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Abstract

This report presents a discussion of issues which arise in the design of computer-based
tools for technologically-naive, but application-sophisticated users. The application
area of music composition is used as a case study in the discussion. Rather than com-
pleted systems, the current work is concerned with the issues in getting started: the
issues involved in arriving at a "base” or "foundation” structure on which an accessible,
application-sophisticated tool can be built.

Following a discussion of the general problem, the necessity of arriving at a suitable -
taxonomy of the tasks undertaken by the eventual user of the tool is presented. This is
followed by a historical perspective of computer-music. We then present arguments
for particular design decisions; namely, an approach to establishing the basis for a tool
for computer-assisted composition. The chosen approach is based on a highly interac-
tive system which relies heavily on graphic techniques for the user interface and a digi- -
tal sound synthesizer for generating sounds in real-time. Examples of such graphical
techniques are given, as is the design for a special-purpose digital sound synthesizer
which we have developed as part of the Structured Sound Synthesis Project (SSSP) of
the University of Toronto.

Central concepts developed include considering composition in terms of four main
sub-tasks: definition of a palette of timbres, definition of the pitch/time structure,
orchestration, and performance. We stress the importance of allowing flexibility in the
order in which tasks are undertaken, allowing the performance of only partially
specified scores. Because scores are represented as hierachical structures, any
"chunk"” may be treated in the same way as a single note. Furthermore, the structure
exploits the redundancies occuring in scores which consist of transformed instances of
the same basic material. We conclude that -- while much work remains to be done in
terms of methodology -- accessible user interfaces can be designed if the base struc-
tures are designed so as to closely parallel user cognitive structures.
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1. Introduction

The aim of this report is to investigate some of the issues which arise during the design -
of a computerized tool to aid in the composition of music. The intention is not to
present a finished design for yet another "ideal"” system; rather, we are concerned with
more fundamental questions. For example, given the lack of theory regarding user-
computer dialogue, given our lack of understanding of the compositional process, and
given the changing state of technology, how does one nevertheless approach designing
the "foundation” or "base” for a system which is accessible to the computer-naive but
application-sophisticated user? When we know that the system specifications are going
to change and evolve as our insight into "unknowns" increases, how do we arrive at a
decision about where to start, such that the inevitable high level changes will play the
least amount of havoc with the lower level (base) structures? Finally, how can we
evolve a design which is not the specification for an implementation, but rather a stra-
tegy for evolving its evolution?

From the above, it is clear that the issues to be dealt with have implications which
extend beyond the current case study dealing with music. Music, however, appears to
be a particularly good test area for such a study. Musicians are typically technologi- -
cally unsophisticated, while the tasks for which they would utilize such a computerized
tool are suitably non-trivial. To put it bluntly, if you can provide a usable tool for the
average music student, you can do so for anyone. It is the intention of this report to
demonstrate a suitable methodology for laying the ground-work for such a system. It
is to be hoped that such a demonstration both encourages and aids researchers work-
ing in other application areas.

2. Basic Issues

2.1. Introduction

Our first task is to establish some bounds on the scope of our discussion. Clearly, the
key to doing so lies in the basis of our topic: the development of improved computer-
based tools in various application areas !. From this, addressing the question "impro-
ved for whom?" highlights the fact that the prime focus of our discussion must be the
eventual user of the system; especially in terms of his access to the potential benefits
offered by the tool. Thus, of far more interest is the "handle", rather than functional
aspects of any particular tool. The central problem, then, is one of human engineering.
Obviously, this is not to imply that functional details of the application area can be
ignored. Rather, it is our observation that the "front-end" engineering of systems is .
too often neglected, thereby causing only a small portion of the system’s full benefit to
be realized.

In the extreme case, the point can be expressed as a paraphrase of a cliche from meta-
physics: "If one creates a computer-based tool (for music composition, for example)
with an impeccable theoretical base, if it is not cognitively, physically and economically

! We use the term "tool" in the broad sense, meaning a congenial computer-based en-
vironment which serves as a useful aid in the undertaking of some complex task.
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accessible to the intended beneficiary, to what extent does it exist in his practial real-
ity?" Our intention, then, is to investigate the foundation or basis for such access. In
this endeavour, our prime thesis is that the design of an effective tool is contingent
upon a detailed analysis of the eventual user and the cognitive structures which he
employs in undertaking the tasks for which the tool is designed as an aid. This is not a
particularly novel thesis. We cite in particular Miller and Thomas (1977), Meister
(1978), J. Martin (1973), and Meister and Rabideau (1965) as references on the topic.
Nevertheless, the literature is rather sparse when it comes to documenting and evalua-
ting particular applications taking this approach. Bennet (1972), Davis (1966), Lick-
lider (1968), and T. Martin (1973) present general surveys of the literature. Of the case
studies reported, most deal with the restricted domain of avaiation and military appli-
cations. Laske (1978) and Vercoe (1975) are two exceptions to this. Both deal with the
application of most interest to us: music composition; however, both suffer from a lack
of reference to previous work such as that cited above.

When it comes down to developing 'real-world" systems, the prime defficiency of the
literature is in providing a theoretical base and methodology for design. There are, of
course, exceptions. Parsons (1972), for example, reports on several experiments and
methodologies to establish such a theoretical base. Such work ranges from having
roots in formal mathematical modelling (Sheridan and Ferrell, 1974) to behavioral
psychology (Meister, 1976). In the work which follows, we adopt a highly pragmatic
approach. We want to build a system today, and not have to wait for the theory to
catch up. In addition, through this implementation, we want to contribute towards the
evolution of a theory. Therefore -- to the extent possible in this context -- we hope to
make some contribution to this seeming gap in the literature. In our attempt, we shall
lean heavily on J. Martin (1973) and Miller and Thomas (1977) insofar as general con-
sideration go. From this point of departure, we shall attempt to follow through on their
implications in our specific task area.

