed first, followed by the move command,
yielding the same result as the replace command. But if the move is done first as
shown in (c), the delete command becomes ambiguous. Part (d) shows why (c)
should be considered ambiguous,. If the move command is performed first in (d),
it also arrives at situation (c), but (d) is an ambiguous situation to start with and
therefore (c) must be considered ambiguous. The only solution is to treat the
delete and move commands in (a) as a compound command.

T Figure 3.8(d) illustrates why (c) should not work; (d) is clearly an ambiguous situation, but if (c) is
allowed to work as a replace command, then (d) should also be allowed.

i Chapter 3: Design

Determining Conflicts

It is sufficient to test for conflicts between two markings, because it would never be the
case that there is a conflict between three or more markings without there being a conflict
between at least one pair out of the these markings. The following rules are used in
determining whether an annotation conflicts with previously incorporated annotations:

« Delete: A delete command acts on a connected sequence of text objects. A conflict
arises if this sequence is broken, or if any part of this sequence has already been
deleted.

« Move: The source of a move command is specified by its starting and ending text
objects; any action can be applied to the text objects between these two text objects.
The destination is specified by a single text object. A conflict occurs under any of the

following conditions:

« Either of the two source boundary objects is moved independent of the other;
+ A delete command crosses over either or both of the source boundaries;

« The destination is within the source;

o The destination has been deleted;

+ Text objects have already been placed in the destination, either by another move
command, or by an insert.

» Insert: An insert command is similar to the destination of a move command. A

conflict occurs if the insert location has been deleted, or if text objects have already
been placed in the insert location.

* Undo Delete: The undoing of a delete command is similar to the insert command,
and has the same rules for conflicts.

Undo Move: The undoing of a move command is another move command Wwith &
source and destination reversed.

Undo Insert: The undoing of an insert is similar to a delete command in that it acts
on a .conncctcd Sequence of text objects, but it has different rules for conflicts: A
conflict arises if the sequence is broken, or if a delete command crosses over €ither or

both of the boundaries of the inserted text, However, a conflict does not 0ccur Fihe
only text objects deleted are between the boundaries

Table 3.1 summarizes how these rules apply to pairs of commands

Chapter 3: Design

45
Situation Example ConﬂictiReason Conflict Rule
Delete — Delete
nooverlap | One Fwe=Three <Fewm Five Six | No
overlapPing | One Two-=wow=Four Five Six | Yes |[Nonsense [Partof the scquence has
already been deleted
embedded One “TwoSmso=Ffomr Five Six Yes |Nonsense |Part of the sequence has
already been deleted
Move - Move
nooverlap | (One) Twol Three Six | No
move into —
g Two (Threel Four) Fivel six | N
transpose (! : - . Yes |Compound [The destination of the
One_Two)Thre Six command [second move command
is within its source.
overlapping |One (Two Three] Four) Fivel Six Yes |[Nonsense [One of the boundaries is
moved independently of]
the other.
move from —— , .
within move (One(Two)Threg Fourl Fivel six | N
move within rOn _ Th F Fi] Si No
move | One reel Four] Fivel Six
move to One Two“Three Four) Five Six Yes [Ambiguous [Text objects have
same location already been placed in
the destination.
Insert — Move
move to Seven Yes |Ambiguous [Text objects have
same location 15 ; already been placed in
asitmsert One(Two Three Fouxlve Six e detinafion.
no overlap Seven No
One(Two Three) Fourl FiveaSix
insert within Seven No
Mo¥e One(Two_Three) Fourl Five Six

46

Insert - Insert ~
=t

insert at Seven Eight No

different Two,Three Foug Five Six

locations One /\ }\

insert at same Eight Yes |Ambiguous|Text objects have

location Seven i . already been placed in
One ng‘ Three Four Five Six the destination,

Delete — Insert

no overlap Seven No

One Two’\Three ~enr—ee Six

replace Seven Yes |Compound |Delete: The sequence
One M’—\'Fhfee Four Five Six command |has been broken.
Insert: The insert
location has been
deleted.
”
Delete — Move
nooverlap | One(Two Three) Four +Five Sixl | No
r,:glvfe by OneMe) Four +iwe=Sie | Yes |Compound |[Delete: The sequence
command |has been broken.
Move: The destination
has been deleted.
delet: :
o? :lgvs: e w Five' Six Yes |Ambiguous|Delete: The sequence
(move 1st) |has been broken.

Nonsense |[Move: Both boundaries|
(delete 1st) |have been deleted.

overlal
P w Four Five' Six Yes |Ambiguous |Delete: The sequence
has been broken.

Move: A boundary has
peomdced.

FEw—
elete within \(Qng “Fwe-Three) Four Five! Six | No

move

Chapter 3: Design i

3.4.6 Relating the Original and Current Views

The .precedmg sections have explained how MATE can relate the original and current
vcrm?ns of the document to incorporate annotations, but it is also important to support the
user In understanding the relationship between the two versions. In particular, the user

may require additional support after incorporating an annotation, or while navigating
through the document.

Annotate View Edit View
| wouldn't care if you delete this If you delete this phrase or sentence
phrase-er-sentense: | don't know what would happen.
But if you delete this phrase or
sentence | would be happy.
(a)
Annotate View Edit View
| wouldn't care if you delete this If you delete this | don't know what
phrase-ofr-centenee: would happen.
But if you delete this phrase or
sentence | would be happy.
(b)
Annotate View Edit View
| wouldn't care if you delete this If you delete this phrase or sentence
phrase-ofr-centenee: | don't know what would happen.
But if you delete this | would be
happy.
(c)

Figure 3.9: “Delete which phrase?” An example of possible user confusion

After many editing operations the two views appear as shown in (a). If the user
then selects the delete mark for incorporation, it Ls unclear to the user what
MATE will do. (b) & (c) show two possible results, depending upon how the

document reached its current state.

48 Chapter 3: Design
General Support for Relating the Two Views
The general relationship problem is illustrated in Figure 3.9. After many editip g
operations, the actual meaning of the delete annotation is ambiguous to the user. Some

support mechanism is necessary to provide the user with more information.

There are several solutions to this problem:

« Update the original view: One method to help relate the two views is to allow the
user to update the Annotation View to the state of the Edit View. But this has the

same problems as the single view alternative described in Section 3.3.

* Highlight the text associated with the command: Another method is to highlight the
text associated with the annotation. If, in Figures 3.9 and 3.10, the delete annotation
applied to the first phrase, the text would be highlighted as shown in Figure 3.10(a).
If, however, the delete annotation applied to the second phrase, the text would be

Annotate View Edit View
| wouldn't care if you delete this If you delete this@rase or sentena
phrase-or-sentence. I don't know what would happen.

But if you delete this phrase or

sentence | would be happy.

(a)
Annotate View Edit View
| wouldn't care if you delete this If you delete this phrase or sentence
phrase-or-sentence. I don't know what would happen.
But if you delete this
I would be happy.
(b)

the Figure 3.10: Highlighting Text
the delete annotation applied ¢ iohli
a8 Shown (n (), If b eﬁp let heo the first phrase, the text would be highlighted

delet ; :
the text would be highlighted as sho:zne ,-‘,Iln(';)(;.tano,, applied to the second phrase,

Chapter 3: Design 49

highlighted as shown in Figure 3.10(b).

°

Do / Undo the annotation: As annotations can be done and subsequently undone, the
user can simply incorporate an annotation, examine its effects, and then undo it.

.

Line-up the two views according to the text of interest: A final method is to line-up
the two views of the document along a specific piece of text. For example, in Figure
3.11, if the user selected the word phrase in the Annotation View, the Edit View
would be adjusted so that the corresponding phrase is aligned with that in the
Annotation View. An advantage of lining-up versus Highlighting or Do / Undo is

that it does not require an annotation that MATE can incorporate. Lining-up depends
only on the text.

Annotate View Edit View

| wouldn't care if you delete this
phrace-ercontense. If you delete this phrase or sentence
| don't know what would happen.

But if you delete this phrase or

(a)
Annotate View Edit View
| wouldn't care if you delete this | don't know what would happen.
phrace-or-contenee. But if you delete this phrase or
sentence | would be happy.
(b)

Figure 3.11: Aligning the two views

If the user selects the word “phrase” in the Ar;notqtion V{ew, the Edit View would
be adjusted so that the corresponding phrase is al‘t‘gned witig that in the
Annotation View. (a) shows the result if the first “phrase” in the Edit View »
corresponds with that in the Annotation View; (b) shows the result if the seco

“phrase” corresponds.

50 Chapter 3: Design

Multiple Points of Interest and Incorporation Support
At any point in the editing process, the user may be interested in several pieces of text
which have been separated from each other. In particular, this occurs when incorporating

an annotation, as shown in Figure 3.12. When the move annotation is incorporated, the

user is only able to see either the source text being inserted into the destination, or the

source text being removed from its original position, but not both.

Annotate View Edit View

| want to move after this | want to move this phrase but my

destination has moved.

particular word?

----- next page of edit view -----

new destination - This particular word’has been moved

by another move command.

Figure 3.12: Separated points of interest

The source argd destination of the move command are on the same page in the
Annotation View, but are on different pages in the Edit View. This causes
problems, because the user cannot see all of the results of the command.

Two questions arise from the above problem:
1. How should the Edit View appear after the command is incorporated?
This can be broken down into the following set of questions:

+ Should the Edit View retain its current position?
+ Should the Edit View show at least one of the points of interest?
+ Is asingle Edit View insufficient?

These questions are partly answered by the user testing in Chapter 5. More complete
answers will require a more in depth study.

2. How can the user receive the appropriate feedback for all points of interest?

Two possible solutions are Jumping to a point of interest and multiple sub-views:

Chapter 3: Design b

discussed below.

Jumping to a point of interest: This solution allows the user to quickly jump to a
point of interest in one window by specifying the corresponding point of interest in
the other window. This is exactly the same mechanism as lining-up the two views
mentioned above. Figure 3.13 illustrates how jumping can provide feedback to the
user.

Multiple Sub-views: In this solution to the multiple points of view problem,
additional edit and annotation windows, displaying the document at various positions,
are shown. After the move annotation, from the example in Figure 3.12, is
incorporated, two edit windows would be displayed, as shown in Figure 3.14. The
upper window shows the initial position of the source text, and the lower window
shows the destination.

This solution of having multiple sub-views is an extension to having one window for
the Annotation View and one for the Edit View. One problem with this solution is

that the screen may become very cluttered. Also several of the other problems in

Annotate View Edit View
| want to move after this | want to move but my destination has
particular word? moved.
(a)
Annotate View Edit View
| want to move after this
particular word? This particular word this phrase has
(b)

Figure 3.13: Jumping to points of interest

In Figure 3.12 the source and destination of the move command are on the same
page in the Annotation View, but are on different pages in the Edit View. By
selecting “I want to move” in the Annotation View, the Edit view jumps to the
position shown in (a), which can show the removal of “this phrase” . By pointing
to “particular word” in the annotate view, the Edit view jumps to the position
shown in (b), which can show the insertion of “this phrase” into the destination.

52 Chapter 3: Desigy

relating two views become magnified with additional windows. In this thesis, one
Annotation View and one Edit View are used. The extension to multiple sub-views is

left for future work.

Annotate View Edit Views

| want to move after this | want to move but my destination has

particular word?

moved.

This particular word this phrase has

Figure 3.14: Multiple Edit Views

By showing multiple sub-views of the document, the user can see all of the effects
of a command at once.

Navigation Support

Navigation has similar problems to those of incorporating annotations; it may be unclear
what to show in the Edit View while the user navigates in the Annotate View and vice
versa. This is illustrated by the example in Figure 3.15.

The first issue is whether each view is dependent or independent of the navigation in the
other view. We can assume that the user will want both situations at different times. 1°

allow for this both independent and dependent navigation mechanisms are implememed
in MATE.

The second issue is how should the dependent navigation work. There are e
alternatives:

* Content dependent: The dependent view aligns itself so that a portion of the tex! -is
the same in both views. An example is to align the dependent view so that the texf n
th.e top line of both views is the same, In Figure 3.15, a page down in the Am’otanon
V.ICW would cause the Edit View to adjust so that paragraph 3 is at the top of p?
views.

*

_ e
Relative movement dependent: The dependent view moves the same distance &5 &

Chapter 3: Design 33

view being navigated in. In Figure 3.15, a page down in the Annotation View would
cause a page down in the Edit View, so that paragraph 1 is at the top of the Edit View.

The best method of determining what text the user is interested in is by allowing the user
to select it. Therefore, the jumping to a point of interest and aligning the views
mechanism is the only content dependent navigation command in MATE. All other
dependent navigation commands are relative movement dependent.

Annotate View Edit View
Originally Paragraph 1. Originally Paragraph 4.
Originally Paragraph 2. Originally Paragraph 3.

----- next page of views ----

Originally Paragraph 3. Originally Paragraph 1.

Originally Paragraph 4. Originally Paragraph 2.

Figure 3.15: Navigation problems between Annotation and Edit Views

If the user pages down in the Annotation View, what should happen in the Edit
View? There are several possibilities, including: remain the same, page down,
and align the top line of the Edit window with the top line of the Annotation
window. But the answer is unclear.

3.5 Summary
MATE is designed to satisfy the following four requirements:
« To allow users to annotate text with markings.

« To accept text-editing commands in the form of markings which are visually distinct
and consistent with the markings used for a corresponding annotation.

« To achieve a smooth transition from using marks as annotations and as editing

commands.

o To allow users to view annotations in a legible manner from several sources.

54 Chapter 3: Desigy

These requirements map into three main operations: Annotating, Editing, apq
Incorporating. Therefore MATE is designed to have three modes, one for each
operation. The designs of the Annotation and Edit Modes are relatively Straightforwﬁd,
but several design alternatives for Incorporation Mode were examined. From these, a
view design, which integrates the Annotation and Edit Modes, was chosen. Frop
observations in Chapter 2, we can also term Annotation Mode as Deferred Mode, ang
Edit Mode as Immediate Mode. Incorporation Mode, with the two view design, can be
thought of as a Combined Mode.

To support multiple sets of annotations, each set of annotations is colour-coded and
stored separately from the other sets of annotations and the text. To allow annotations to

be incorporated as editing commands, annotations are stored as sequences of events.

MATE has three editing commands: delete, move, and insert, shown in Figure 3.3. In
addition a special case of the move command, broken move with placeholder symbols,
was examined, Figure 3.4. Depending upon the manner in which they are implemented,
placeholders can be used as multiple user-defined clipboards. However, we chose a
simpler design for this thesis.

The main problem of incorporating annotations is in translating editing commands from
one version of the document to another. This problem is solved by using an object-
oriented approach. In this solution, each character is a text object with attributes., and
commands only modify the attributes of these text objects.

This object-oriented approach allows commands to be undone by selection in addition to
being done by selection. The Do / Undo mechanism is just as powerful and easier to use
than an Undo, Skip, Redo mechanism. An additional benefit from our Do / Undo
mechanism, and our object-oriented approach is the capability of having an Undo / Redo
last mechanism which needs to store only a minimal amount of information.

Conflicts may arise as there may not always be a valid translation of a command from

one version of the document to another. To determine when these conflicting situations
occur, a set of rules was developed.

In addition to providing a solution for the translation problem, support for the uset f

understanding the relationship between the two versions is also important. Several
solutions were examined:

Chapter 3: Design 55

» Updating the original view
+ Highlighting the text associated with a command
+ Doing / Undoing annotations

+ Aligning the two views according to a section of text, which can also be thought of as
jumping to a point of interest

e Multiple sub views

+ Dependent and independent navigation

All of these have been implemented into MATE, except for updating the original view
and multiple sub-views.

Several of the benefits mentioned in this chapter were not originally intended in the
design of MATE, but resulted from searching for robust solutions which met the design
requirements. Many of these benefits and solutions are new and unique. They are not
necessarily better than existing solutions, but give rise to new possibilities and different
ways of thinking about editing and annotating documents and the use of markings.

Chapter 4

Implementation

In the previous chapter we developed the general design of MATE. Some aspects of
MATE, such as the interface and navigation mechanisms, require an iterative approach to
their design, and are covered in this chapter, along with a description of the actual

implementation.

In this chapter we describe the following:

» the general layout, design, and implementation of MATEs interface,

+ the functions and the interface to support the handling of annotations,

» the implementation of the editing commands,

» the functions and the interface to support the incorporation of annotations, and

» the design and implementation of the navigation commands.

Several implementation issues, not directly related to our research, needed to be
addressed in order to build a functional system. These include recognition techniques

and utility functions such as file handling, and are discussed only when they affect our
central research questions.

4.1 General Interface Design and Implementation

MATE was developed on a SUN SPARCstation, with a 16 inch colour monitor, in the C
programming language, and the X windowing system. The primary input device is a
Pencept graphics tablet and stylus. The Pencept pen is a ball-point pen which leaves ink
on paper. It also has a button near the tip as shown in Figure 4.1. The graphics tablet is
approximately one and a half feet square with paper overlaid on top of it.

5 Chapter 4: Irnplementmi(,n

Figure 4.1: The Pencept Stylus (Pencept, 1986)

The MATE Window

MATE has a slightly different interface for each of its three modes. Annotation Mode is
shown in Figure 4.2, Edit Mode in Figure 4.3, and Incorporation Mode in Figure 4.4. In
all three modes, the document is shown at the top; below the document is an area for
utility buttons, file handling, and a message line. Our primary focus is on the interactions
within the document area; the remainder of the graphical user interface received less
attention in its design.

The layout of text in the document area is constrained by several factors. The screen size
places a maximum restriction on the size of the document area. Markability — Section
2.2.1, places minimum restrictions on the line spacing and font size used. But the user
needs to see a minimum number of characters and lines in order to work effectively:
Between 18 and 25 lines of text can be displayed with 30 to 60 characters per line. For

the user testing an 18 point font was used with double spacing; this allowed 18 lines at
text with 30 characters per line to be displayed.

Marking Menus

To specify actions on the annotations, and for navigation, marking menus are used-
Marking menus are an interface mechanism developed by G. Kurtenbach (1991b) wiich

combines popup pie menus with a marking-based approach to specifying commands
They can be used in one of the following ways:

Chapter 4: Implementation 59

* The user holds the pen down and waits for the pie menu to appear. A selection can be
made by moving the pen to the appropriate menu item and lifting the pen.

 The user does not wait for the menu to be displayed. Instead, the user can simply
draw a line in the same direction as the menu item and then lift the pen to make the

HOLIDAYS FROM HELL

Everything went wrong on Isherwood’s trip to
Califormia, and it wasn’t at all awusing at
the time, he can laugh about the experience
now. On the other hand, Harry Hovle’s first
vacation turmed inte a real-life tragedy.
Fortunately, the nightmare permanently
dampen his enthusiasm for travelling.

Do vou Remewber the Murphy Awards?

DOCUHENT HARKINGS Quit
IEaSkdﬂcA I . Load
Load Save Savs
Hide
Showu
UnHideI

Document "taskdoc!" loaded

Figure 4.2: The Interface for Annotation Mode

The document is displayed in the top portion of the window. Markings made in
this portion remain visible and can be stored and retrieved. Below the document
portion is the file handling portion of the interface. The left side of this portion
deals with the text document file, and the right side handles the files for each set
of markings. Up to three markings files can be used at once, each with its own
colour. Each set of markings can be hidden or shown to allow the markings to be
more legible when several sets of markings are in use.

Chapter 4: P
” p Implememmmn
selection.

Novice users learn the marks by waiting for the menu, while expert users can USe the

faster method of marking without waiting for a menu.

MATE has three different marking menus, one each for navigation (Section 45)
annotation handling (Section 4.2), and for specifying placeholder symbols (Section 43),
Each of these menus is invoked within a specific context and is described in its respective

section.

HOLIDAYS FROM HELL

Everything went wrong on Isherwood’s trip to
Califormia, and it wasn’t at all avusing at
the tiwme, he can laugh about the experience
now. On the other hand, Harry Hoyle’s first
vacation turned into a real-life tragedy.
Fortunately, the nightmware permanently
dampen his enthusiasm for travelling.

Do you Remember the Murphy Awards?

DOCUHENT Quit
taskdoc, Undo

Load || Save Redo

Document "taskdoc” loaded

Figure 4.3: The Interface for Edit Mode

The document is displayed in the top 1]] J
' . .) _ portion of the window. Markings made in
Zns portion are immediately interpreted into editing commands. Belﬁw the
bocument portion is the file handling portion of the interface. There are also
uttons for Undo and Redo last command, mentioned in Section 3.4 4.

61

Chapter 4: Implementation

PopEOT ,POP3SEZ, Ju=UINDOd

noys]
SPTH a_
opay aaeg aaeg peo]
opu) (|| peo 4- _ “oopyses)|
TNy SONIHUH 1N3HNJ00
*Apafea) IJIT-Teax UTUN *Apabexy} IJIT-Teal
® OJUT PIUIN)} UOT}PIRA AT ® OJUT pPIUIN)} UOTI}PRIRA
ISITF s,9TLog A1xey ‘puey }SIT¥ s,9a1&oyg Ai1xey ‘puey
IIYJ0 AYJ YUY “AOU IIUITIIAXD JI3YR0 Y} UQ "MouU IduITIadxa
3y} jInoqe ybmer ued 3y} jnoqe ybmer ued
Yy ‘aur) Iy} je bursnue e Y ‘aur) 9y} e Sursnue e
3})}, uUseAs }T pue ‘eTwrojrIe) 3® J,.uUSeA T pue ‘eruwrojI[e)
0} dra} s,pooAIaysy 0} drI)} S,pPOOAIIYST
wo Huoxs JuaA BuryiLraag uo buoxa juds Suryiiraag
TTIIH HO4I SAVUITOH (s sl TIIH WOHI SAYUITOH

Figure 4.4: The Interface for Incorporation Mode
The interface for Incorporation Mode can be thought of as placing the Edit Mode

such as tapping on a mark to do it, do

for incorporating annotations) _
not affect the graphical layout of the interface and are discussed in Section 4.2.

rface to the right of the Annotation Mode interface. The additional interface

mechanisms

inte

62 Chapter 4: ImPICmentaﬁOn

4.2 Annotation Support

Annotations are made by marking in the document area of the Annotation View, either iy
Annotation Mode or Incorporation Mode. In addition to incorporating an annotation by
selecting it with a tap and unincorporating it with a second tap, other actions cap be
applied to an annotation via the marking menu shown in Figure 4.5. The Erase function
permanently removes a mark, whereas the Hide function temporarily hides the mark, All
hidden marks can made visible again with the UnHide button. The Goto and Goback
functions are part of the navigation system, and are discussed in Section 4.5.

| Hide |

Figure 4.5: Annotation Marking Menu

The annotation marking menu consists of the Erase, Hide, Goto, and Goback
functions. Erase permanently removes a mark, whereas Hide makes the mark

invisible until it is reset back to a visible mark. Goto and Goback are special
navigation actions and are covered in Section 4.5.

The selection and marking menu mechanisms are integrated as a modified version of the
marking menu interaction. This interaction is illustrated in Figure 4.6. Note that marking

menus normally treat a tap as no selection; our modification distinguishes between a tap ~
no menu appears, and a non-selection — menu appears.

Handling Annotations from Several Sources

MATE supports up to three sets of annotations. This achieved in the markings area of th;
MATE window, by providing a colour selection box and a filename for each set ©

. . g P i
markings. To set the active marking set the user clicks on that marking set's colour bo
There are five support functions for the active marking set:

* Load: Loads the active marking set from filename.

* Save: Saves the active marking set to filename.

Chapter 4: Implementation 63

Hide: Hides all of the marks in a marking set. As was noted in Chapter 3, the
annotations can become very cluttered. The problems of clutter are magnified when
there are several sets of annotations from different sources. The Hide function allows

the user to temporarily remove some of the marks from view in order to reduce
clutter.

* Show: Undoes the effects of Hide.

* UnHide: Undoes the effects of all of the individual Hides from the annotation
marking menu.

Pen down on
annotation

. movement
lift pen timeout

movement
timeout

lift pen

marking menu marking menu
selection selection

Figure 4.6: State diagram for the annotation interaction

The interaction begins when the user points to an annotation. If the user lifts the
pen before the menu time-out period (~ 0.3 seconds), and without drawing a
mark, the result is a tap. Otherwise, the regular marking menu interaction
occurs.

4.3 The Editing Commands

The marking set for the editing commands that was actually implemented was
constrained by the recognition technology available, in addition to being constrained by

64

Chapter 4: Implementaﬁ(,n

our design decisions. The marking recognizer can only interpret single strokes; therefoe
all marks in the marking set are a single line. No character recognizer was availahje o ug
at the time of implementation, instead the keyboard is used to enter any text,

The implementation of the editing commands is based upon the design decisiong that
incorporated annotations are order independent, all commands have an inverse, the text is
treated as a set of objects, and commands only modify the attributes of these text objects,
The following are the basic attributes of a text object:

L]

An ASCII character value, depicting the letter or symbol of the character object.

The original position in the document, stored as paragraph number and character
position within the paragraph.

The original position in the Annotation View, stored as the line number and character
position within the line. This is different than the position in the document as a single
paragraph may be several display lines long. This distinction is made because
identifying a text object is sometimes easier using the position in the document, and
sometimes easier with the position in the viewing window.

The current position in the document, stored as paragraph number and character
position within the paragraph.

The current position in the Edit View, stored as the line number and character position
within the line.

Other attributes will be added as each command is discussed in detail.

4.3.1 Delete

Interface

The delete mark is a horizontal line through the text to be deleted. Figure 4.7 shows an
example.

Iheee-are-e*&mmog-of delete
"maike-rseeg-niggd.by MATE.

Figure 4.7: Delete marks recognized by MATE

A delete mark is a s ingle horizontal line through the text to be deleted.

Chapter 4: Implementation 65

Representation

The delete command can be represented as:

delete {list of contiguous text objects}

Implementation

To accommodate the delete command, all text objects are given a deleted attribute. This
is a flag which is initially unset. Applying a delete command to a text object, sets its
deleted flag. When displaying the document in the Edit View, only those text objects, not
marked as deleted, are displayed.

Inverse

The inverse of the delete command, unsets the deleted attribute of the text objects that

were marked as deleted.

Conflicts

A conflict occurs under the following circumstances:

For delete,
« The list of text objects is not a continuous sequence of characters in the current

version of the document.

« Any of the text objects in the list have already been marked for deletion.

For inverse delete,

In the current version of the document, the text objects surrounding the deleted text

have been marked for deletion, caused by another delete command.

The list of text objects is not a continuous sequence in the Edit View. This is to

detect if other text has been inserted where the inverse delete would reinsert the

deleted text. In order to make this test work properly, the insert and move commands
actually insert text within the deleted text, thereby separating the deleted text. This

special case is explained in more detail in the implementation sections of the Move

and Insert commands.

- Chapter 4: Implementation

4.3.2 Move
Interface

i ified i ingle mark. The source is ¢j
The regular move command is specified in a sning,le ar e is circled ang i
a line is drawn to the destination as shown in Figure 4.8.

The broken move command is specified in two parts, move to placeholder and moy, from
placeholder, Figure 4.9. Due to the limitations of the marking recognizer, both halves o

These arefexamples of several

move marks, each specifying a

move command from thig.ource)to

the destination.r

Figure 4.8: Move marks recognized by MATE

A move mark is a single continuous line which first circles around the source text
and then ends at the destination.

Mov 'star” is A

implemented using marking menus.
The "star" or symbol is termed a
placeholder.

It is called this because it keeps

: A
ones place in the move command

while navigating through the
document.™-

Figure 4.9: Broken move with move to placeholder and move from placeholder marks

The broken move command is specified in two parts, each consisting of a single
stroke. The first part, move to placeholder, is similar to a regular move comma
except that it ends in the margin an

d a selection from the placeholder marking
menu. The second part, move from placeholder, is simply a line drawn from
anywhere to the destination.

Chapter 4: Implementation 67

the broken move command are specified by a single stroke. Also, only navigation actions
are allowed between the two halves of the broken move command.

Move to placeholder starts exactly like a normal move command; the source text is
circled and then a line is drawn. But instead of drawing the line to the destination, it is
drawn to the margin. At this point, MATE recognizes the mark as a move to placeholder
mark, and enters the placeholder marking menu mode. This marking menu mode is
distinguished from the normal marking mode of MATE by inking a thinner line which is

black in colour. The user ends the move to placeholder stroke by making a selection
from the placeholder marking menu, Figure 4.10.

Figure 4.10: The placeholder marking menu

The placeholder marking menu allows the user to choose from eight placeholder
symbols, A - H.

The broken move interaction ends with the move from placeholder mark. The move from
placeholder mark is simply a line drawn from anywhere to the destination, because move
from placeholder is the only possible action other than navigation. MATE shows the

placeholder symbol specified in the move to placeholder stroke when the user starts to
draw the move from placeholder mark.

Representation

The scope — source text — of the move command is represented by the text objects at each
end of the scope, rather than a list of all the text objects within the scope, as is the case for
the delete command. Specifying the scope in this manner allows the text objects within
the scope to be deleted and moved, and allows text objects to be inserted within the
scope. The destination is represented by the two text objects surrounding it. Therefore,

68 Chapter 4: Implementatiop
the move command can be represented as:

move {[source start text object] [source end text object]} to
{[destination before text object] [destination after text object]}

Implementation

The set of text objects to move is determined from the start and end source text objects.
These objects are then temporarily removed from the document and placed in a buffer.
This allows the destination objects to be properly repositioned. The text objects in the
buffer are then inserted between the destination objects, as shown in Figure 4.11.

Oneqwo Three FouD Five Six! Seven

:

(a)

One Five Six Seven Buffer: Two Three Four

(b)

One Five Six Seven Buffer: Two Three Four

(c)

One Five Six Two Three Four Seven

|

(d)

Figure 4.11: The implementation of the move command

The move command shown in (a) is .
and 4, and the destination — befnzleer: gpgi.:fgteggy the endpoints of the source = 2

Jrom the document and placed in q p By dise source text is removed
between the destination objects (c), F",IIT@T (D). Then, null objects are inserted

from the buffer into the newly createq trgil}y),oy;;g:‘:l ?Sﬁ siebiscisate By

Chapter 4: Implementation G
Inverse

The inverse move can be thought of as a move command with the source and destination
interchanged. However the inverse move command does not truly work in this manner.
As the move command modifies the current location of the source text objects, the
inverse move modifies the current location of these same text objects, but to a different
destination. The key to making the inverse move work is in determining its destination.

A simple solution is to store, with the move command, the text objects immediately
before the source start object and immediately after the source end object. In Figure 4.11,
1 and 5 would be stored as the inverse destination for the move command when it is
saved in the command history list. Two observations are noteworthy about this method:

¢ We are really storing the context surrounding the source of the move command.
Using contextual information is much better than positional information as the text
may be moved by other move and insert commands.

* The method does not work in all cases, as the surrounding context may be lost. This
is illustrated in Figure 4.12. The text objects originally surrounding “three” have
been moved, thus destroying the context of the move “three” command. The inverse
of this move command requires more information than storing the surrounding text
objects.