2.2. The User: Establishing a Profile

Given a suitable application for a computer based-tool, our first course of action is to
establish who is going to use it. Only then can we address the question as to how he
should actually do so. Insofar as it is possible, the point is to establish a profile of the
eventual user. In so doing, we must ask questions regarding:

. his experience with technology

. his experience in the application area

. his intelligence, or capacity for learning

his motivation; both degree and source

the amount of time available for learning vs. production

. the ability of the user to determine the suitability of the tool to match his
expectations

7. the expected work pattern: daily, weekly, steady, bursts, ete.

o S NN S

To each of these questions we must have at least a semblance of an answer before we
can continue. We can take the last one as a case in point. The constraints on the user
interface are different for the user working with the system daily, than for the user who
works in bursts, say every month or so. In the latter case -- which is nol so uncommon
(such as query systems for upper management, or music systems which we will discuss
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in detail) -- it is clear that the design must be such that the user does not have to go
through an extensive "refresher course" following sach layoff period.

For the purpose of this study, it is our intention to focus on one particular type of user.
Therefore, we can already respond to the first two questions above. Namely, our -
interest is in promoting the use of computer techniques in areas outside of the infor- -
mation sciences. Therefore, the user around which we are basing our study is one
which is computer-naive, but application-sophisticated. Our concern is to attempt to
ensure that the only constraint on his ability to carry out his designated task is his own -
experience in the application area. Thus, our goal is to evolve an approach to design
which will result in a tool which minimizes the burden imposed by the system in the
user’s planning of strategies and execution of tasks.

2.3. The Nature of the User-Computer Dialogue

Our specific concern is with the design of the underlying "base" structure for a particu-
lar computer-based tool. However, in order to achieve the flexibility requisite for such -
a foundation, we must take a look at the nature of the high level structures which it
must support. Of central importance among these structures is the nature of the
user-machine dialogue.

In investigating the nature of this dialogue, our key concern is the user. At this stage
the pragmatics of implementation are of limited concern. Our analysis should be
based on the "ideal" situation of unlimited resources. Otherwise, the potential for
(planned) upward compatibility is limited. This point is especially true given the
current rate of development in technology.

J. Martin (1973) isolates two particular approaches to user-machine dialogue: those
which are computer initiated and those which are user initiated. The former,
computer-initiated dialogue, is that in which the user is prompted by the computer as -
to his next step and/or the options currently open to him. So-called "conversational"
systems and menu oriented systems fall into this category. On the other hand, in
user-initiated dialogue, the user receives no prompting. He must be aware of what com-
mands are available, and be able to structure their order of execution so as to enable
him to carry out a particular task 2.

Fach of these two types of dialogue have particular strengths and weaknesses.
Computer-initiated dialogue, for example, poses a far smaller burden on the user's
memory than that which is user-initiated. Furthermore, the conversational nature of
computer-initiated dialogue implies an interactive form of communication. This in
turn provides instantaneous feedback to the user about the response to his previous
action. Therefore, besides prompting the next step, it enables the provision of positive
or negative feedback to the previous one. Such attributes are clearly desirable in sys-
tems designed for Lthe type of user profiled in the previous section.

? Our definition of "task" comes from Miller (1953) via Meister (1976; p. 96): "a group of :
discriminations, decisions, and effector activities related to each other by temporal
proximity, immediate purpose and a common man-machine cutput.”
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There are, however, drawbacks. Two, in particular, stand out. First, user-initiated type
dialogues are generally more efficient to implement, and -- once the user is familiar
with the system -- more efficient to execute a particular task. Secondly, user-initiated
type dialogues are usually more general, or flexible, in that the ordering of steps is not
fixed. For users utilizing the system daily, a strong case can be made for user-initiated
dialogue; however, for beginner or casual users, the opposite is true. Practically
speaking, some combination of the two is generally most appropriate. The problem,
then, is to arrive at a suitable balance.

2.4. Strength vs. Generality

The main issue raised in considering the alternative forms of dialogue can be reduced
to the question of the tradeoff between strength and specificity vs. weakness and gen-
erality 2. Essentially, we can view computer-initiated dialogue as strong, but limited by
its specificity. On the other hand, user-initiated dialogues are less limited (i.e., more
general), but weaker due to the added burden on the user. The problem can be viewed
then as how to exploit this strength while not sacrificing important generality, or
unneccessarily limiting the (musical) potential of the system. The result will be a sys-
tem which is more accessible to the user, more reliable (since better understood), and -
easier to implement. ‘ ‘

It is in attempting to distribute functions between the different forms of dialogue that
we again see the necessity of breaking the user’s problem space into a suitable taxon-
omy of tasks, and viewing the user’s behaviour within this context. The benefits are,
first, that we can obtain appropriate groupings of commands within computer-initiated
structures. Second, where user-initiated dialogue is used, we can structure commands
so as to parallel the user’'s cognitive structure; that is, commands will "fit" the user’s
normal way of thinking or working, and we can therefore minimize the added burden on
the user’'s memory resulting from this type of dialogue. Finally, we can design our
underlying structures so as to optimize and facilitate the implementation of the
different types of dialogue.

There are dangers, however, in taking too rigid a view of the above. To be sure, before
even starting, we should be aware that there is no "vorrect" analysis. Opinions will
differ among users, or even from day-to-day (as experience develops) with any single
user. Furthermore, we should be aware that any implementation will influence the
user’s results. This is true both from the point of view of the external representation
used (for example, form of music notation), or the access of particular operators (e.g.,
even if all operators are there, the relative "ease' of expressing. certain things will
affect their use; i.e., the path of least resistance).

Dealing with these dangers reverts back to the necessity of establishing an adequate
profile of the prospective user. Furthermore, we must not only consider his situation
when starting with the system, but how demands and "profile"” change with experience.
This is a point which will be dealt with in a later section of this chapter.

3 This is not a new issue and we intend only to touch on it here. Newell (1969) gives a
general account, and Truax (in press) a detailed discussion relative to music applica-
tion.



2.5. In Defense of ‘Dirty’ Systems

While we have stated that the performing of a task analysis is a prerequisite to the evo-
lution of a "good" design, we must confess our inability to provide a rigorous method
for its undertaking. The absence of such a theory is one of the points highlighted in
Meadow (1970), for example. Laske {1977), however, proposes the adoption of an atti~
tude which may provide a key to developing the basics for such a theory.