One Seve_n_}

 —s——

(a)

One Five Four Six Three Seven Two

(b)

One Five Four SixdSeven Two

(c)

Figure 4.12: Loss of context after several move commands
After all three move commands have been performed, the original context
surrounding move “three” has been destroyed (b). Undoing move “three” should
result in (c), but this requires more information than is provided by storing the
original context of the command.

-0 Chapter 4: Implementatiop

The loss of context problem is solved by creating special pointer objects where the move
command’s source text used to be. These pointer objects are similar to character objects,
in that they can be moved and deleted, but they are never displayed. These pointer
objects are stored with the move command as the inverse destination. Figure 4.13 shows
how pointers solve the loss of context problem for the example in Figure 4.12.

The inverse move then becomes

move {[source start text object] [source end text object]} to
{[pointer before text object] [pointer after text object]}

with the added action of removing the pointer objects.

One(Twg Fivel Sixl Seven

(a)

One '[1 Fivel Sixl Seven ITwcl)

(b)

One]‘1- 'Ir Six 'IrhreeI Seven 1|'wo|

(©)

One F' 1 U Five Four Six i‘hree| Seven Two

(d)

Figure 4.13: The use of pointers in the moy
By using pointer objects (1) in the move command, the destinati]
] g es verse
move command is clear. The three move c e

Ch ommands can be done and undone in
any order and always position the text in the proper places ‘

€ command to retain context

Conflicts

The following four of the move command’s five conflict rules can be tested with the
basic information available to the move command,

Chapter 4: Implementation 71

A source boundary has been deleted: If either source boundary object has been
deleted a conflict exists.

The destination is within the source: If the set of text objects to be moved contains
the destination objects, then a conflict exists.

+ The destination has been deleted: If both destination objects have been deleted, there
is a conflict.

+ Text objects have already been placed in the destination: If the destination objects are

separated, other objects have been inserted between them and therefore a conflict
exists.

However, determining whether the source boundary objects have been moved
independently of each other, requires additional information. This problem is illustrated

in Figure 4.14. The problem is that the results of conflicting situations can be the same as
the results of valid situations.

FiveISix Seven

(a)

¢ One[Twol Three}Four{Five] Six Seven

(b)

One Two Five Three Four Six Seven

(c)

Figure 4.14: Difficulty in determining independently moved source boundaries

Applying move “three four” in (a) yields the same result (c) as move “ g've_" in (b).
If (c) is the result of move “three four” from (a), then move two thrfe is
invalid due to the conflict. However, if (c) is the result of move “five from
situation (b), then move “two three’ is valid. More information is necessary to
determine when move “two three” is valid (b), or invalid (a).

The solution is to give each move command a unique Id, and to store these move Id’s
with each text object. To store this information, text objects are given the move history
list attribute. The Id of every move command that acts on a text object is stored in the
move history list of that object. To test whether the source boundary objects have been

- Chapter 4: Implementation

moved independently of each other, their move history lists are compared. If the histories
do not match, a conflict exists. The inverse move command removes the move Id from

the move history list of the text objects.

4.3.3 Insert
Interface

The insert mark is the caret symbol, as shown in Figure 4.15. To bypass the problems
inherent in character recognition, the keyboard is used to specify the text to be inserted.
First the user draws the insert caret, then a text entry window, that the user can type text
into, is popped up (Figure 4.16). The insert command is completed either by pressing the
Insert key to accept the command or by pressing the Escape key to cancel the command.

insert
These are examples of several marks,
insert ”~

each specifying an,command.

A

Figure 4.15: Insert marks recognized by MATE

The insert command is specified by the insert caret and text entered via keyboard
into a pop-up window.

Representation

The insert command is represented as follows:

insert {text string} at

{[insert location before text object] [insert location after text object]}

Implementation

The insert command first creates text objects for the characters to be inserted. These text
objects are initially created in a text buffer. From this stage on, the insert command is
treated as a move command, and would follow the method outlined in Figure 4.11(b), ()

& (d). The only difference in the implementation of the move and insert commands is
that insert does not require pointer objects to be created.

Chapter 4: Implementation 73

HOLIDAYS FROM HELL

Everything went wrong on

Steve Isherwood’s business
This is an example of the insert box

trip to California;/\fithough

it wasn’t at all amusing at

Figure 4.16: The pop-up insert text entry window

After the insert caret has been recognized, MATE pops-up the insert text entry
window. The user can then type in the text to insert. The insert command is
completed either by pressing the Insert key to accept the command or by pressing
the Escape key to cancel the command.

Inverse

The inverse action of a command must leave the document in the same state as if the
command was never performed. Therefore, the inverse insert command removes and
destroys the text objects that were created by the insert command.

Conflicts

The insert command has the same rules of conflict as the destination of the move

command.

« The insert location has been deleted: If both insert location objects have been deleted,
there is a conflict.

« Text objects have already been placed in the insert location: If the insert location
objects are separated, other objects have been inserted between them and therefore a

conflict exists.
The inverse insert command has similar conflict rules as the delete command.

« The list of text objects is not a continuous sequence of characters in the current

version of the document.

” Chapter 4: Implementation

« A boundary object has been deleted: If either the insert’s first text object or last text

object has been deleted, a conflict exists.

4.4 Incorporation and Undo Support

An annotation is selected for incorporation and unincorporation by tapping on it with the
stylus. This is part of a set of interactions, described in Section 4.2, that can be made on
annotations. When a mark is selected, MATE first attempts to recognize it. If a valid
interpretation can be made, and no conflicts are found, the command is incorporated (or
unincorporated), and the current version of the document is updated. If a conflict exists, a
pop-up message appears, stating that a conflict has occurred and the command was not
executed.

Once an annotation is incorporated into the document, it is changed from a thick line to a
thinner line, as illustrated in Figure 4.17. The feedback provided by line thickness, gives
the user a means of visually identifying which annotations have been performed, and thus
provides the user with a graphical history mechanism.

Thisthas been This performed has been.

This-me#ehas not. This mark has not.

Figure 4.17: Line thickness as feedback for incorporated annotations

All marks are initially thick lines.. Once an annotation has been incorporated, it
becomes thinner. In the above example, the delete “mark” annotation has not
been performed and is still a thick line. In contrast, the move “performed”
annotation has been incorporated and is thin.

Buttons are provided for the Undo and Redo last action mechanism, as shown in Figures
4.3 and 4.4. Undo last action can undo any number of editing commands back to the
beginning of the editing session. This is accomplished via a history list which stores each
command in a history entry. As all editing commands have an inverse, all that is required
to be stored for each history list entry is the editing command’s representation — the

command and its parameters, which was described for each command in Section 4.3. AS
each entry is relatively small in size, the history list can be

as long as a typical editing
session.

Chapter 4: Implementation 75

Whereas Undo steps back through the history list, Redo steps forward up the last entry in
the history list. The history list always ends at the last new command that was

performed. Figure 4.18 illustrates how the Undo and Redo actions interact with the
history list.

delete {} delete {} delete
insert {} insert {} insert {} [€ current
move {} move {} move {}
move {} move {} move {
delete {} delete {} [< current delete {}
insert {} insert {} insert {}
move {} move {} move {}
last>» 0 <-current last>» 0 last>» 0
(a) (b) ©
delete {} delete {} delete {}
insert {} insert {} insert {}
move {} [<current move {} move {}
move move {} move {}
delete {} delete {} [<& current insert {}
insert {} insert {} last>» 0 < current
move {} move {} =
last=>» 0 last» 0 s
d (e) ()

Figure 4.18: Undo / Redo last command and the history list

(a) shows the history list after seven editing commands have been performed.
The last position pointer points to the end of the history list. The current location
pointer separates the commands which have been performed — before it, and the
commands which have been undone — after it. (b) and (c) show the effects on the
current pointer as one command is undone (b), and when flve more commands are
undone (c). (d) and (e) show the effects on the current pointer as one command is
redone (d), and when 2 more commapds are redone (¢). New editing commands
are stored at the current pointer location. (f) show s th.e effects of entering an
insert command from the situation in (e). Note that this changes the last position
pointer so that any undone commands after the current entry cannot be redone.

- Chapter 4: Implementation

4.5 Navigation

Navigation in MATE serves two main purposes — basic navigation, and relating the two
versions of the document. Basic navigation includes moving the document up or down 3
page or several lines, with each of these commands able to act on both views of the
document — linked, or on only one view — unlinked. Relating the two versions of the
document is accomplished by the Goto Text, Goto Annotation, and Goback commands,
which align the two versions of the document according to the text or annotation of

interest.

Most of the navigation commands are accessed via navigation mode, which the user
enters by pressing and holding the button on the pen down. The user interacts with this
mode via a modified marking menu, shown in Figure 4.19. In addition to selecting menu
items and making the corresponding marks, the user can make a flick mark to specify a
page movement, and L-shaped marks to specify linked movement (Figure 4.20). Page
flicks are vertical marks drawn quickly. They are distinguished from page pushes —
move several lines — by the average speed in which the mark was drawn. Note that page
flicks and linked moves are special marks and cannot be selected via menuing?.

I move line to here

I move line to here

Figure 4.19: Navigation Marking Menu

The navigation marking menu is invoked by pressing and holding the button on
the pen down. The menu selections are move several lines — page push, Goto
Text, and Goback. The navigation marking menu also has page flick marks and
linked movement marks, which cannot be accessed once the meny is displayed.

T Linked moves could be selected from a menu, as the
selections, which have recently been implemented (
distinguished from a page push by the speed in whi
related to a menu entry.

Y can be thought of as hierarchic marking menu
Kurtenbach, 1993). However, a page flick is
ch the mark was made, and cannot be directly

Chapter 4: Implementation 77
HOLIDAYS FROM HELL HOLIDAYS FROM HELL
Everythings went wrong on Everythings went wrong on
Steve Isherwood's trip to Steve Isherwood's trip to

Califrnia,[and it wasn't at califrnia, sn't at

all amusing] at the time, he all amusing at the kime, he

can laugh apout the can laugh about the

experience w. On the other experience now. On|the other
hand, Harry JHoyle's first hand, Harry Hoyle'sJfirst
vacation turned into a vacation turned inffo a
real-life tragedy. LjJ]k real-life tragedy.

UnLink

Figure 4.20: Linked navigation marks

The user starts by making the appropriate navigation mark — page flick or page
push — and then makes a right angle to either the left or right.

4.5.1 Basic Navigation

Navigation in mark-based systems is different than in mouse and keyboard based
systems, in that a mark-based system does not require a text entry cursor — insertion
pointer. The presence of a text entry cursor causes a problem with many text editing
systems; there is no obvious cursor position after most navigation commands are
performed. An examination of a small sample of editors reveals major differences in the
placement of the cursor after navigation. For example, text editors on the Apple
Macintosh keep the insertion point at the same location in the document, even if that part
of the document does not appear in the window. The vi editor on UNIX places the cursor
at the top of the window after a PageUp command and at the bottom after a PageDown
command. Other editors have other variations. In a mark-based system this problem

does not exist.

There are several existing methods for navigating in a text document:

« Using a scroll bar to scroll or jump to a location

e Pushing the cursor into the edge of a window to display more text in that direction
+ Making discrete jumps, usually of a page or half page in length, either by clicking in
the scroll-bar area, or by commands entered with the keyboard

- Chapter 4: Implementation

However, we decided to base MATE’s navigation techniques upon the pen and paper
analogy. The page flicks, mentioned above, correspond to turning the pages of a book
bound at the top. To turn to the next page, the user flicks the page upward, and to turn to
the previous page, the user flicks the page downward. Moving several lines corresponds
to pushing a continuous sheet of paper. To move forward in the document, the user
pushes the document upward, to move backward in the document, the user pulls the

document downward.

Note that MATE’s basic navigation is based on moving the document, rather than
moving a window over the document. Moving the document has the advantage that it
makes sense to specify the navigation commands in the document area rather than the
scroll-bar. As the document area is much larger than a scroll-bar, the user can specify
navigation commands in the document area much easier and faster than with a scroll-bar
(MacKenzie, 1992). However, moving the window using the scroll-bar has the advantage
that the user can jump directly to a specific location in the document, as opposed to
making a series of page movements. As the two methods are not mutually exclusive,
moving the window via the scrollbar was also implemented.

Linked Navigation

As mentioned in Section 3.4.6, all linked navigation is relative movement dependent.
This means that both views move the same amount regardless of their content. To
change a basic navigation command into a linked navigation command, the user starts by

making the appropriate mark and then continues the mark at a right angle to either the left
or right, as shown in Figure 4.201.

4.5.2 Relating The Two Views

The solutions of highlighting text and aligning the two views, mentioned in Section 3.4.6,
are integrated into both the Goto Text command and the Goto Annotation command.
Goto Text is applied to a word in the document, in either view, via the navigation
marking menu (Figure 4.19). Goto Annotation is applied to an interpretable annotation in
the Annotation View, via the annotation marking menu (Figure 4.5).

i urrent version of MATE, in o : : stsed
in this section. rder to test the interaction describe

Chapter 4: Implementation 79

Goto Text

The Goto Text command is applied to a word in either the Annotation or Edit View —

master view. The other view — sigve view — is then modified in the following manner:

If the word is not visible in the slave view, the slave view is adjusted so that the word

appears on the same line in both views. The word is also highlighted in the slave
view.

If the word is visible in the slave view, then the word is highlighted in the slave view,

but the position of the document in the slave view is not adjusted, except in the
following case.

+ If a second Goto Text command is applied to the same word, then the word remains
highlighted, and the slave view is adjusted so that the two views are aligned.

Goto Annotation

Whereas the Goto Text command is applied to a word, the Goto Annotation command is
applied to an annotation. The selected annotation is first interpreted into an editing
command. Goto Annotation is then applied to the parameters of the editing command in
a similar manner as the Goto Text command, with the following exceptions:

« If all the parameters cannot be displayed at once, the Edit View is adjusted so that the
first parameter is aligned in both views. Subsequent invocations of Goto Annotation

will align the views so that each parameter in turn is aligned in both views.

« If the parameter is not visible in the Edit View, the Edit View is adjusted so that the
beginning of the parameter is aligned in both views. All of the text objects are

highlighted in the Edit View.

« If the parameter is visible in the Edit View, the parameter is highlighted in the Edit
View, but the position of the document in the Edit View is not adjusted. Note that
subsequent invocations of Goto Annotation are used to step through the parameters of

a command.

Goback

In many cases the user may use the navigation and Goto commands to examine a section

of the document, with the intention of returning to a previous point of interest. This is

especially true for a move command which uses placeholders, for which the source and

the destination are usually far apart. The Goback command is the navigation mode's
Undo Last command. To accomplish this, a navigation history list was implemented.

“ Chapter 4: Implementatiop

This history list stores points of interest to the user. When the Goback command ig
executed the Annotation and Edit Views are adjusted to the previous entry in the list.

The main problem in building the navigation history list is in determining what
constitutes a point of interest, and therefore when should a document position be stored as
an entry in the navigation history list. In contrast with the command history list, the
entries in the navigation history list are not explicitly specified. The following criteria are
used in deciding when to store a document position in the navigation history list:

« When an annotation has been incorporated, or if an editing command has been

executed.
» When a Goto Text or Goto Annotation navigation command is to be executed.

If executing editing commands and incorporating annotations are thought of as implicit
Goto commands, Goback is the inverse of Goto.

4.6 Summary

The interfaces of MATE’s three modes are similar; the document is shown in the top
portion of the window, and utility functions are placed in the bottom portion. Our main
focus is on the document area, in which the editing commands are specified and the
annotations are made.

Several annotation support functions are provided via the annotation marking menu:
Erase, Goto Annotation, Hide, and Goback. To support annotations from several sources,

MATE provides functions which are accessed through buttons in the marking area of the
MATE window. These functions are: Load, Save, Hide, Show, and UnHide.

After making all the additions needed to support the editing commands, each text object
has the following attributes:

» An ASCII character value

+ The original position in the document

+ The original position in the Annotation View

+ The current position in the document

+ The current position in the Edit View

» The deleted flag

Chapter 4: Implementation 81

The pointer object indicator. Specifies whether an object is a regular text object, a
pointer before object, or a pointer after object.

The move history list. A list containing the Id’s of the move commands that have
acted on the text object.

Three editing commands have been implemented, delete, move, and insert. The markings
used to specify these commands are all single strokes, except for the broken move. All
commands have an inverse, and all commands only modify the attributes of the text
objects, except for insert which creates text objects.

The delete mark is a horizontal stroke. Text is marked for deletion by setting the deleted
flag. Inverse delete unsets the deleted flag.

The regular move mark consists of a circle around the source text, followed by a line
ending at the destination. Broken move consists of the move to placeholder mark, and
the move from placeholder mark. Move to placeholder is similar to a regular move mark,
except that it ends in the margin where a placeholder symbol is chosen from the
placeholder marking menu; move from placeholder is just a line drawn to the destination.

The move command changes the current position attributes of the modified text. To
support the inverse move command, pointer objects were implemented to solve the
problem of loss of context. To properly identify conflicting move commands, each move
command is given a unique Id, which is stored in the command history list as well as in

the move history list attribute of the source text objects.

To specify an insert command or annotation, the user first draws the caret symbol. A text
entry window, into which the user can type, then appears. The insert command or
annotation is completed by pressing the Insert key to accept the command or by pressing
the Escape key to cancel the command. The insert command first creates text objects in a
text buffer, and then moves these text objects to the insert location. Inverse insert

destroys the created text objects.

An annotation is selected for incorporation and unincorporation by tapping on it with the
stylus. After an annotation is incorporated into the document, it is changed from a thick
line to a narrow line. The command’s interpretation and the attributes of the text objects

contain all the information necessary to either Do or Undo the command.

22 Chapter 4: Implementatigp

The Undo Last and Redo Last functions are accessed via buttons in the utility area of the
window. These functions step, backward and forward respectively, through the commang
history list. The current state of the document, and the information stored with each
command in the history list are sufficient to undo or redo each command in order.

Navigation is accomplished via navigation mode, and the navigation marking menu. The
user enters this mode by pressing and holding the button on the pen down. The basic
navigation commands borrowed from the analogy of flicking and pushing / pulling a page
of a book. Normally these commands act on only one view of the document — unlinked,
but by continuing the flick or push mark at a right angle to either the left or right, both
views are affected by the navigation command — linked.

Three special navigation functions were implemented to aid the user in relating the two
versions of the document: Goto Text, Goto Annotation, and Goback. Goto Text is
applied to a word in either view — the master view, and adjusts the other view — slave
view — so that the word is aligned in both views, and highlighted in the slave view. Goto
Annotation is similar except that it is applied to an annotation in the Annotation View,
and it adjusts the Edit View so that the parameters of the command are aligned and

highlighted. Goback steps back through the navigation history list, and is the inverse of
Goto.

Relating back to our research question, the design and implementation of MATE show
that a system which integrates the two uses of marks, as annotations and for specifying
editing commands, can indeed be built. In addition to the benefits mentioned in earlier
chapters, MATE’s implementation showed the following

« The Do and Undo by selection can be achieved by a tap of the pen, and in the process
provides a graphical history mechanism.

+ Undo Last and Redo can be implemented via the command history list.

* By borrowing from the pen and paper analogy, navigation can be integrated into the
system.

Chapter 5

User Testing

Although MATE can be used in several stages of the collaborative writing process, user

testing all of these is beyond the scope of this thesis. Instead we concentrate on the
Incorporation Mode of MATE, as this is the central part of our research,

In general, user testing may examine both the usability and usefulness of a system.
However, testing the usefulness of MATE as a collaborative writing tool would require

an extensive study. Therefore we mainly examine the usability of MATE with the
following goals in mind:

to obtain information so that MATE can be made more usable,

to determine how usable MATE is.

to gain some insights in to the usability and usefulness of the general design concepts
when possible.

A comparison with existing methods for incorporating annotations into a document was

not carried out. There are several reasons for this:

MATE is a prototype, which is missing a lot of the functionality of a complete
system. A test with an existing method would mainly point out the missing
functionality of MATE, which is not a primary concern in this thesis.

The main existing method is to print out a document and send it out to the
collaborators, marking up the printed document and sending it back, and
incorporating the changes by editing the document. A comparison with this method
would have been premature as it would not yield useful information about the

usability of MATE in its current state.

24 Chapter 5: User Testing

5.1 Design of the Usability Study

The usability study is designed as an experiment consisting of the following four parts:

« A training session in which the user was trained how to use MATE. The purpose of
the training session is to introduce the main concepts and to give the subject practice

in using MATE's interaction techniques.

o A task session in which the user performed an editing task using MATE. Ideally, the
testing task should be designed as a task which may exist in a real-life application,
however, as MATE is a prototype system, the task was designed so that only the
existing features of MATE would be needed to perform the task.

s A questionnaire which the user answered after the task session was completed. The
questionnaire is designed to help determine the users’ understanding of the concepts,
and to provide a comparison to the observations during the training and task sessions.

« An interview. This covered more general questions than the questionnaire, and
allowed the user to add any comments that the questionnaire may have missed.

The data collected from the experiment consisted of:

« logs of the training and task sessions,

« videos of both the subject and the computer screen,

« the questionnaire, and

« the interview.

Training Session

The user training is not meant to test how easy it is to learn how to use MATE. As this
would involve much design work on user training which is not part of this thesis.
Therefore the subjects were first guided through a training session to ensure that they
obtained at least a basic understanding of MATE and the underlying concepts behind
MATE.

The training session was guided by a training manual and a training document, shown in
Appendix A. The subjects were asked to perform the tasks given in the training manual.
Ihey were allowed to ask questions and receive additional guidance by the experimenter

on how to use the system. The experimenter also ensured that they actually Pefforrned
the tasks.

Chapter 5: User Testing 85
Task Session

In order to be useful for testing the incorporation mode, the editing task had the following
requirements:

+ the document should be in an almost final state.

most of the annotations should be small explicit corrections rather than more general
annotations such as "reword",

It would be difficult to design a task that could test all of the functionally of MATE and

also not be affected by the limited functionality of MATE. Therefore the task was
designed to test the following:

« the navigation features of MATE,

+ the user's understanding of the relationship between the two windows,

* the usability of the editing commands, i.e. the users' ability to articulate the mark and
the users' ability to remember the mark.

In contrast to the training session, the subjects were instructed to improve the document
as they saw fit. They were not given guidance, except in specific cases which are noted
in the results. The annotations given were to be thought of as suggestions only. The task
document is shown in Appendix A.5.

Questionnaire

The questionnaire examined the subjects’ understanding of the editing commands,
incorporation, navigation, and the usability of the system. The Questionnaire is shown in
Appendix A.6.

Interview

The interview was designed to find information which the questionnaire missed. The

standard interview questions are shown in Appendix A.7.

5.2 Results and Recommendations

Observations from the experiment are noted in Appendix B. B.1 contains observations
from the training sessions, B.2 from the task sessions, B.3 summarizes the answers to the
questionnaire, and B.4 contains a condensed transcription of the interviews. In this
section the results from the experiment are organized by whether they pertain to MATE

%6 Chapter 5: User Testing

in general, to editing and incorporating annotations, or to navigation.

General

Slow [erratic response time

At some points in the sessions the system took two minutes before responding to a
navigation command. The exact reason for this is unknown, but may be attributed to
swapping pages of memory or network traffic. Also the asynchronous nature of the X
window system caused the system response time to be irregular. Such response time
causes many problems and must be corrected to make MATE a more usable system.

Amount of text displayed

The font size used in the usability study was large — 18 point. This was to make it easy
for novice users to make markings. However, this meant that only 18 characters per line
and 12 lines of text were displayed at one time. Several subjects commented that they
would have liked to see more text at a given time. More testing is required to determine
the best font size for general use, but it is clear that the 18 point font is too large.

Editing
Command Set

For the most part, subjects found the command set adequate for the given task, but a
couple subjects requested more functionality especially in the form of replace and modify
commands. Replacing text is functionally equivalent to deleting and inserting text, but
combines both in a single command. Modifying text transfers the text editing from the
main text editing area to the pop-up text entry area, with the intention of facilitating many
small edits on a piece of text.

The delete, replace, and modify commands are related in the following manner:
o Delete is a subset of replace without any text inserted.
+ Replace is a subset of modify in which all the existing text is deleted before any text

is entered.

There are several ways of adding the modify and replace commands to the command
marking set. One is to use the circling mark found in the beginning of the move
command to select the text of interest. Another is to have the two existing delete marks ~
horizontal line to the left and horizontal line to the right — mean two different commands-

Chapter 5: User Testing 87

One solution in which both commands are added is as follows:
+ Modify is specified by circling text,
« Replace by a horizontal line to the right (or left),

+ Delete by a horizontal line to the left (or right).
Undo | Redo Last

Undo last was used very infrequently. Only one subject used it several times in a Tow,
followed by several redos. There were several occasions in which undo last would have
been useful for the subject, but the subject did not think of using it.

Delete

In general users had little difficulty with the delete command. However, there were a
couple of problems: deleting single characters and deleting more than one line of text.

To delete a single character the user must make a very short horizontal mark. This is a
problem as MATE has a lower limit on the length of recognizable marks in order to
remove accidental and spurious marks. The length of the horizontal line must be drawn
within a very small tolerance. One solution would be to add the slash mark to the
marking set for deleting single characters.

To delete several lines, the user is forced to delete every single line, one at a time. This
might be fine for a few lines, but is unacceptable for many lines. One solution can be
taken from our observations of the everyday use of markings. Often when a paragraph or
page is to be deleted, the annotator draws a large slash mark from corner to corner.

Insert

The recognition rate for the insert mark was very low. Even worse, it was sometimes
misinterpreted as a delete command. Even when recognized, there were cases in which
the insertion point was off by a character. The recognition rate of insert must be
improved, and the system’s distinction between insert and delete must be brought more in

agreement with the user’s expectations.

The insert box can be set to any size — number of lines of text — via a preferences file.
For the usability study it was set to one line. There were several instances in which a
subject wanted to enter several lines of text. After typing past the width of a line of text,
the user could not see the characters being typed. To see these characters, the subject

88

Chapter 5: User Testing

typed a new-line character. The subject could then at least see what was currently being
typed, although all the previous lines could not be seen. To solve this problem the ingert
box should be resizeable and scrollable. The text should also word wrap.

We assumed that most of the editing would take place at the word level, as opposed to the
character level. To accommodate this, MATE would automatically prepend and a

ppend
Spaces to the inserted text. This caused problems when a subject wanted t

0 modify
words, especially when adding suffixes. The subject noted the conflicting issues ang

would have preferred to manually enter spaces in order to have the control over when
Spaces were added. One solution would be to have a word mode, which could be toggled
between automatically adding spaces and not adding spaces. But such a subtle mode s
likely to be forgotten. Another solution would be to use one insert character — A for
insert word with spaces, and the other — v — for insert characters without added spaces.
Move and Broken Move

Subjects had little difficulty in specifying both move and broken move commands. A

few bugs in the system were noticed, but the subjects had no problems with the
interaction methods.

Annotating

An important point, noted by one subject, is that a different action

— annotations menu —
occurs when pointing to a mark versus not pointing to a mark — drawing. Although, these

actions are generally what is wanted from the System, an annotation mark cannot be made
in close proximity to an existing mark, for it will be interpreted as command on the

annotation. This makes some annotations, such as a handwritten note in the margin,

impossible to draw. Some method is needed to allow marks to be m

ade on top of other
marks.

Navigation

There were several problems with MATE’s navigation. The

major problem was the
button on the pen.

Several users found holding the button down while drawing a
navigation command to be physically difficult. The button actually broke during Subject

1’s training session. Also there was a slight delay in the recording of the pen movement

when the button is first pressed down. It is unclear whether this is a hardware or software
problem.

Chapter 5: User Testing

interaction mechanisms from the input device being used. It was clear from our

observatlon? that the mouse and mouse button were tracked much more accurately than
the pen. This made a large difference in that the subij

. Iy T Ject had little or no difficulty with the
mouse In specitying the navigation commands, including page flicks and linked
navigation.

The combination of page flicks and linked navigation with a marking menu pushes the

limits of the interaction technique. This technique requires almost expert usage from the
beginning and does not lend itself well to incremental learning,
physically. As one subject put it

both cognitively and
“There may be a limit to how many commands you can

Although observations show that subjects can use the
interaction technique, it would be useful to design alternatives to compare with.

squeeze into a pen motion!”

All of the subjects were used to the idea of moving the window over a document via a
scroll-bar. In MATE, the document is moved and the window is still. This caused some
initial confusion as to the direction of page flicks and pushes, but the subjects quickly
learned the correct directions. Another important point is that flicks and pushes are
relative movements, in order to navigate to a specific location other mechanisms must be
provided. In MATE, these mechanisms were provided by scroll-bars.

Navigation Mode

The main problem with navigation mode, aside from using the button on the pen, was
knowing when one was in this mode. The only visual feedback provided was that a thin
black mark was drawn. A solution is to show a different cursor when in navigation

mode.

Page Pushes

Subjects noted that the page push happened too quickly for them to know how the
document actually moved. A much better method, closer to the page push analogy, is to
grab the document with the cursor, and move the document as the cursor is being moved,
rather than after. Visual feedback, such as displaying a hand-shaped cursor, would also

enhance the interaction as well as the analogy.

90 Chapter 5: User Testing
Page Flicks

Page flicks were very sensitive to any system delays. Also the user had no feedback

whether a navigation mark would be interpreted as a flick or a push.

Linked Navigation

Conceptually, the subjects had little difficulty with linked navigation. However, there
was a lot of difficulty physically. One subject resorted to using the mouse for linked
navigation and achieved much better results. It seems that the problems with linked

navigation are with the implementation of the pen rather than the technique itself.

Goto

The subjects seemed to understand both Goto Annotation and Goto Word. However,
there were some conceptual difficulties. Only one user answered that Goto Word was
useful in lining up the windows — the primary function of Goto Word. The labels for
both commands was the same — Goto — but in different marking menus. This caused

some confusion and should be changed.

One subject used the Goto Annotation command twice to see the two parameters of a
broken move command. When MATE jumped to the destination and highlighted it, the
subject noticed that part of the source text was visible. But when the user pushed the
page to see more source text, the highlighting disappeared, and the user lost track of
where she was in the document. This brings about the issue of how Goto, specifically
highlighting, should affect the document and how it should interact with the other

navigation commands.

Goback

Goback was used once among all subjects. Although this lack of use might have been
due to a lack of need, it also seemed apparent that the subjects were not sure what it
actually did. Further study is needed to determine if a function such as Goback is useful,
and how such a function should be designed and implemented.

5.3 Summary

A usability study of MATE in Incorporation Mode was carried out. This study was in the
form of an experiment consisting of a training session, a task session, a questionnaire, and
an interview. Two pilot subjects and 3 subjects participated in the experiment. In

e
e —

Chapter 5: User Testing 91

addxflon to the questionnaire and interview, data was also obtained from logs of the
training and task sessions, and videos of both the subject and the computer screen.