Accepting that at the outset we have a very limited understanding of the user's
behaviour within the problem space, Laske (1977) proposes a rather straightforward
strategy for gleaning at least some additional insight. He suggests that we adopt the
attitude that the computer implementation of a tool to undertake a particular task is
an explicit model or theory of our current understanding of the cognitive structures
utilized in carrying out that task. As a methodology for developing a hetter model of
the task (and hence a better tool), he advocates the observation and interrogation of
"guinea pig" users of the system. Analysis of the results of observation are then fed
back into an improved model (viz., implementation), and then tested for validity. The
formulation as presented by Laske is rather complex for a rather sirmple notion: that
successive iterations of a system -- with testing -- will result not only in a better sys-
tem, but better insight into the problem space which it encompasses. The validity of
this assertion has proven true in a number of instances in our research (Buxton and
Fedorkow, 1978). Lven in the simplest of cases, such as designing the layout of a par-
ticular graphics menu, it has taken several iterations to arrive at an "optimal"
configuration. This is true even when following guidelines such as those provided in Van
Cott and Kinkade {(1972).

The problem is, of course, the time and expense involved in carrying out such an itera-
tive approach. The point that we wish to make is that, nevertheless, it should play a
part in systems design (Baecker, personal communication). Furthermore, we are con-
vinced that with well planned data, hardware, and control structures (i.e., the founda-
tion whose design is our main concern), the economics of such testing are feasible in
many cases. Too often too much emphasis is placed on programming "correct” sys-
tems. Our argument is that we should design our underlying structures so as to facili-
tate the "guick-and-dirty" implementation of prototype systems (analogous to bread- -
boarding in electronics) to perform preliminary testing of user response.

The explicit adaptation of this approach can go a long way towards overcoming our own -
knowledge gaps which exist at the start of a project, when -- nevertheless -- design
decisions must be made. Furthermore, by adopting this approach in designing the
underlying structures we see that certain progress is made in obtaining the flexibility
to accomnmodate the changes which inevitably ccecur in the future.



2.8. The Fvolving Needs of the User
2.6.1. Introduction

During our discussion of the strength vs. generality issue, it was pointed out that the
form of dialogue which is most appropriate for the novice user is not necessarily the
most efficient for those who are more experienced. In this section we intend to go a bit
deeper into this gquestion and attempt to establish certain principles concerning the
user's changing needs as he becomes more experienced with the system.

To begin with, let us point out one attribute of our selected application area, music,
which makes it particularly appropriate for such a study. Namely, unlike most applica-
tions -- such as banking -- utilization of the systemn on the part of the potential user
community is completely voluntary. That is, assuming that the tool has the potential to
serve some useful purpose, a broadly based user community is indicative of an accessi-
ble user interface. If the human engineering is poorly thought out, most comiposers
will not make the efflort. They simply do not have the time. We are, therefore, provided
with a -~ not so rigorous -- measure of success.

2.6.2. The First Encounter

In general, the most critical period in "hooking" potential users is the first half hour
encounter. If after this period they feel comfortable (i.e., not intimidated, nor
overwhelmed) in expressing themselves, then an important success in the area of
human engineering has been scored. While it may be argued that such rapid integra-
tion with a system is unrealistic, preliminary results (Buxton and Fedorkow, 1978) indi-
cate just the opposite. Stated bluntly, a user should simply not require a two week
course before being able to work independently with a system.

Significantly, the basis for realizing such lofty aims lies within the nature of computer-
based tools. There are two main points to consider and both provide perhaps the main
selling point in choosing computer technology over the more conventional analogue
approach. The first point has already been alluded to. That is, through computer-
initiated dialogue, the tool itself can guide the user’s acquisition of the requisite opera-
tional skills. Again, we point out the implication of an on-line interactive system with
quick and informative response to errors or queries for help or further elaborations.

The second point, related to the first, is the ability to control the sequence of presenta-
tion of the system’s features. Rather than being confronted (and intimidated) by a
maze of knobs and dials, or lists of options, the operations lying beyond the user's
current needs are filtered out of his view. He knows there is more there, and is
presented with a strategy for probing deeper.

Consider the analogy of an onion. Regardless of how many layers we see or know about,
the overall structure or form is always visible. For the various options or decisions in
undertaking a particular task, we do not have to rely on rote memory in determining
the most appropriate "next step”. Rather, since we always have an overall view of the
conceptual framework {the entire onion), the next step can be deduced through logic,
rather than memory *. The former is the old case of not being able to see the forest for

4 This assumes that the logic of the system design fits the calculus (i.e., cognitive struc-
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the trees. The latter reduces the burden on the memory of the user, thereby freeing.
this critical resource to concentrate on the already demanding application task. As
always, the goal is to design the structures such that the user can work with the belief
or confidence that he knows what he is doing, that he doesn’t have to be paranoid
about destroying files or damaging the equipment, and that if he needs help, it is
readily available in a clear and concise manner.

A specific example of this type of approach cited by J. Martin is the programming
language APL (Iverson, 1962). Without getting into a discussion of the relative merits of
APL as a language, it is worthwhile recognizing that a novice can begin working :
confidently with a sub-set of APL with very little training.

2.6.3. 4s Ezperience Develops

It is clear that if a user is making relatively heavy use of the tool, he will desire to work
in a less verbose, more efficient manner than that employed by the novice. Therefore,
we must provide for the possibility of a smooth transition from computer-initiated to
user-initiated dialogues, as user experience develops. We must pay particular atten-
tion to this point -- the evolving needs of the user -- since his being application-
sophisticated implies that he is intelligent, highly motivated, and will probably learn -
quickly.

To begin with, it is important to consider that the data must be able to be accessed and
manipulated using different types of command structures (such as alpha-numeric or
graphic), reflecting the demands of the different types of dialogue. The same task will
often be able to be undertaken using different routines, each using a different form of
dialogue. In this case, the designer may simply choose to give each of these function-
ally similar commands different names, but this puts a burden on the user to
remember a larger nurmber of command names. The system should allow for function-
ally similar routines to be invoked using the same command name. Which version is
executed should be determined by some easily controlled variable set by the system or
the user. For example, the system should automatically respond with the graphics ver-
sion of a command when working at a graphics terminal, whereas the same command
typed at a conventional terminal should respond with an alpha-numeric version. The
ability to provide such a feature is intimately tied to the operating system on which the
commands are implemented. Our demands on the operating system go even further,
however. In the first place, the experienced user should be able to branch from one
program module to another without going through the intermediate modules (such as
menus or monitors) which are often provided to guide the novice user. Secondly, we
should take inlo account that as sophistication develops, the user may want to briefly
tranch from his current process in order to undertake some secondary task (such as
find out the time of day). In this case, the user does not want to go through the trouble
ol saving his work, exiting the current process, executing "time", returning, and then
restoring Lhings to their previous state. Rather, it is clear that the underlying system
should allow him to temporarily suspend his current process, execute the new one, and
on its completion, resume automatically from where he left off. In applications -- such
as music or computer aided design -- where non-linear thinking is comrmonplace, the

tures) of the user. Again, we see the role of the task analysis and its importance.
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importance of having the ability to easily provide such features is essential to desig-
ning a system which can accommodate the user's preferred strategies. The general
point to be made is that the operating system on which a computer-based tool is con-
structed is a prime determinant in its chances for success.