MATE \f/aS found to be usable, but could definitely use improvements. The following
observations and recommendations can provide some guidance on how to make some of
these improvements:

Slow | erratic response time: The response time was unacceptably slow at times.

Increase the amount of text displayed: The font size should be made smaller — than

18 point — to accommodate more text on the screen at one time.

Add Replace and Modify commands to the command set: Although the existing
command set was sufficient for the most part, replace and modify commands would
definitely be useful.

Undo | Redo Last used infrequently: Subjects either did not really have a need, or
else were not used to having the undo / redo capability.

Minor problems with Delete command: Subjects had little difficulty with the delete
command, except when trying to delete a single character, and when deleting several
lines. A slash mark could be used to solve both the single character problem, and the

multiple line problem.

Major problems with Insert command: The recognition rate for insert was
unacceptably low, and was often misinterpreted as a delete command. The insert text
entry box should be resizeable, scrollable, and have word wrapping. Some method of
distinguishing between inserting characters and inserting words would be helpful.
One solution is to use one insert character —~ — for insert word with spaces, and the

other — v — for insert characters without spaces.

Move and Broken Move had no real problems.
Actions on annotations versus drawing on annotations: A method for allowing marks
to be made on other marks is necessary.

General navigation problems: The button on the pen was very unreliable, difficult to
use, and caused several problems. Observations of a subject using a mouse show that
the interaction techniques are valid, and that the implementation of the pen needs to
The combination of page flicks and linked navigation with a marking

be improved.
the interaction technique, requiring almost expert usage from the

menu stresses
beginning. Alternative designs should be considered.

92

Chapter 5: User Testing

Visual feedback for navigation mode should be provided.

Modify page push interaction. The page push interaction should be changed to a
document grab interaction, in which the document moves as the cursor is being
moved.

Problems with page flicks and linked navigation: Page flicks and linked navigation
were very sensitive to any system delays. This and the general problems with the pen
and navigation must be solved in order to make page flicks and linked navigation

more usable.
Labels for Goto Word and Goto Annotation should be distinct.
Minor modifications to Goto Annotation should be investigated.

Further study is needed to determine if Goback is useful and if so, how it should be
designed and implemented.

Chapter 6

Conclusions and Future Work

This thesis began with the observation that marks have been used to specify commands in
text editors, and that people use marks to annotate text documents, but that these two uses
have never been integrated. We noted that this integration was related to three areas of
research: asynchronous collaborative writing, the visibility of markings, and interaction
languages which are understood by both people and machines. To explore this
integration, MATE was designed, implemented, and user tested.

The three research areas are interrelated and thus difficult to separate in the earlier
chapters of this thesis. In this chapter, we relate the knowledge we have gained to the
three research areas, and how each area has affected the others.

6.1 Conclusions
Visibility of Markings

The visibility of markings allowed the commands specified by markings to be placed in
the context of the text document. This allowed the graphical history mechanism,
described in Section 4.4, which enables the user to determine which commands have been

incorporated and which have not.

The visibility property also allowed direct interactions with the markings, thus allowing
actions to be applied to marking commands in an easy manner. Such actions include,
selection for Doing or Undoing, and marking menu interactions to Hide, Erase, Goto, or

Goback.

Visibility is by no means restricted to markings; a mouse and keyboard system could also

be designed to have visible commands and annotations. A speech-based system would

uch as graphical icons associated with an utterance of speech.
— is still not

need visual information, s)
But this would still be lacking, because most of the information — the speech

94 Chapter 6: Conclusions and Future Work

visible.

Common Interaction Language

The issues and benefits of an interaction language common to both people and computers
were mentioned in Section 2.4. The problems with a common interaction language are
the constraints placed upon it by the capabilities of both people and computers. In the
case of markings, the computer can rely on timing and ordering information, whereas a
person can only rely on visual information. Also people have already invested many
years in learning how to read and write certain marks such as the alphabet. Therefore, it
is more compelling to make the computer understand the marks people use, rather than

find a solution closer to the abilities of the computer.

There are many benefits of a common interaction language. In the context of our
asynchronous writing scenario, these benefits include enhancing the annotation reader’s
understanding, enhancing the annotation writer’s understanding, reducing the effort
needed to convert the annotation into an editing command, and enabling “What if?”

scenarios.

An important point to note is that, in our system, the computer does not need to
understand all of the marks that people understand. In the worst case, the system would
not understand any of the annotations and the user would have to enter all of the
commands manually. So our worst case reduces to what is currently being done. Each
annotation that is understood by the system adds to its benefits, whereas annotations
which are not understood do not detract any benefits.

Asynchronous Collaborative Writing

The integration of annotations and editing commands provides several benefits for
asynchronous collaborative writing. These benefits include the graphical history
mechanism, enhancing users’ understanding of the editing marks, and reducing the need
to convert annotations into editing commands.

We have developed a text editing system which supports several aspects of the
asynchronous collaborative writing process. Despite some of the problems with the
implementation, MATE has proven to be usable. The usefulness of MATE as a system

for asynchronous collaborative writing was not determined, and requires further study
once some of the implementation issues are dealt with.

Chapter 6: Conclusions and Future Work
95
General

Some of these are the following:

°

The key to filling the 8ap in the asynchronouys collaborative writing process is the use
of a common language among people and computers.

A comm.on Interaction language was developed from proofreaders’ marks found in
the marking up of text documents,

The visibility of markings provided the mechanism for integrating the two uses of

markings — as annotations and for specifying editing commands — in a seamless

manner.

6.2 Future Work

Several details and problems in the implementation of MATE impeded our research.
Therefore future work is divided into two parts: implementation improvements to obtain
more useful research results, and future research and design work.

6.2.1 Implementation Improvements
Several recommendations for future work resulted from the user testing. To recap:

* Increase the amount of text displayed: This can be accomplished by reducing the font
size.

o Add replace and modify commands: Based on the results from the user testing,
replace and modify commands, described in Chapter 5, would be the most useful
commands to add to MATE’s existing command set.

o Delete: To overcome difficulties in deleting single characters and large phrases, use a
slash mark. A small slash over a single character would delete it, and a large slash

over several lines would delete those lines.

o Insert: First, the recognition rate needs to be improved. Also a method of
distinguishing between inserting words and inserting characters would be helpful, and

the text insertion box should be resizable, scrollable, and have word wrapping. This

text insertion box could actually be a special version of MATE in Edit Mode.

96 Chapter 6: Conclusions and Future Work

Data Storage

Currently there is one text object for every character. As each text object requires

r all its information, large amounts of memory are required for
This may be the cause of the delays noticed in the user testing.
aracters together into a single text object, thus

approximately 50 bytes fo
relatively small text files.
A better implementation would group ch
reducing the storage overhead.

Navigation
h navigation due to the need to push the button

Users experienced physical difficulty wit
n command. Erratic system response time

on the pen down while specifying a navigatio
and a lack of feedback also contributed to the difficulty in navigating. Solving these

problems should eliminate most of this difficulty.

Actions on Annotations

There is a problem in the current implementation in that marks cannot be drawn on
existing marks, because a penning down on an existing mark automatically sends MATE
into annotation marking menu mode. A solution which allows marks to be made on top
of other marks is needed, such as some method of temporarily turning off the annotation

marking menu.

Another problem is that erasing or hiding marks is achieved by selecting each mark and
then making the appropriate marking menu selection. This is fine if only a few markings
are to be erased / hidden, but becomes cumbersome if a group of markings are to be
erased. One solution is to have an eraser mode which would then erase any marks which
the eraser comes in contact with. Another solution is to have a scoping mechanism, such
as circling, to select a group of marks on which an action such as erase could be

performed.

6.2.2 Future Research and Design
Speech

As mentioned in Section 2.1.3, spoken annotations would be very useful, even if they are
not interpreted into commands. The speech annotations could be displayed as icons, and
be associated with a section of text. Another extension would be to coordinate a speech
annotation with a marking annotation so that an animation of a marking annotation could
occur while a spoken annotation is being played.

Chapter 6: Conclusions and Future Work 97

Move

Although the subjects in the user testing had little difficulty with the move command,
there are several improvements which could be made. Circling large sections of text
becomes very difficult, and is impossible if the section is larger than the window size.
One solution is to use brackets to specify the end-points of the section of text.

Insert

The other main extension for insert is to use the pen with character recognition instead of
the keyboard. The keyboard was initially used because a character recognizer was
unavailable at the time of implementation. Allowing both pen and keyboard input would
be useful as the keyboard is a much better input method for entering large amounts of
text.

Broken Move and Placeholders

Several design alternatives were generated for the broken move command and how to
specify placeholders (Section 3.4.2). Only one of these was implemented — using a
standard set of symbols to specify the placeholder, and a forced pending move. The
alternatives to specifying placeholders are: drawing the placeholder symbol for both the
source and destination, and drawing the placeholder symbol for the source only, leaving
the symbol visible for the destination command. The alternatives for the broken move
interaction are: the unforced pending broken move, and to treat a broken move as two
distinct move commands — move to placeholder and move from placeholder. The two
distinct move commands alternative allows multiple clipboards, which could be treated as
editable text documents. This and the other alternatives show promise and should be

examined further.

Conflicts

Some conflicts exist because the user’s intention requires two commands to be executed
simultaneously, which causes an order dependency conflict (Section 3.4.5). For example,

the intention to transpose two phrases requires two move commands to be executed at the

same time. To solve these conflicts, the integrated commands should be added to the

command set. The three compound commands identified so far are transpose, replace,

and replace by move.

98 Chapter 6: Conclusions and Future Work
Navigation

g navigation technique is to use a touch tablet in the
The paper analogy is even stronger as

An alternative solution the our existin
other hand to specify navigation commands.

brushing one’s finger against a touch tablet is very similar to turning the pages of a book.

Another possibility is to use the touch tablet in combination with the pen. For example,
the touch tablet could be used to enter navigation mode, and distinguish between page

pushes and page flicks, and between linked and unlinked navigation.

Documents containing text and marks

The current version of MATE treats the marks and text differently. In some cases users
may want marks to remain as part of the text document, either within a single editing
session or across several editing sessions. An example might be a reminder to look up a
reference, or a note to oneself to reread a section. Such a situation occurred in the user
testing when a subject wanted to make a note to himself by drawing in the Edit window,

but was unable to as the marks were immediately interpreted.

Single View version

The decision to use two views, made in Section 3.3, was a central decision in determining
the research directions of this thesis. The single view alternative would shift much of the
research towards how the system would automatically relate the two versions of the
document. As mentioned in Section 3.3, it was important to examine the two view
approach first as the automatic relating of the single view approach may not have
solutions in all cases. The best solution is probably a hybrid in which the single view is
the default with two views available in those cases that cannot be handled properly in a
single view.

User Testing

Many questions were not asked or answered by the user testing covered in this thesis.
These mainly concern features and functions which are not used often, such as Undo /
Redo last, and Goback. Also to fully test the functions intended to help users relate the
two views, .large documents must be used and the original and current versions must

differ by a large amount to strain the user’s understanding of the relationship between the
two versions.

Chapter 6: Conclusions and Futyre Work 99

6.3 Discussion

This thesis could be considered more as exploratory research than as a solution to a
particular problem. We began with the observation that a gap existed in the use of
markings and in the computer support of asynchronous collaborative writing. Instead of
concentrating on one particular problem, we focused on one particular solution — the

design, implementation, and user testing of MATE, By doing so, we have laid the basis
for future research in several areas:

MATE could be developed further, into a system that supports the asynchronous
collaborative writing process better.

The visibility of markings, and other properties of markings, could be explored

further by analyzing which properties are used in applications and which have yet to
be exploited.

Common interface languages can be examined and developed more. The insights
gained in our work with markings might be applicable to other types of common
interface languages such Natural Language Understanding. Also a more extensive
marking language understandable by people and computers would be beneficial.

Our research has shown that each of the above areas of research has a lot of potential, and
is worthy of further investigation.

References

, W. (1990). The « » . . .
BuxtOﬂdialo(gs. I)n TZe N:ﬁltlraol f l?ll_?gllage of interaction: A perspective on nonverbal

Missachugetis: Addisn WCsle;man Computer Interface Design. Reading,

Buxton, W. (1991). The Pragmatics of Haptic In))
. . ut. 3 f
Haptic Input,Tutorial Notes, CHI’ 90,pSeattl£ W;lslhli);;(smélso RS SEREEER0

Buxton, W., Sniderman, R., Reeves

, W, Patel, S. i
of the SSSP score editing to atel, S. and Baecker, R. (1979). The evolution

ols. Computer Music Journal, 3 (4), pp. 14-25.

Buxton, W. and Myers, B. (1986). A Study in Two-]
CHI'86, pp. 321 - 326.) udy in Two-Handed Input, Proceedings of

Carr, R. M. (1991). The point of the pen. Byte, February, pp. 211-226.

Chow, D. and Kim, J. (1989). Paper Like Interface for Educational Applications.
Proceedings of National Educational Computing Conference '89, June 20-22,
Boston, Massachusetts, pp. 337-344.

Csikszentmihalyi, M. (1991). Flow: The Psychology of Optimal Experience. New York:
Harper Collins Publishers.

DuHamel, R. (1962). Government of Canada Style Manual for Writers and Editors.
Ottawa: Queens Printer and Controller of Stationery.

Fiore, N. A. (1989). The Now Habit. New York: St. Martin's Press.

Francik, E. and Akagi, K. (1989). Designing a computer pencil and tablet for
handwriting. Proceedings of Human Factors Society 33rd Annual Meeting, pp.
445-449.

Goldberg, D. and Goodisman, A. (1991). Stylus user interfaces for manipulating text.
Proceedings of the ACM SIGRAPH and SIGCHI Symposium on User Interface
Software and Technology, November 11-13, Hilton Head, South Carolina, pp.
127-135. ACM.

Goodisman, A. (1991). A Stylus-Based User Interface for Text: Entry and Editing.
Bachelor of Science and Master of Science thesis, Massachusetts Institute of

Technology.

Hardock, G. (1991). Design Issues for Line Driven Text Editing / Annotation Systems.
Proceedings of Graphics Interface ‘9], June, Calgary, pp. 77-84.

Kim, J. (1988). On-Line Gesture Recognition by Feature Analysis. Proceedings of Vision
Interface ' 88, June 6-10, pp. 51-55.

102 References

i S i . . A Multi-User
. L., Lindstrom, T. L., Ensor, J. R. and Ahuja, S. R. (1990) 1t
Kosarell(),ojcumentul](esvigw Tool. Proceedings of Multi-User Interfaces and Applications,
pp. 207 - 215. Elsevier Science Publishers.

Kurtenbach, G. and Buxton, W. (1991a). GEdit: a testbed for editing by contiguous
gesture. SIGCHI Bulletin. pp. 22-26.

Kurtenbach, G. and Buxton, W. (1991b). Issues in combining marking and direct
manipulation techniques. Proceedings of the ACM SIGRAPH and SIGCHI
Symposium on User Interface Software and Technology, November 11-13, Hilton
Head, South Carolina, pp. 137-144. ACM.

Kurtenbach, G. and Buxton, W. (1993). The limits of expert performance using hierarchic
marking menus. To appear in Proceedings of INTERCHI ' 93, May, Amsterdam.

Levine, S. R. and Ehrlich, S. F. (in press). The Freestyle system: a design perspective. In
A. Klinger (Ed.), Human-Machine Interactive Systems. New York: Plenum Press.

MacKenzie, I. S. (1992). Movement time prediction in human-computer interfaces.
Proceeding of Graphics Interface '92, pp. 140-150. Toronto: Canadian
Information Processing Society.