2.7. Special Hardware: Godsend or Curse?

The question of using special hardware in order to solve certain problems in the user-
machine interface is one of the more contentious issues to consider {c¢f. J. Martin, 1973,
p. 144). On the front end of the system, the obvious attraction is that one can develop
a custom-built "handle"” for the tool. Quite apart from the problem of expense, reliabil-
ity, and exportability, the main difficulty is the fact that what we want from the
"handle' after a certain amount of use, is usually very different from when we designed
it. Again, we see a conflict between the flexibility to try different approaches, and the
question of efficiency.

Considering the front end of systems there are certain approaches which can be taken
to avoid many of the pitfalls mentioned. First, it is worth noting that the layout and
operation of most instrumentation panels can be implemented in software through the
use of well desighed interactive graphics (Newman and Sproull, 1973). Through this
one often gains most of the benefits of special hardware, while maintaining the
requisite flexibility. Furthermore, while it is often claimed that graphic techniques are
overly expensive, when balanced against the alternative of special hardware, they gen-
erally come out ahead. This can be expected to become even more true given current
trends in technology.

The second point is that if special hardware. is built, its design should be considered
from the viewpoint of developing an efficient transducer whose function can change in
different contexts. That is, build in as much generality as possible without comprom-
ising the original purpose for which the device was built. Tracker-balls, joy-sticks, and
pressure-sensitive devices are examples of transducers which evolved from this
approach and can no longer be considered "special-purpose’.

Finally, we must admit that in discouraging the use of special hardware, we are in
danger of contradicting other design criteria which we have specified. Prime among
these is that of demanding a high degree of interaction. In certain applications -- and
music, our case study, is one of them -- the complexity of the operation carried out by
the tool is such that interaction can generally only be obtained through the use of spe-
cial hardware (e.g., the digital synthesizer). In this case, a certain amount of
compromise must be made and an appropriate decision can only made by careful
analysis of both user and application. We shall present an example of such an analysis
in Chapter Five.



2.8. The Physical Environment

A final point to be made concerns the physical environment in which the user will be
working. Too often too little attention is paid to the effect of this parameter on the
effectiveness of the tool. To begin with, the work area should be as free from distrac-
ting noise and activity as possible. This includes noise generated by air conditioning or
machinery normally found in computer rooms., Furthermore, any special requirements
of the application area should be taken into account. For example, in a.music system
it is important that the composer be able to audition his material in an acoustically
favourable environment. He should not be distracted by the noise of others, nor others
by the noise (hopefully musical) generated by him. Finally, even the hours of access
should ideally be made to fit the user’'s projected work habits. If the user normally
works evenings or weekends, the facility should be available.

Each of these issues may seem to be of only marginal importance. It would be interes-
ting to see, however, how the productivity of a system is affected simply by the colour
of the walls and the furnishing of the room. More than we ever thought, in all probabil-
ity.

2.9. Summary

Our view of the basis of evolving the underlying (data, control, and hardware) struc-
tures for a computer-based tool have been given. Following pointers to relevant litera-
ture, certain points were highlighted. In particular, the necessity of establishing a
profile of prospective users was stressed. As a case study, we have taken the example
of a computer-naive but application-sophisticated user. In terms of data structures,
the need for flexibility to accommodate different high level structures was mentioned.
Similarly, certain requirements of the system’'s operating system were identified,
which could result in a control structure which was accommodating to the user.
Finally, problems and advantages of special hardware were briefly discussed.

Throughout, the discussion focussed on non-task-dependent issues, with a view to
increasing the accessibility of computer-based tools to the user. Before continuing
with more task-specific considerations, we present a review of the literature in our
chosen application area: music composition.

3. Historical Perspeciive

3.1. I'ntroduction

This chapter intends to provide a general introduction to computers as they relate to
the production of music 8, The approach taken is that of a general overview. Our goal
is to present the conceptual and theoretical background which would enable the reader
to evaluate and compare the various systems extant, and provide a context for the

® Buxton (1977a) presents an earlier version of this chapter. Buxton (1977b) provides a
directory to those active in the field.



discussion in the chapters which follow.

3.2. Music Systems in Ceneral

The multiplicity of approaches to "computer music" are such that the composger-user is
frequently overwhelmed by the diversity. Thus, in order to impose some order on our
presentation, we shall commence by establishing certain criteria whereby various sys-
tems can be compared. To begin with, our discussion will present the material in
terms of two main application areas, the use of the computer in the compositional pro-
cess, and the generation of acoustical signals. . The reader should be aware, however, of
the bias implicit in this separation of abstract musical structures on the one hand, and
sound on the other. This is a bias which is neither reflected in all of the systems to be
discussed, nor is entirely justifiable in terms of music theory. Keeping these mis-
givings in mind, we use this approach for ease of presentation.

In addition to the above mentioned separation of topics, three other considerations
should be introduced in order to facilitate our discussion. These are,

1. What is the theoretical basis or "model" on which the system is founded {impli-
citly or explicitly), and what are the resulting musical assumptions or restric-
tions imposed on the user?

2. What is the hardware configuration on which the system is implemented; that
is, what equipment is used and how is it set up?

3. What is the mode of man - machine communication; that is, how do the com-
poser and the system interact?

While these criteria are neither mutually exclusive nor all encompassing, they do pro-
vide a basis for comparison among systems of interest. We now proceed to discuss -
these systems according to the two application areas mentioned above, computers and
the compositional process, and computer aided sound generation.

3.3. Computers and Composition

Historically, there have been two main {rends in the use of computers in the composi-
tional process. These can be characterized as those programs which on being initial-
ized, would generate "musical" structures without further intervention by the com-
poser (composing programs), and those which serve as "aids" to the composer in car-
rying out lower level compositional tasks (computer aided composition). Since each
approach gives rise to interesting peculiarities, we will deal with them separately.
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3.3.1. Composing Programs

Much of the initial use of computers for musical purposes was in the writing of pro- -
gramsg which, after being initialized with the appropriate data, would generate a com-
pleted musical structure. Early examples of such usage which are of historical impor-
tance include, Hiller and Isaacson’s work at INinois (Hiller and Isaacson, 1958, 1959 and
Hiller, 1959) which resulted in the [LLIAC Swite for String Quartet {1957); the ST pro-
grams of Xenakis (Xenakis, 1971), from which the composition Atrees (1962) was pro-
duced; and Koenig’s PROJECTs 1 & 2 which resulted in, for example, Uebung feur Kio-
vier (1969).

In each of these systems, it is the embodied model of the compositional process which
is of prime importance. In order to be implemented, each demanded that the author
first formalize, and then program the "rules" of a particular theory of composition.
This is true even if the author is unaware of it. Every program for composition embo-
dies a specific set of such rules. Thus, it is the nature of this "theory'" and its implica-
tions for the user which we shall investigate. While these are the only three systems we
will deal with under this heading, it must be realized that many other models have been
proposed or implemented for the generation of musical structures. These include
models based on linguistics, cybernetics, systems theory and so on. See for example
(Clough, 1969), MUSICBOX (Wiggen, 1972), Moorer {1972), and MUSCOMP (Rader, 1977).

The goal in the early experiments of Hiller and Isaacson was to have the computer
undertake the composition of quasi-traditional counterpoint. The results of their first
four experiments constitute the movements of the ILLIAC Swile for String Quartet
(1957). The first of these experiments involved the generation of simple diatonic melo-
dies as well as of two and four part polyphony. In the second experiment, four part
first species counterpoint was produced. A more modern idiom was chosen for the
third experiment. Here, chromatic music based on tone rows was produced. Finally,
the fourth experiment involved the production of "Markovian" music, that is, music
where the notes are generated randomly, but where the probability of any particular
note being chosen is dependent on the last note(s) selected.

Throughout these experiments, the basic technique or "model" used was a generate-
and-test, or "Monte-Carlo" (McCracken, 1955), technique. This can be described in
terms of three basic steps: initialization, generation and testing. To begin with, the
user of this technique must set up a table of "rules" or "conditions" which define which
combinations of notes are considered 'legal'. This constitutes the initialization. Thus,
in experiment two, the rules for voice leading, etc. for first species counterpoint were
specified. Once these "rule tables” have been initialized, a composition can be begun.
The process is as follows: a note is generated at random (the generate step). This note
is then tested for acceptability against the "rules" which were specified in the initializa-
tion phase (the test step). If it is accepted, it is appended onto the score. Otherwise, a
new attempt is made to generate an acceptable note. Thus, via repeated iterations
through the generate and test procedures, a composition is gradually built up.

In dealing with the "generate and test" technique, there are certain significant points
Lo be considered. First, it is important to note that the nature of the rules, which is of
prune interest from a musical point of view, is completely arbitrary from a technical
viewpoint. Thus, different stylistic traits, for example, can be generated simply by
having the composer define his own set of rules. This is not, however, as useful a
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property as might be at first imagined. To begin with, this technique is "left to right".
That is, a composition is "through-composed" from start to finish. As a result, there
are severe stylistic limitations on the types of musical structures which can be gen-
erated. In addition, changing the "rule table” is a non-trivial endeavour, which
significantly limits the composer's freedom.

Xenakis refers to his computer generated compositions as "stochastic" musie. In real-
izing these works he makes heavy use of the science of probability and statistics. Gen-
erally described, stochastic music implies simply that random variables, selected
according to certain probabilities, are utilized in the calculation of a musical struc-
ture. In order to get a better feeling for how such calculations function in the ST pro-
grams, it would be worthwhile to investigate briefly Xenakis’s ideas on the perception of
musical structures. These ideas center on the concept that what is of highest musical
importance in such structures are the composite "groups’ of sounds, rather than the
individual sound events. Thus, each "group' of sounds which is perceived as a struc-
tural entity can be thought of as a sound "cloud". The speed, colour, density, and
shape of this "cloud" then give a means of characterizing the group as a whole. This is
preferable to having to describe the cloud note-by-note via its constituent elements.

In adopting a theoretical basis in which the isolated event is secondary to the group,
Xenakis then strove to evolve a meta-language for music which reflected this approach.
Given his ideas about "clouds" of sound, it is not surprising that he turned to statistics
and probability, which are well suited for such description. The essence of the ST pro-
gram, therefore, is that it enables the user to describe the characteristics of the
clouds of sound in a musical structure, using the terminology of statistics and probabil-
ity. The program then uses "stochastic" procedures to calculate the elements of these
clouds according to the user’s specifications. The musical implications for the pros-
pective user, therefore, are that he must accept Xenakis’ formalization concerning
"clouds" of sound, and be prepared to specify his ideas in terms "understandable” by
the program. While there are definite limitations imposed on the composer by Xenakis’
system, it is one of the few which has resulted in tangible musical results.