Pencept. (1986). Penpad 310 User's Guide . Pencept Inc., Waltam, Massachusetts.

Perkins, R., Blatt, L., Workman, D. and Ehrlich, S. (1989). Iterative tutorial design in the

product development cycle. Proceedings of Human Factors Society 33rd Annual
Meeting, pp. 268-272.

Posner, 1. (1991). A Study Of Collaborative Writing. Master of Science thesis, University
of Toronto.

Rhyne, J. R. (1987). Dialogue management for gestural interfaces. SIGGRAPH Computer
Graphics, 21(2), pp. 137-142.

Rubine, D. H. (1990). The automatic recognition of gestures. Doctoral Disertation,
Carnegie Mellon University.

Tappert, C. C., Suen, C. Y. and Wakahara, T. (1990). The state of the art in on-line

handwriting recognition. IEEE Transactions on Patter A : ine
Intelligence, 12, pp. 787-808. n Analysis and Machin

Ward, J. R. and Blesser, B. (1985). Interactive reco

3 nition of h i I
computer input. [EEE Computer Graphics q - andprinted characters fo

nd Applications, 5(9), pp. 24-37.

Welbourn, L. K. and Whitrow, R. J. (1988). A
Computers IV — Proceedings of the Fou
Society Human-Computer Interaction Sp
Cambridge University Press.

gesture based text editor. People and
rth Conference of the British Computer
ecialist Group, Cambridge, pp. 363-371.

Wolf, C. G. and Morrel-Samuels, P. (1987). The us

by . e of - t
editting. International Journal of Man-Machin TR, ST S0 fe

e Studies, 27, pp. 91-102.

References
103

wolf, C. G., Rhyne, J. R
; » J. R. and Ello
Salvendy and M. J §1n. zy, H. A. (1989). Th :
J. Smi SN . eP o
and Knowledge-Based s;l;thd.), Designing on Using ;E;:alrzﬂée Interface. In G.
ms (pp. 494-501). Amsterdam: Elsc%ﬁgugg{eiréte'face
: e.

Appendix A

MATE Usability Study: Documents

This appendix contains the following documents useq in the user testing experiment:

+ Introductory page

¢ Training instructions
+ Training document

» Task instructions

» Task document

* Questionnaire

+ Interview questions

A.1 Introductory Page

MATE is an application designed to support collaborative writing. To do this, MATE can
be used in 3 different modes. MATE’s first mode is as a text editor. This is to be used
by the document’s creator / principle author. The primary author then electronically sends
this document to the other collaborators, authors, editors, proofreaders, etc. These
proofreaders then use MATE in its second mode of operation, that of an annotation tool.
In this mode the proofreaders mark up the document just as one would mark up a piece of
paper. The proofreaders then electronically send the annotated document back to the
principle author. The principle author then uses MATE in its third mode, incorporation
tool, to incorporate the suggested editing changes. In this mode, the document is
displayed in 2 windows. The left window is like the annotation mode and shows the
annotated document. The right window is similar to the text editor and shows the current
version of the document. The principle author can incorporate the annotations ei.ther by
editing the document directly in the edit (right) window, or by simply selecting the

annotations in the annotation (left) window.

106 Appendix A: MATE Usability Study: Documents

For your tasks you will be using MATE in view / incorporate mode to incorporate the

annotations in the document given to you.

A.2 Training Instructions

Start MATE by typing training.

This will start the MATE program in incorporate mode and load in a marked-up text
document. You will see a document displayed in 2 windows. The window on the left will
have various editing marks in it. The text in this window will not change during the
training session. The window on the right will initially show the same document as the left
window. However, as editing tasks are performed the document in the right window will

change to show the current version of the document.

Feel free to ask any questions during this training session.

1. The Commands

You will see 4 editing marks in the left window. They are delete, move, broken move
and insert. For each of these do the following:

1.1 Select the annotation by moving the pen’s cursor on top of the mark, and then tap
the pen on the graphics tablet. Note that you must be pointing to the mark portion
of the insert annotation to select it. The annotation will become thinner to indicate
that it has been incorporated. Observe the effects of the incorporation in the edit
window. Note that the document in the annotation window does not change.

1.2 Re-select the annotation. This will undo the incorporation of the annotation.
Notice that the mark becomes thick again. Observe the effects in the edit window.

1.3 Make the corresponding editing mark in the edit window. The command will be
executed once the pen is lifted from the graphics tablet. The following is @
description for specifying the various commands:

Delete: a horizontal mark over the text to be deleted

Move: acircle around the text to be moved, followed by a line to the destination.
Note that the circle and line should be one continuous mark

Appendix A: MATE Usability Study: Documents 107

nsert: the insert is a “A” or “y»)
I mark is a “A” or “v”. Both marks are made from left to right. If

the system recognizes the insert mark, it will pop-up a text window. If the

text window does not pop-up, MATE has not recognized your insert mark

and you must try again. Type the text you wish to insert, and then press the
Insert key. If you want to cancel the insert, press the Escape key.

Broken Move: This is used for move commands for which the source and

destination are far apart. There are two parts. The first starts the same as
the move command i.e., a circle around the source text followed by a line.
But in this case the line is drawn to the margin. MATE will recognize this
as a broken move command and will allow you to choose which symbol
you want using marking menus (described below).

The second half of the broken move command can be made after navigating
around in the document. Simply pen down (usually in the margin) and
draw a line to the destination. The symbol will be placed automatically

when you start the mark. Note that you should only navigate between the
two halves of the broken move command.

Aside: Using Marking Menus:

Marking menus are special pop-up menus. First, the menu items are
arranged in a circle. To select an item you move the cursor into the
appropriate sector of the circle and lift the pen. Note that the sectors of the
circle extend to the edge of the screen. To not make a selection move the
cursor to the centre area of the menu. This is a dead-zone for which no
menu item will be selected.

It is not necessary to wait for the menu to pop-up. You might have noticed
a line connecting the centre of the menu to the cursor. You can make a
selection by drawing a similar mark before the menu appears. The benefits
of marking ahead will become more apparent when using marking menus

for the navigation commands.

1.4 Undo your edit by selecting the undo button on the screen with the mouse. This

will undo your last editing command.

Repeat any of the above steps until you are comfortable with the command set.

108 Appendix A: MATE Usability Study: Documents

2. Moving through the document (Navigation)

Basic Navigation:

Basic navigation is accomplished in navigation mode. To be in navigation mode press and
hold the button on the pen. The basic navigation commands are next page, previous
page, and shift up/down several lines. A good way to think of these navigation
commands is to consider moving or pushing a piece of paper. Page movements are fast,
like flicking a page, whereas, shifting lines is slower, like pushing the paper. To move the
document to the next page, you “flick” the document forward / upward. To move the
document to the previous page, you flick the document backward / downward. For
shifting several lines, consider the movement to be pushing the document. The length of
the line indicates how far you are pushing the document. The shifting lines navigation
commands are part of a marking menu, and can be used exactly as outlined in the

description of marking menus.

2.1 Use the page flicks to move each window to the bottom of the document and back
to the top again.
2.2 Use the “move line to ...” commands to move each window to the bottom of the

document and back to the top again.

Linked Navigation

The page flicks and line shifting can be done separately in each window or they can be
linked so that both versions of the document move at once. To do this, start a page flick or
line shift by drawing the appropriate up or down navigation mark and then without lifting
the pen make an “L” shape by drawing either to the left or to the right. Note that linked
movement only works while marking. If the menu appears, only unlinked movement will

occur.

2.3 Use the linked page flicks to move each window to the bottom of the document and
back to the top again.

2.4 Use the linked “move line to ...” commands to move each window to the bottom of
the document and back to the top again.

Repeat any of the above steps until you are comfortable with the command set.

Appendix A: MATE Usability Study: Documents 109

3. Advanced Navigation Techniques

Initially the 2 documents are the same and there should be no difficulties. But as changes
are made to the edited document, the 2 versions may become significantly different. The

advanced navigation commands are designed to aid in understanding the relationship
between the 2 versions of the document.

These commands are GoTo Word, GoTo
Annotation,

and GoBack. GoTo word and GoBack are part of the navigation command
marking menu described above. GoTo Annotation and GoBack are part of another marking
menu that acts on annotations. To use the marking menu for annotations, point to the
annotation you wish to do the command to and hold the pen down. The marking menu for
annotations will appear, containing the options “Hide”, “GoTo”, “Erase”, and “GoBack”.

GoTo word does one of 2 things. If the word on which you penned down over, appears in
both windows, the word will be highlighted in the other window. For example, using the
basic navigation commands move the edit window so it is not at the top of the document
but “MATE2” still appears. Specify GoTo word on the word “MATE2” in the annotation
window. The word “MATE2” in the edit window will be highlighted. If another GoTo
word command is specified, the 2 windows will be lined up, i.e. the lines on which that

word appears are side by side. To see this specify GoTo word on the word “MATE2” in
the annotation window again.

If the word on which you specified the GoTo word is not in the other window, the 2
windows will be lined up with 1 GoTo word. For example, using the basic navigation
commands move the edit window so that “MATE2” does not appear. Now specify GoTo
word on the word “MATE2” in the annotation window again. This time the 2 windows are
lined up with one GoTo word.

GoBack simply undoes the GoTo Word and GoTo Annotation commands.

3.1 Navigate to the top of the annotation window using the basic navigation methods.
Then use the basic navigation to navigate through the annotation window. For
every occurrence of the word “line-up” use the GoTo word command to line-up the
2 windows.

GoTo Annotation is similar to GoTo Word, except that it highlights the source text and / or
destination of the command specified by the annotation. If the source text and destination
cannot be shown at the same time, as is usually the case with the broken move command,
GoTo Annotation will alternate between lining up the source text and the destination.

110 Appendix A: MATE Usability Study: Documents

3.2 Navigate to the top of the annotation window using the basic navigation methods.

Then use the basic navigation to navigate through the annotation window. Find

each occurrence of an annotation with the word “line-up” in it. Then use the GoTo

annotation command to observe which text would be affected by the annotation.

Repeat any of the above steps until you are comfortable with the command set.

4. Overall Training Task

Navigate to the top of the document in both windows.

Incorporate all of the annotations using a combination of selecting the annotations in the
annotation window and directly editing the document in the edit window. During this task,

try using all of the navigation methods so that you are comfortable using them.

Repeat any of the commands as often as you like until you are comfortable with them.

5 Ending the Training Session

Once you are finished with the training task, do the following.
5.1 Save the training document by pressing the Document Save button with the mouse.

5.2 Press the Quit button with the mouse to exit the program.

This concludes the training portion of this experiment.

Appendix A: MATE Usability Study: Documents

A.3 Training Document

Welcome to MATE. During this training session, you will be modifying this document.
This is an example of a delete command.

This is an example of a move command to here from there.

This is an example of a long distance move command using markers from there.
This is an command example.

To here before MATE2.
This is the first occurence of line-up (1).

You have been viewing while in the view / incorporate mode this document.
When you GoTo a delete annotation the windows and you see the text to be deleted.

If MATE does not your insert mark, you will not be with the pop-up text entry box.
Don't you think that this paragraph should go somewhere else.

When you GoTo a broken move annotation, the windows line-up (3) so that you see the source
text. A second GoTo shows the destination.

MATE supports collaborative writing asynchronous.
This is the end of the user training sample document. Have a nice day.

When you GoTo a move annotation, the windows line-up (4) and you see the source text and the
destination of the move command.

Sometimes a delete command may cover many words. At other times it may only apply to a single
word.

This is where the destination of one of the broken move annotations resides.

When you Goto an insert annotation, the windows and you see the point where the text will be
inserted.

111

112 Appendix A: MATE Usability Study: Documents

A.4 Task Instructions

Scenario: Imagine that you are a newspaper reporter. You have written a story
entitled "Holidays from Hell", which you sent to 2 editors for proofreading. They have
sent their comments and corrections to you. Your task is to edit the document to your

satisfaction, keeping the editors comments in mind and using them where appropriate.

1. Start MATE by typing task and pressing <return>.

This will start the MATE program in incorporate mode and load in a
marked-up text document. You will see a document displayed in 2

windows.

2. Edit the document to your satisfaction. You may use any of the annotations

given or make your own editorial changes.

3 Once you are finished with the task, do the following.
3.1 Save the document by pressing the Document Save button with the mouse.

3.2 Press the Quit button with the mouse to exit the program.

This concludes the main task portion of this experiment.

A.5 Task Document
HOLIDAYS FROM HELL

Everything went wrong on Isherwood's trip to California, and it wasnt at all amusing at the time, he
can laugh about the experience now. On the other hand, Harry Hoyle's first vacation turned into a
real-life tragedy. Fortunately, the nightmare permanently dampen his enthuasm for travelling.

Do you Remember the Murphy Awards?

Back in January, we readers to write and tell us about travel experiences that got so badly fouled

up that Murphy's Law ("anything that can go wrong will") seems to be at work.
Islington rose to the occasion with "California Nightmare." Steve Istierword of

"The plane began its desgent into the Bay Area, and suddenly my trip became a nightmare. I've
always enjoyed going to California on business and as | dozed on the 767 isco
thoughts were of surfing, beaches and bikinis." 10/ 58N Franeiszo, oy

"And then the vomit came. Lot's of it. Those little bags the airline provides didn

my wrinkle-resistant dress su.it caught a lot. The plane veered stra%ht up. The h‘teggtsngr‘\J: "B
passengers shpt backw_ards into our seats. The captain's voice apologized over the loudspeaker
Sorry for any inconvenience. We had to avoid another plane on the runway." ’

And the nightmare trip was just beginning.

Isherwood writes: "I woke up at four in the moming. The room was rocki
been wedged against the hall door when | went to sleep. Just then, thengr'oh\r'\v; Srus#lg‘;c:ge bed

Appendix A: MATE Usability Study: Documents 113

»Sure enough, it was an earthquake. Not that tragic big one
collapsed, but big enough to ensure a sleeplessgnlghtgof ter‘r':)?sn S SRIEAE0R Saci Ay

In the moming, he joined a business contact again for breakfast.

»Just as our eggs eggs arrived, the rumbled and the

was an aftershock.” tables in the room collapsed like dominoes. It

»So much for my only remaining business suit."
"The cabbie was none too keen to take me to my hotel in San Francisco."

"In Los Angeles, | found that my prepaid hotel had gone out of business. | passed my second

sleepless night in a run-down hotel, paid money to park my rental car, and drove through a five-car
pileup only to find out that my tire had co|lapse¥j." P y ’ g

"To soothe my nerves, I decided to check out the beach. But when | got there, | couldn't see one
bikini or surfboard."

"The beach was in fog."

* ok ok ok ok Kk

Isherwood and Hoyle are joint winners of Murphy Awards, and each get $200 for their tales of
extraordinarily bad trips.

Harry Hoyle, a'Peel Region police officer who lives in Georgetown, wrote to us about what
happened to him on May 9, 1977, "a day forever burned in our memories."

The Hoyles arrived in Amsterdam, on their first European vacation. They judged their hotel, just a
block from the royal palace on Dam Square, to be "beautiful.” Since they planned on staying a few
days, Harry sent three jeans and two shirts to the hotel laundry.

But this perfectly routine chore would mark the beginning of a tragic chain of events.
The shirts came quietly back from the laundry but the jeans didn't.

"We'd planned to check out early on Saturday,” says Harry, "but since the stupid management
refused us to compensate for the loss of the jeans, we decicided we had no choice but to stay put
until the laundry re-opened on Monday.

"It was either that or run around Europe in my knickers."
They never got the jeans.
Let Harry tell the story:

"On Monday morning, we awakened by smoke and roaring flames. There was a terrible fire at the
hotel.