The work of Koenig, as illustrated by the programs PROJECT 1 and PROJECT 2, is based .
on an extension of serial technique which was prevalent in the 1950s. PROJECT 1 (1964)
leaves little room for influence by the user. Basically, the same process generales
each piece, with only random variations. The program outputs information for manual
transcription concerning the following parameters: timbre, rhythm, pitch class, octave
register, and dynamics. Each composition thus generated consists of seven "form-
sections." The central idea behind the program is a variation between the "periodicity”
and "aperiodicity'' over each parameter. In terms of PROJECT 1, periodicity implies a
sequence of similar values while aperiodicity means dissimilar values. For each param-
eter there is a scale of seven levels of periodicity. Thus for any particular parameter,
each "form-section" has a different degree of periodicity (i.e., one scale degree for
each form-section). The sequence in which the degrees of each parameter’s scale
appear in the "form-section" is random and may be different for each parameter.
Thus, PROJECT 1 can be seen as a program which generates compositions according to
a very narrowly defined compositional model. Since it was written for Koenig's per-
sonal use, this is not a drawback as long as the idea works musically, which it does, in
this author’s opinion. The biggest problem in this approach, however, is the investment
reguired to produce a program with such limitations. '



Based on his experience with PROJECT 1, Koenig attempted to write a compositional
prograr which would be of general application. The result was PROJECT 2. Basically,
the attempt in PROJECT 2 is to enable the user to specify the compositional rules
whereby each of the various parameter values are selected throughout the piece. Prin-
ciples such as "aleatoric" (uniformly random), "series", "ratio” {(weighted aleatoric) and
"tendency' are available, for example. As a result of this increased flexibility, however,
the user is confronted with the somewhat formidable task of understanding the frame-
work of the program in which his input data functions. As well, he must format this
data in the appropriate manner. Once this is done, however, the program is able to
produce compositions of quite diverse nature. Currently an interactive version of the
program is being developed. With it, PROJECT 2 shall not only become more accessible .
to composers, but will probably fulfil its promise as a tool for research into problems in
computer composition.

While some compositions of interest and musical merit have been produced by comypo-
sing programs such as those discussed, certain questions do arise. The prime one is
this, given that decision making is undertaken by the program, to what extent do we
possess sufficient knowledge of the musical processes involved to program the
knowledge base on which these decisions are made? Each of the projects mentioned
represents an attempt to deal with this problem. These efforts have brought to light
several previous misconceptions concerning music, just as attempts at automated
speech translation did in linguistics. The central issue was the inadequacy of tradi-
tional music theory to deal with the "musical process.” That is to say, we are severely
limited in our current ability to establish a knowledge base for computerized musical
decision making. Consequently, those systems which have had musical success, such
as those of Xenakis and Koenig, have of necessity been highly specialized in that aspect
of music with which they dealt, and therefore have been highly personalized. The wri-
ting of a "generalized" system for the composition of music would presume a complete
understanding of a "grammar" for music; however, it is doubtful that such an under-
standing can exist. Thus, while programs such as PROJECT 2 are valuable in exploring a
particular theory, at this stage they cannot, by their very nature, be of general appli-
cation.

In terms of hardware, each of the above mentioned systems was initially implemented
on a large-scale computer (the Xenakis program, for example, on an IBM 7090). User-
machine interaction involved the preparation of the initial input data, and collection of
the final results; there being no composer intervention during the actual realization of
a composition due to the automated nature of the programs. In these early systems,
the completed composition was output by the computer in the form of alphanumeric
symbols. This encoded version would then be manually transcribed into common musi-
cal notation (CMN) for performance by traditional musical instruments. It is clear,
however, that given appropriate facilities, the musical data could have been output
direclly in the form of CMN. This could be done without affecting the compositional
aspecls of the program, while significantly improving the user-machine interface. An
exarmple of such a program has in fact been written (Byrd, 1974), which automatically
lranscribes data produced by Xenakis’ program. In addition, it is clear that user-
machine communication would be further enhanced if the output of compositional pro-
grams could be in the form of an acoustic realization of the completed work. This is
supported and demonstrated in the following discussion of computer aided composition
and sound synthesis techniques.
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3.3.2. Computer Aided Composition

The above discussion has brought to light two main problems concerning composing
programs. First, it was illustrated that the more knowledge and power that is built into
a program, the less general is its musical application (see also Truax, in press).
Second, attention was drawn to the limitations in our ability to formalize a basis for
musical decision making. As a result of these limitations, in many systems an alterna-
tive to composing programs has been taken. This we will call "computer aided compo-
sition."” We acknowledge that in the general sense, this term could cover the use of any
computer system (from sound synthesis to composing programs) in the creation of
music; however, for the purpose of this survey a more limited scope is intended.

The key feature distinguishing computer aided composition from composing programns
is the degree of interaction between the compeser and the program during the realiza-
tion of a composition. In brief, computer aided composition implies only limited deci-
sion making on the part of the computer, which is subject to the composer’s interven-
tion and control. Such intervention and control takes the form of a dialogue between
the composer and the program, and its nature is extremely important in the evaluation
of such systems.

One approach to computer aided composition is illustrated by the SCORE program
developed at Stanford University (Smith, 1972). SCORE is primarily a program which
enables a user to input, in music oriented terms, the pitch and rhythmic data to a
sound synthesis program. The effect, therefore, is to render the technology more
accessible to the musician. The user may not only create motives, but easily transpose
or otherwise transform them. As well, he may introduce various degrees of random-
ness over note sequences. All this is accomplished using an easily learned (for musi-
cians) alpha-numeric command language. One of the drawbacks with SCORE, however,
is that while the specification of the data to the program is interactive, its acoustic
realization is not necessarily so. As was stated above, SCORE is a program to input
data to a sound synthesis program; however, the type of synthesis program generally
used with SCORE is of the MUSIC V type (see discussion of digital synthesis, below).
Unfortunately, programs such as MUSIC V do not easily lend themselves to interactive
sound synthesis.

In terms of compositional power, the active role taken by the SCORE program is quite
minimal. It is primarily a tool of convenience which has proven its value in actual prac-
tice. Its compositional power can be augmented, however, as can that of most sound
synthesis programs of the MUSIC V type. This is accomplished by combining the basic
program with special compositional subroutines. The use of such programs to gen-
erate parts of a composition has been described by Howe (1975a). Typically, the com-
poser would write such subroutines himself, to generate certain parts of the musical
data for a composition. The problem is that the composer is then generally obligated
to learn computer programming -- a not altogether musical endeavour. Furthermore,
in taking this approach, the composer must confront many of the problems discussed
in our presentation of composing programs. Nevertheless, if composers were provided
with well designed languages (such as Smalltalk: Ingalls, 1977), the potential for
exploring this approach to composition would be greatly expanded 6, Such an

8 This is particularly true in cases where the music system is implemented in the same
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approach to computer composition has proven useful -to many composers, such as
Howe, and deserved more attention. Nevertheless, for the composer just beginning to .
utilize computers, it is important to realize that alternatives do exist.

As we saw, one of the key drawbacks of the SCORE system was that it did not neces-
sarily enable the user to interactively audition all or part of the composition in pro-
gress. In recent years many researchers have been developing systems which, to
varying degrees, overcome this problem. For the most part, rather than the large
computer (PDP-10) used by SCORE, these systems have been implemented on less
expensive mini-computers. By using such machines, it becomes economically feasible
to have the entire system dedicated to serving a single musician-user. Such a dedi-
cated machine thus enables the prompt response (acoustic or otherwise) to the
composer’s commands. Thus, the tools are provided, throughout the entire composi-
tional process, for the "intervention'" and "control” associated with computer assisted
composition. Examples of such systems are the NRC system in Ottawa (Pulfer, 1970
and Tanner, 1972), the GROOVE system (Mathews and Moore, 1970), POD (Truax, 1973
and Buxton, 1975), and that of the Experimental Music Studio of M.L.T. (Vercoe, 1975).

FEach of the systems mentioned enables the composer to mould his materials in a way
somewhat analogous to a sculptor. With the NRC and M.LT. systems, the composer
expresses himself in terms of common musical notation. The GROOVE system, on the
other hand, utilizes a convenient form of graphical notation to represent scores as
functions over time. To a greater or lesser extent, each system enables the user to
deal with groups of sounds at a time, thereby going beyond the note-by-note approach
of most sound synthesis programs. In many cases, especially in the POD program, the
system augments the simple transformations possible with the NRC system. This pro-
gram has the ability to generate groups of sound according to criteria similar to those
seen in the ST program of Xenakis. Here, groups or structures can then be easily
played.back, augmented, and modified, thus defining the gradual evolution of a compo-
sition.

We see then, that the role of the computer aided system extends beyond that of an,
albeit powerful, musical scratch pad, to what could be considered a composer’s "assis- -
tant”. All of this does not come without certain drawbacks, however. As was stated
earlier, the main design criteria of such systems is to optimize, on a musical level, the
communication between such an assistant and the composer. In so doing, certain
sacrifices as regards sound quality or diversity must usually be made. Given a system
appropriate to his needs, however, the composer is usually well compensated for such .
drawbacks, most of which are being overcome by current advances in technology.

In summary, the main attraction of computer aided composition systems is the poten-
tial for the user to assimilate the technology so as to serve his musical ends. That is, in
working with a program such as POD, the user is freed to concentrate on problems of
composition, the design of well formed musical structures, rather than computer pro-
gramming. Finally, it could be stated that it will most likely be through the experience
gained in working with such systems that composers will come to better understand
the compositional process, and thereby enable the development of better technological

(congenial) language as provided the user. This is a point made by Baecker (1969),
with regard to systerus for animation.
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tools for their craft (Laske, 1975).

3.4. Sound Production with the 4id of Computers

With sound synthesis, one must keep in mind.the main task. This is the creation of an
electrical signal, which is the analogue of the acoustic pressure function defining the
sound to be produced. Simply stated, the goal is to produce a voltage comparable to
that output by the stylus of a record player. Once produced, the electrical signal can
be fed into an amplification system and converted into sound. In attempting to gen-
erate such a signal, however, one runs into several problems. To begin with, the pres-
sure function associated with most sounds of musical interest is extremely complex
(Risset and Mathews, 1969, Grey, 1975, and Benade, 1978). Thus, it is necessary to find
a less complicated representation of the sound, before such a signal can be generated.
Describing and synthesizing sound via its formant structure (as in much speech syn-
thesis), or component sine waves (as in Fourier synthesis) are two examples of such
representations or "acoustic models" of sonic phenomena ”.

Assuming the existence of such a model, it then remains to be asked, "how is the model
seen by the user?”. That is, given that a user wishes to define the characteristics of a
sound to be synthesized using that model, what is the "description language" that he
must use to do so? Thus, it is important to distinguish between the mathematical -
model being employed (the "internal representation") and how it is seen from the out-
side (the "external representation’). In some systems, such as those using Fourier
synthesis, there is little difference between the two; however, in cases where the model
is very complez, it is clear that some sort of language more suitable to the musician is
desirable. The purpose of such a language is to render the acoustic model "tran-
sparent” to the user. Through such a language, the composer is able to specify infor-
mation in terms oriented to his application {(music), letting the system translate this
data into a form more appropriate to the acoustic model in use. While not directly
related to computers, the "Solfege" developed by Pierre Schaeffer (1966) represents an -
important effort in the development of such a music oriented description language for
sound. More recent research, such as that of Kaegi (1973,74; Kaegi and Tempelaars,
1978), is now oriented towards the implementation of such description languages in
interactive computer-music systems.

Computers have many advantages over conventional modes of sound synthesis, such as
the traditional electronic music studio. Generally stated, the computer is well suited
to deal with the complexities involved. In this regard, both its memory and calculating
power play an important role. With a suitable computer, one can efficiently simulate
and test various acoustic models. The development of digital F.M. by John Chowning of .
Stanford University {Chowning, 1973), which has had such an impact on electroacoustic
musie, is a case in point. Furthermore, it is precisely with the computer that we have
the flexibility to develop description languages that make the resources of such acous-
tic models more accessible to the composer.

” Regarding such models, the interested reader is referred to the excellent detailed
survey in {Moorer, 1977).

-16 -



Some of the systems discussed below offer extreme flexibility, but often at the expense
of increased cost and complexity. Others are easy to work with, but limited in sonic -
repertoire and quality. Trade-offs must be made, and these are largely
user/application dependent. To date, there have been three main approaches to using
computers in the sound generating process. These are, digital synthesis, hybrid sys-
tems, and mixed digital systems. Each of these approaches is presented below, with -
appropriate examples.

3.4.1. Digital Synthesis

This is the "classical” technique of sound synthesis first developed by Max Mathews of
Bell Laboratories. It is the technique used in the MUSIC IV & V programs {Mathews,
1969), and their derivatives, including MUSIC 4B & 4BF by Howe and Winham {Howe,
1975b), and MUSIC 380 (Vercoe, 1971,73). As well, it is used in the system of the
C.E.M.A.Mu. (Xenakis), the IRMA system (Clough, 1971), and POD (Truax, 1973). While a
complete discussion of digital synthesis is beyond the scope of this paper, the basic
concepts are outlined below. For a more detailed treatment, the reader is referred to
(Mathews, 1969).