Harry and Laura Hoyle survived, but 43 other hotel guests perished.
"We were able to help six Swedish seniors to safety before jumping out a third-floor window
ourselves."

After two months in a burn centre in The Netherlands, they came be_lck to Canada for two more
months in hospital. Both sustained severe multiple injuries, including broken bones and third-
degree burns requiring skin grafts.

After their recovery, the Hoyles indulge their love of travel, but, says Harry, "now | always insist on
a room no higher than the second floor."
Sadly, Laura Hoyle died last year.

Says Harry: "When | travel | carry a rope in my backpack and follow stairwells all the way down to see
where the fire exits go."

"And, would you believe, many fire ‘exits' in European hotels arent exits at all. They're just for
show, they don't lead anywhere!"

114 Appendix A: MATE Usability Study: Documents

A.6 Questionnaire

Editing Text and Incorporating Annotations

In the questions which follow, please circle the category which best represents how you feel
about your experience in moving through the document with (1)=strongly disagree, (2)=disagree,
(3)=don’t agree or disagree, (4)=agree, (5)=strongly agree, and (6)=not applicable or N/A.

1. 1 selected annotations for incorporation rather than do the edits directly in the edit
window because I had difficulty in making editing marks which the system could
understand properly.

i 2 3 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree

2. I preferred to do the edits directly in the edit window even when I could have chosen
an annotation for incorporation to do the same edit.

1. 2 3 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree
3. Ipreferred using the undo last command over the undo by selection command.
1. 2 3 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree
4. 1could do the tasks with the given commands (move, delete, insert).
1. 2 3 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree

In the questions which follow, please choose the category which best represents your use
of MATE.

5. Please indicate how easy / difficult it was to perform the tasks by editing directly (i.e.
specifying editing commands in the edit window), and by selecting annotations for

incorporation.
very moderately | somewhat | somewhat | moderately | ve
difficult difficult difficult easy easy d easrz
edit directly
selecting
annotations

6. Please indicate how easy / difficult it was for you to specify the following commands
in a way which the system recognized properly.

very moderately | somewhat | somewhat | m
difficult difficult difficult easy eacs)gemtcly ::lz?srz

delete

move

broken move

insert

ndix A: MATE Usability Study: Documents

Appe 115

Overall, how would you rate the system as a too] for i) _
T for editing text? (please tick appropriate category) T Incorporating annotations and

Very Moderately ~ Neutral |

Satisfactory | Satisfactory Moderately Very

Unsatisfactory | Unsatisfactory

g. Whatdid you like most regarding any of the incorporation / editing features?

9. What did you like least regarding any of the incorporation / editing features?

116 Appendix A: MATE Usability Study: Documents

Navigation

In the questions which follow, please circle the category which best represents how

you feel about your experience in moving through the document with (1)=strongly
disagree, (2)=disagree, (3)=don’t agree or disagree, (4)=agree, (5)=strongly agree,

and (6)=not applicable or N/A.

1. Page flicks did what I initially expected them to do.
1 2 3 4 5 6

strongly &isagree disagree neither agree strongly agree N/A
agree or disagree

2. In general, I would prefer to use a scrollbar instead of page flicks to move up / down
a page in a document.

. 2 3 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree
3. The analogy of turning pages helped my understanding of page flicks.
1. 2 3 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree
4. Move line to here did what I initially expected it to do.
1.) 2 3 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree

5. In general, I would prefer to use a scrollbar instead of move line to here to make
small movements in a document.

1.'] 2 3 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree
6. ;‘he analogy of pushing a piece of paper helped my understanding of move line to
ere.
1. 2 3 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree
7. Linked navigation commands did what I initially expected them to do
1. 2 3 4 '
. , ; 5 6
strongly disagree disagree neither agree ironolvatres
Arteion Gisagre \gree strongly agree N/A
8. Goto (Navigation menu) did what I initially expected it to do
1. 2 3 4 '
; . . 5 6
strongly disagree disagree neither agree ’ '
sgrwe o s agree strongly agree N/A
9. Goto (Annotation menu) did what I initially expected it to do
1. 2 3 '
. ; - 4
strongly disagree disagree neither agree stron glsy agree N?A

agree or disagree

Appendix A: MATE Usability Study: Documents

117
10. GoBack did what I initially expected it to do
1. 2 3 '
strongly disagree disagree neither 4 5 6
A
Wpiny' agree strongly agree N/,

11. The GoBack command was useful to temporari . .
: aril
and then jump back to where I was workigg_ y examine a section of the document

1. 2 3
. . 4 5 6
strongly disagree disagree neither agree strongly agree N/A
agree or disagree

In the questions which follow, please circle the cate .
use of MATE in moving through the document. gory which best represents your

12. Please indicate how easy / difficult it was for you to specify the following navigation
commands in a way which the system recognized properly.

very moderately | somewhat | somewhat moderately | very
difficult difficult difficult easy easy casy

page flick

move line to here

linked navigation
13. Please_indicate how useful the Goto (Navigation menu) command was for the
following purposes.
not at all not too Don’t know | fairly very
useful useful not sure useful useful

lining up the windows

navigating through the
document

as an aid in understanding
the relationship between the
two versions of the
document

14. Please indicate how useful the Goto (Annotation menu) command was for the
following purposes.

not at all not too Don’t know | fairly very
useful useful not sure useful useful

lining up the windows

navigating through the
document

as an aid in understanding
the relationship between the
two versions of the
document

as an aid in understanding
what text would be affected
by the annotations

118

Appendix A: MATE Usability Study: Documents

15. Overall, how would you rate the system in terms of navigation? (please tick

appropriate category)
Very Moderately Neutral Moderately Very
Satisfactory Satisfactory Unsatisfactory | Unsatisfactory

16. What did you like most regarding any of the navigation features? Why?

17. What did you like least regarding any of the navigation features? Why?

Appendix A: MATE Usability Study: Documents 119

SYSTEM USABILITY PROBLEMS

Please check the appropriate box and feel free to make any comments

no minor major

problems | problems problems 8 onts

1. Working out how to
use the system

2. Lack of guidance on
how to use the system

3. Understanding how to
carry out the tasks

4. Knowing what to do
next

5. Understanding how

the two windows are
related

6. Losing track of where
you are in the system
or of what you are
doing or have done

7. Using the pen in
navigation mode (i.e.
using the pen while
holding the button
down)

8. Using the pen (in
general)

120

Appendix A: MATE Usability Study: Documents

no
problems

minor
problems

major
problems

comments

Unexpected actions by
the system

10.

Having to spend too
much time navigating
through the document

11

Having the proper
tools to carry out the
functions necessary to
edit a document

12.

Making marks which
were recognizable by
the system

Appendix A: MATE Usability Study: Documents 121

USER SATISFACTION

On a scale of 1-5 please circle the number whj
each aspect of MATE. Please feel free
anywhere on the questionnaire.

1. How easy to use is the system?

1 2 3 4
difficult :

hich best represents your reaction to
to write any comments you may have

X
easy no opinion
2. How satisfying is the system to use?
I 2 3 4 5 X
frustrating satisfying no opinion
3. How interesting is the system?
1 2 3 4 5 X
dull stimulating no opinion
4. How flexible / rigid is the system?
. 1_ 2 3 4 5 X
rigid flexible no opinion
5. Whatis your overall opinion of the system?
1 2 3 4 5 X
terrible wonderful ~ no opinion
6. Isthe system easy/difficult to learn?
1 2 3 4 5 X
difficult easy no opinion
7. Could you explore features by trial and error?
1 2 3 4 5 X
difficult easy no opinion

8. Can tasks be performed in a straightforward manner?

1 2 3 -+ 5 X
never always no opinion
9. Are the names and use of commands easy/difficult to remember?
1 2 3 4 5 X
difficult easy no opinion
10. Is it easy/difficult to understand how to carry out the tasks?
1 2 3 4 5 X
difficult easy no opinion

Please give any additional comments you would like to make about MATE.

THANK YOU FOR YOUR HELP!

122 Appendix A: MATE Usability Study: Documents

A.7 Interview Questions

1. Where there any questions in the questionnaire which you didn’t understand?
2 Was there anything you wanted to say that was missing from the questionnaire?
3. Was there anything about the navigation which you really liked or disliked?

4. Was there anything about the system that confused you?

=P Was there anything about the system that was difficult to do?

(9 Was there anything about the system that you really liked?

7 Was there anything about the system that you really did not like?

8. What situations do you think a system such as MATE would benefit, as an
incorporation tool for marked-up documents, as an annotation tool, or as a text editor?

9. Is there anything else which you would like to comment on?

Appendix B

MATE Usability Study: Results

B.1 Training Observations

The following are observations from the videos of the screen and subject as well as the log
files recorded during the training session. Only minor modifications were made to the
training procedure after pilot 2, and thus pilot 2’s data is also noted here.

Pilot 2

Training time: 45 minutes

had problems in drawing a recognizable insert caret.
was initially confused about direction of page flicks.

suggested that some visual indication would be useful to tell when MATE is in
navigation mode.

Move line to here was not clear initially.

had problem with linked page flick — not able to move fast enough to register as a page
flick.

System response was very slow — half a minute to respond to a linked movement.
would have liked to get to the top quickly. Page flicks and pushes do not provide an
easy way to do this.

had difficulty in using button on pen; resorted to using the mouse.

Bug in marking menus. Press and hold in place does not bring menu up. The pen

must be moved slightly.

noted that the editing commands are fairly easy to do, but the navigating is hard. Also

subject sometimes forgot to push the button on the pen to enter navigation mode.

124 Appendix B: MATE Usability Study: Results

« would like to be able to make annotations in the Edit View, or have an editing mark

stored as an annotation in the Annotation View.

Subject 1
Training time: 45 minutes

+ had no problems until navigation. A page push command took a minute to execute.

« Button on pen broke. User had to use the mouse (using the middle button on the
mouse to enter navigation mode) to navigate.

« was confused between Goto in annotation menu and Goto in navigation menu. Subject

suggested that they be distinctly labeled.

« experienced some confusion with the direction of page flicks.

Subject 2
Training time: 30 minutes
« had a lot of difficulty in making a recognizable insert caret. Several times it was

mistaken as a delete mark.

+ System hung for over a minute while attempting to do a goto command.

o preferred using the mouse for navigation commands, especially for linked navigation.

Subject 3

Training time: 38 minutes

« experienced some confusion after accidentally erasing a mark.

« noted confusion that a different action — annotation menu — occurs when pointing to a
mark versus not pointing to a mark — drawing.

+ System hung. Had to restart the program.

« commented that the button is difficult to use. It would be much easier if you had a little
area in which to specify the navigation commands.

« commented that one has to remember to push the button on pen before you put the pen

down.
« Bug in program. Subject made a move to placeholder mark in the Edit window, and

then started to draw in the Annotation window. The system mistook the mark in the
Annotation window as a move from placeholder mark.

Appendix B: MATE Usability Study: Results 125

. was annOyed.that he ca.nnot use the pen in the scroll bar area to navigate (using the
standard X window navigation techniques.).

B.2 Task Observations

The following are observations from the videos of the screen and subject as well as the log

files recorded during the task session. Only minor modifications were made to the task
after pilot 2, and thus pilot 2’s data is also noted here.

Pilot 2
+ used mouse in scrollbar and in navigation mode to navigate.

« The file was slightly corrupted due to accidentally using a previously edited file. The
effect was that some of the annotations were slightly shifted from the text, thus not

allowing the annotation to be directly incorporated. In most cases the meaning of the
annotation was still clear to the user.

« made five attempts to make a recognizable insert mark before making one which the
system recognized. On the average, the recognition rate was far below 50 %.

+ used goto mark to show the parameters of a delete mark.
+ experienced some confusion about the goto command.

« attempted to make a short delete mark for deleting a single character three times before

making one the system recognized.

+ System hung for a minute on a page move command.

« wanted to make a side note to himself in the Edit window. Initially tried to make a

move annotation, then resorted to inserting some descriptive text.

Subject 1
+ used mouse for navigation and pen for everything else. This was because the button on

the pen had broken during the training session. The subject held the pen in her hand
when using the mouse.

* A bug in the program occurred when the subject tried a move command. Several lines

of text were lost and two other lines were duplicated. This obviously confused the

subject. She did not think about using the undo last command, which she never used.
But it is unclear whether the undo last would have corrected the problem. The

remaining duplicated text caused some confusion when operations were performed on

126

Appendix B: MATE Usability Study: Results

it.
Other than the above difficulties the user appeared to have little difficulty

The file was corrupted slightly, i.e. the text file and markup files did not match after the
second page as a previously edited version of the text file was accidentally used.

tried inserting several lines of text, but the insert box could only show one line of text.
To see what she was entering she entered return characters. This caused more

problems as the main text windows have word wrapping and the insert box does not.
The system hung for half a minute for a linked page flick.

An insert was mis-recognized as a delete mark. Overall the recognition of the insert
mark was not too bad, but there were a few cases in which the user had to make several

attempts at drawing a recognizable insert mark.

often wanted to append text to words rather than enter entire words. As MATE was in
word insert mode for the user testing, the subjects never has to worry about entering
spaces around the inserted text, MATE would add the spaces where necessary. But
this caused problems when the user was not inserting words but suffixes. The subject

had to delete the extraneous spaces.

had little difficulty in specifying all of the navigation commands with the mouse.

Subject 2

L

L J

o

had no major problems, being able to do all of the commands.
used GoBack once, which caused no effect — neither view changed.
used Undo last several times.

deleted several lines of a paragraph using several delete commands. It would be easier
for the user if MATE had a way of deleting several lines at once.

tried pressing the link and unlink buttons located below the scroll bars. These buttons
were not active and caused confusion to the user. The user did user both linked and
unlinked navigation commands but mainly unlinked.

used the Goto Annotation command twice to see the various parameters of a broken
move command. When MATE jumped to the destination and highlighted it, the subject
noticed that part of the source text was visible. But when the user pushed the page to
see more source text, the highlighting disappeared, and the user lost track of where she
was in the document. This brings about the issue of how MATE should adjust the

Appendix B: MATE Usability Study: Results

127

document for the Goto Annotation command.

had some difficulty in drawing a recognizable mark to delete a single character. This is
due to a minimum length criteria for recognizing marks.

Subject 3

selected a mark for incorporation but it disappeared, and was not incorporated. Bug in
program, unsure of cause.

forgot how to do the insert command, had to refer back to training notes.

A move command was misinterpreted as a move to placeholder as the user went too far
into the margin.

made an incorrect statement that insert does not seem to work at non-spaces. The
problem is the poor recognition of the insert mark.

The small non-scrollable text entry box for insert caused a problem when the subject
tried to enter a paragraph of text. Similar to subject 1, this subject used return
characters to see the text he was entering, which causes problems when the text is
inserted into the document.

asked if there is a way to change or replace a word. The answer is not in a single step,
the user must delete and insert the text. Subject mentions that it would be convenient if
words could be changed.

asked if there is any way to cross out more than one line at a time.
System hung on a page flick or page push command.

commented that: it seems like in part the effectiveness depends upon whether or not
you are going to be accepting the annotations. If you accept a lot of changes then it’s
very easy, but if you want to think about the changes then write it over again yourself

then it becomes harder.
used the mouse in the scroll-bar for some navigation.

made several unrecognizable marks in a row. The “unrecognizable command” popup
box, causes a delay in accepting the pen input which causes the next mark to be

unrecognizable, thus initiating a chain reaction of unrecognizable marks.

had difficulty in deleting a single character.

wanted to insert the word “a” between two words which didn’t have a space between
them. The system did not generate the spaces that the user wanted as it assumed that he

128 Appendix B: MATE Usability Study: Results

was modifying a word. Subject commented that the system never does what you want

it to.
+ System hung, had to restart the program.

o did use undo last once.

B.3 Questionnaire Results

This section gives the results from the questionnaire. The following three tables summarize
questions which were rated on a scale. Table B.1 summarizes questions concerning ease
and difficulty, table B.2 summarizes questions on a 5 point scale, and table B.3

summarizes questions concerning usefulness.

Section Question
Editing Text and
Incorporating
Annotations
Ease in specifying
recognizable commands
insert 0 0 3 0 0 0 |3.00
Navigation
linked navigation 0 0 0 2 1 0 |4.33
Table B.1

Summary of questions on ease | difficulty of use. The scale ranges]—
difficult to 6 — very easy. ges from 1 —very

App®

ndix B: MATE Usability Study: Results

129
e .
Section Question St 1o
T —— ‘ = 3 4 5 wn Avp
Editing Text and ing annot: TR
[ncorporating DN R
Annotations
0 2 1 1 0 g |75
R e g e
1 0 0 3 o0 ¢ |32
: L RE
Navigation L T Y
Bl 8 0 ofans
1 0 2 0 1 0 | 3.00
AR R
prefer scrollbar ovér move O 1 2)
line to here B : (0 3.00
AR R
0O 1 o0 2 I 0 [3.75
NAA AN e
Goto (Annotation Menu) 0 0 0 4 0 0 [4.00
acted as expected
cted as expected TMIHGEHNIMNM=HMak
Goback useful to 0 0 1 1 | 1 4.00
temporarily examine section
of text
'NA A A
User Satisfaction, easy 1o use I 0 0 3 0 0]325
satisfying AL A RN
interesting 0 0 1 1 2 0 |4.25
fexible IIHEINHLH DIt
overall opinion 0 0 12 0 1]367
easy to leamn Al ARNR N
AR . 1,
easy to explore ¢ 2 1 1 4 4 2
RS N ; 'S 1D
straightforvand tasks 2R RNTR R
SRR — l 1 5 0 | 425
easy to remember {
commands
SR ; 0 o 8 1 i 2 {48

Table B.2

Summary of questions rated on a five point scale.

Appendix B: MATE Usability Study: Results

130
Section # | Question 1 2 3 4 5 | Avg
Navigation e

aid in understanding 0 1 0 3 0 |[3.50

relationship between views

lining up the window 0 0 4

aid in understanding 0 0 2 1 1 |3.75

relationship between views

Table B.3

Summary of questions on usefulness. The scale ranges from 1 — not at all useful to 5 —
very useful; 3 is don’t know or not sure.

Questions which asked the user for comments are given below.

Editing and Incorporating Annotations

8. What did you like most regarding any of the incorporation / editing features?

| found it easy and desirable to issue the incorporate annotation command instead
of manually doing the edit.

| liked the basic idea a lot. Like the ability to incorporate editor's annotations without
having to_re-speclfy therp - except in this example, The inserts were placed to the
wrong point and something went wrong. When | tried to “move” a misplaced insert.

The ability to move the windows either together or independently was a help. The
pen is easy to use: very intuitive. ’

Being able to pick text out for deletes easily and could move very easily.
Incorporation of exactly the marked changes was very easy.
It was fun circling things.

9. Whatdid you like least regarding any of the incorporation / editing features?
The insert command did not get recognized well enough.

Appendix B: MATE Usability Study: Results

131

1) Insert! at points, especially for i i
sasler-to have bean ebic y for insert single characters, it would have been much

2) Somehow, | lost several lines of text i
beeniying 16 move nan | ket e and eventually had to type them all in. | had

3) Inserting words is easy, (except fo i
SHfioUt 10 st a0e & Iette¥ o(r sufﬁF))< attra general insert problems noted above) but more

il L JONeE DF iSulil ched to previous word. Would be nice to have
modify” or “change” ability in edit window, instead of delete then insert. Maybe in rev 112

4) Ability to see more lines of text at a given time wo
v uld be VERY .
few lines to really get the flow of the prose as it were. nelplul. These were too

a little hard getting insertions but | did get better the more | practiced.
hard to controlling exactly.
** Hard to manipulate 3 input devices at once.

command set was too small and hard to use.

Navigation

16. What did you like most regarding any of the navigation features? Why?

17.

The idea of linked navigation is very good.

goto annotation was great, and partially made up for the difficulty with too small
pages.

page flicks is cute but probably would prefer scroll bar.

The “move to here” feature was ok, afthough | did get it backwards once.
What did you like least regarding any of the navigation features? Why?

| found it difficult to use the pen when making ‘“flicks” - but using the mouse, | got
much better results.

cursor should change its shape when the pen is pressed (navigation commands).

i i text, but still
| explained and made sense In that context,
o pcause | expected to virtually grab & pull the text

ushing the paper. (Does _this make
Fie direction sometimes, until | thought

page flick & move line here
had trouble using them correctly, beca
to move it, instead of virtually grabbing & f
sense? | expected them to move the opposi
about it.)

" i ny.
never was able to get the windows aligned, link seemed to be working funny

Couldn't move to a position and insert characters there.

132

Hard to keep your eyes on two documents at
is an advance, splitting it into two is a step

Appendix B: MATE Usability Study: Results

have one evolving document with a “view original” button.

System Usability Problems

once. Having one working document
backwards in technology. You could

using the pen while
holding the button
down)

no minor major comments
problems | problems | problems
1. Working out how to Mostly using the pen. Had a
use the system 1 3 - tough time to push the pen
button for navigating.
Had to remember difference
between goto annotation
and goto word - should be
some better mnemonic &
distinction between menus.
2. Lack of guidance on Gary answered my questions
how to use the system 4 - - Good instructions. Spell out
numbers <= twelvel
3. Understanding how to Forgot about “undo”! But
carry out the tasks 3 1 - good that there are more
than one way to get a given
effect.
4. Knowing what to do
next 3 1 =
5. Understanding how goto annotation helped.
the two windows are 4 - - Bigger windows (longer
related swatch of text visible) would
help a LOT!
6. Losing track of where see “Bigger windows” above.
you are in the system - 4 = E . .
or of what you are ; gl: rthe btrok;zn ed:s trying to
i e out where the text was
doing or have done going
took so long to make trivial
changes that | forgot what the
N oy i main editorial task was.
; sing the pen in R -
navigation mode (i.c.) 5 | emembering to push the

pen button.

N/A (broke) (or is breaking
“major prob” ??1)

button didn't always register
physically difficult

Appendix B: MATE Usability Study: Results 133

g. Using the pen (in :
general) N 3 having to make an insertion
= between 2 characters -
difficult to get needed
precision.
ditto!
hard to get hand eye
coordination since your eyes
i are on the screen
9. Unexpected actions by - -
the system N 2 5 unrecognized commands *, -
lost things (text) when trying
to insert doubled lines, then
lost those. WAY confusing!
(see video at ~ “eggs eggs”
para)
slow
10. Having to spend too needed more text showing
HIG LTS MAVIGALHE ! ? i was ok once | got used to
through the document using scroll-bars with the left
hand
11. Having the proper Wanted to be able to make
tools to carry out the 3 - 1 notes in margin or on text
functions necessary to which were not mistaken for
edit a document editing commands
It would have been easier
with text editor commands,
for the right-hand document
12. Making marks which unrecognized commands *, -
were recognizable by 1 i ~ | insert worked relatively well
the system for me, but still some
difficulties.
just insert and that got better
with time
took a little getting used to
User Satisfaction

Please give any additional comments you would like to make about MATE.
Neat idea.

pen interface very natural, except the button on the pen (which broke anyway).
Good to have alternate (mouse) interface!

May | have a copy?

An interesting idea and a substantial undertaking for a Master's project.

134 Appendix B: MATE Usability Study: Results

| think it would be easier to use if there were just one document displayed.

There may be a limit to how many commands you can squeeze into a pen motion!

B.4 Interview Results

The following is a condensed transcription of the interviews. P1 and P2 denote responses
from the two pilot subjects and S1, S2, and S3 denote responses from the three subjects.
In some cases the interviewer’s comments are shown to give context to the subject’s
responses; interviewer comments are denoted by I. At times either the subject or
interviewer performed an action in MATE to add to their comments; these actions are

indicated in parentheses.

1. Were there any questions in the questionnaire which you didn’t understand?
(P2) Yes. (Major changed were made to the questionnaire after the second pilot subject.)

(S1) | wasn't able to answer question 5. It was a depends question. if everything had been
perfect. (The text file was corrupted, and the annotations did not line up with the text,
therefore the user couldn't directly select any of the annotations.)

2. Was there anything you wanted to say that was missing from the questionnaire?

(S2) Why use a pen that leaves ink on paper?

(S3) 1 think the questionnaire covers it. | mean | think there are limitations on the media on the
pen based idea. | think there are limitations because of the width of the lines, how easy it is
to draw a line around a character, or cross out. Those would probably be improved by future
technology for pens and screens. For example, if the screen and the tablet were the same.
I think the ideas are bigger than the technology that you have. It's an interesting direction. |
think a lot depends on what the person’s like. A lot of people prefer writing over typing. In
this particular case you can only see one line when you are typing (in the insert box).

(S3) 1 think it would be easier to have only one document. I'm thinking of having one document
as the marked up document, and it adjusts as the document changes. 9 y

3. Was there anything about the navigation which you really liked or disliked?

(P2) Sometimes | would go back to the mouse, but it was awkward going b
the pen and the mouse. going back and forth between

(P2) | kept forgetting to press the button to go into navigation mode. | think i i
the icon changed to show that you are in navigationgmode. tank: & would be good ¥

(P2) 1 also think that there is going to be greater effects when the pen and moni
A onit r,
particularly some of the move to line stuff because it moves '\D/ery quickly a:(ri %r:ct;)l?seaett:ge

text lines are not distinct enough visually. So that it ha A
association, as I'm not familiar enough with the text. RS0 THAL Eanil msik iila

(S1) (pen broke — user used mouse)

(S1) There was one really long delay of 2 minutes.

Appendix B: MATE Usability Study: Results

(81)
(1)

0
(S2)

(S3)
(S3)

(P2)

(S1)

U
(1)

(S1)
(1)

(S2)

()
(S2)
0
(S2)
(S2)
(S2)

135
It was pretty manageable

One request.

| would prefer i .
windows, P many more lines of text, smaller font size, and / or longer

Did you use the pen most of the time?

s,itwasok. It isj i : . ; o
:{eeg istI:a‘rA.’a ok. It is just a matter of getting used to it. Often it was annoying when it didn’t

It was slow (system problem).

I didn’t use the page flicks as the

> were too har i
were 8asierto las. y d to do physically. | thought the scroll bars

Was there anything about the system that confused you?

| thought that you would

_ get a different pie menu when you hit the button and moused
down on an annotation.

Yes, | lost a whole bunch of lines once and | don’t know how it happened. | was trying to do

a move | think and | lost the paragraph and | had to retype the paragraph. | lost it out of the
edit window.

Did you use the undo?

No | didn’t. | have a tendency to use a very limited number of commands until | really learn
something, so actually | didn't use all of the commands, but | was happy. with the set | was
using. It was enough for me at the time. It didn't occur to me to use the undo. | just couldn’t
figure out what happened.

There were a couple of times when | was inserting and it deleted instead.

I have a big wish list. | would like to be able to click the mouse or whatever and actually just
get a text cursor for little inserts. There were times when | wanted to insert just a couple of
characters and | wasn'’t able to get the insert to work just right and | was getting really
frustrated and | would have liked to say let’s go to the keyboard; it'll be a bit more awkward
but at least it will work.

The link. Link was supposed to move the two windows to the same spot. | couldn't tell what

it was doing. It was doing something but | didn't think it was doing the same thing | was
drawing on screen. | didn’t use link after a while. How do you make the two screens be the

same?

Use goto command

How? If you did it in the annotation screen it was goto annotation.
(show the goto command)

(points out problem when user clicked in the margin bug in program)
I scrolled / page flicked to line them up.

| had trouble with the insert at the beginning but got better with practice.

136

(P1)

(P1)
(P2)
(P2)

(S1)

(S3)

(P2)

(P2)

(P2)

(P2)

(P2)

)
(1)
(S2)

(S3)
0

Appendix B: MATE Usability Study: Results

Was there anything about the system that was difficult to do?

Definitely the navigating; having physical problems pushing the button. The mouse was a
lot easier.

Insert was hard.
Insertion recognition was not good. Often it was off by a character.
At one point | just wanted to make a note and | couldn't.

Inserts were rough. To insert to add just a letter, to add just a suffix, it was really hard to add
a letter as it thought | was trying to insert a word. | could get into the habit of putting spaces,
for example if | wanted to insert a word | could type space word space. From my editing
experience, it's important to be able to modify words rather than replace them.

Changing the words was a pain, because you couldn't just change a word; you had to insert
and delete. A solution would be to circle a piece of text to change. For example, use the
broken move.

Was there anything about the system that you really liked?
| did like the ability to incorporate annotations. rather than doing it manually.

I like the split view idea; because a lot of times you’re not only making annotation changes.
For example, if you're annotating a paragraph which has multiple changes in it, once you
make the first change you're all off synchronized so you have to kind of figure out all the
next changes. That's really annoying. It's also good to have a log of what annotations were
done by a particular person. so that you can go back and say this conflicts or this is the
reason why | made this change because this wanted me to make this change.

Traditional tools have no way of saying why did you make these changes. Whereas with this
tool you'd be able to go back and say he made these changes and he didn't take these
changes.

It's weird, when | was doing the study | was actually kind of getting into it and found that it
could really be useful.

The other thing, the broken moves; because a lot of times you want to be able t i
b 0 switch
between the source and destination, say, to quickly see where does this person want ?o
make this change and why does he want this there. So | think that's bonus.
If I have a few annotation marks in this paragraph and then there's another i i
. . an
says | want to move this annotation to the end of the document, if | isgl?;egl?t?a‘;vrlnacsr:
annotation will these other annotations move with that paragraph? '
Yes.

| like the idea.

| liked the idea. it was neat. Also when you delete something it i i
than to highlight it and then delete it. Also | liked the move.lng s @ lot easier to slash it out

| thought it was fun circling words.

Did you try circling anything bigger like paragraphs?

Appendix B: MATE Usability Study: Results

(S3)
(S3)

(P2)

(S1)
(S1)

(S1)
(S2)

(S2)

(S39)

(S1)

137
No | didn't try that.

Crossing out long lines was hard because | tend i
that it didn't get it — it wouldn't recognize it. 10 g0 off the words and then it would say

Was there anything about the system that you really did not like?

If you could get more text on the

screen at th i g i i
would be nice. at the same time. It's not a real big problem, but it

What situations do you think a system such as MATE would benefit, as an

1erc11<i:tor;‘;orat10n tool for marked-up documents, as an annotation tool, or as a text
or?

In the context given.

If some of the difficulties in making small changes were eliminated, | can see it being useful

ind_;t)assing a document between people and if the minor problems were fixed as a text
editor.

Really useful in desktop publishing.

Me, be_ing a student of course, it would be neat if you could type in your essay and then put
it in a file for your professor to take a look at it, and do all this to it, and then you can look at it
yourself. Because it's a lot easier, obviously, to do it all on the computer.

| like doing my essays on the computer;. | find it very awkward printing it out. Instead of
having loads of sheets of paper you have it all on a file.

| think its probably good for the end of the line in a writing process and it's a choice of either
making the change or ignoring it.

Is there anything else which you would like to comment on?

| held both the pen and mouse at the same time.