Sound is perceived due to variations in the atmospheric pressure, as sensed by the ear.
Fach different sound is characterized. by a unique pattern of pressure variation.
Assuming that for a given sound we knew what this pattern was, we could then generate
a sequence of numbers whose magnitude fluctuated in a way analogous to the pressure
pattern under consideration. If the variation in the numbers’ values is an adequate
representation of the desired acoustic pressure variation (what is considered adequate
will be discussed below), we can output the "samples" of the number sequence from the
computer, through a digital-to-analogue (D-to-A) converter (Kritz, 1975; Freeman,
1977). It is clear, therefore, that the voltage output by the D-to-A converter will then
be analogous to the variations of the pressure pattern, just as is the sequence of
numbers given as input. This fluctuating voltage can then be fed to an amplification
system in the manner already discussed, thereby producing the desired sound.

Inherent in digital synthesis is an important trade-off. Information theory tells us that
in order to adequately represent the bandwidth of audio (circa 16 kHz), the minirmum
number of numerical samples needed to represent one second of sound is 32,000
(Mathews, 1969). Even with the most powerful computers, this factor renders the cal-
culation of all but the shortest and simplest compositions extremely expensive. Thisis
where the nature of the acoustic model used. is very important. The MUSIC V class of
programs (which dominate the field) utilizes a model which digitally simulates the
workings of apparatus found in an electronic music studio. While offering generality
and complexity (one can simulate any "idealized" studio set-up with this system), one
must pay in terms of long turnaround (i.e., typically a day between the time that data
is submitted and the time when acoustic output is returned); furthermore, the com-
plexity of the calculations involved dictate the use of a large general purpose com-
puter, such as the larger models of the [.LB.M. 360 series. This implies expense, sharing
the system with other users, and generally working in a "batch” (card readers, etec.)
environment, none of which is conducive to creative work. On the other hand, the gen- .
eral availability of such computers, the portability of the software, and the generality
offered, makes such systems attractive to many users. Furthermore, the replacement
of the "batch" approach by timesharing has improved the user-machine interface of
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some systems, such as that at Stanford University.

One can, however, take an alternate approach. Due to recent technological develop-
ments, small low cost (under $20,000.) "mini-computers" are a viable alternative for
music systems. While these machines have neither the calculative power nor the
memory capacity of their larger brothers, they do make it economically feasible for an
entire system to be dedicated to a single musician-user. This makes it possible for the
first time to have computer music systems tailor made to meet the composer’s needs.
In digital synthesis, the price one pays for these advantages is a loss in generality and
sound quality; a mini~-computer can simply not do as much inh as short a time as an
L.B.M. 360/195, for example. However, by choosing an acoustic model which is compu-
tationally efficient, these drawbacks can be largely overcome, with the added benefit
that sounds can be auditioned immediately, in "real-time." Two examples of such sys-
tems are those of Truax (1973) and that at the Xerox Research Labs at Palo Alto, Cali-
fornia (Saunders, 1977; Kaehler, 1975). Each of these systems is highly interactive, and
capable of producing complex sounds with time-varying spectra. The results of such
interaction are systems in which the potential for learning is very great. |

While the XEROX and POD systems are in some ways limiting, such limitations are lar-
gely technical, and are rapidly being overcome by current technology. One should
examine carefully their advantages from a musical viewpoint. Both offer a wide palette
of timbres through their use of the F.M. technique, and both are easy to learn. Furth-
ermore, one must reconsider the terms in which we mean "loss of generality" for such
systems. While the POD system is far less flexible than MUSIC V in its capacity for
souhd generation, its implementation enables the synthesis portion to be. combined
with an interactive compositional system, thus offering the composer a complete
interactive music package.

In summary, the trade-off with digital synthesis is generality and sound quality wvs.
interaction and cost. The choice between the two is largely dependent on whether the
system is composition or research oriented.

3.4.2. Hybrid Systems

In hybrid systems, sound production is carried out by analogue generators {oscillators,
synthesizers, etc.), rather than by a computer. The computer in this case is used as a
device to control the operation of the peripherals. Examples of such systems are
PIPER (Gabura and Ciamaga, 1968), GROOVE (Mathews, 1970; Mathews and Moore,
1970)), the Yale synthesizer (Friend, 1971), MUSYS (Grogono, 1973) and EMS (Wiggen,
1972 ).

In using peripheral sound generators, the computational demands are greatly reduced,
as compared with digital synthesis. Whereas digital synthesis requires a minimum of
32,000 samples per second, hybrid systems only need approximately 100 samples for
each device being controlled. As a result, smaller, and therefore less expensive com- -
puters can be used (for example, MUSYS utilizes a PDP 8, and EMS Stockholm a PDP
15). Furthermore, since sound quality is dependent on the quality of the devices being
controlled, interactive systems can be implemented without the resultant loss of qual-
ity seen in digital synthesis.
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By the very nature of hybrid systems, the acoustic model {and description language)
typically used is a reflection of the apparatus being controlled. Such is the case with
both the EMS and MUSYS systems; for example, in the EMS1 language, one specifies a
sound in terms of the connections, settings and timings for the actual apparatus of the
analogue studio. The computer then "plays back'” the events as specified, to be
accepted or modified by the user. The GROOVE system has expanded on this concept
by introducing a graphics oriented control language which enables the user to modify
the values of previously defined parameters, during playback. The user’'s role during
playback, thereby becomes analogous to the conductor’s in orchestral musie.

Smaller, portable hybrid systems are now appearing, which are suitable for perfor-
mance in concert situations. Examples of such systems are the HYBRID IV system of
Kobrin (1975; Smith and Kobrin, 1977), and the systems commercially available from
Donald Buchla Associates. Whether used in the studio or in concert, the main appeal of
hybrid systems is the ability to perform (in real-time) compositions made up of com-
plex control and timing functions, and patching sequences, thereby bypassing the pre-
vious dependence on audio tape in auditioning the complete composition; furthermore,
the utility of many systems extends beyond this use of the computer as an expanded
sequencer, in that the user is able to invoke previously defined compositional pro-
cedures during actual performance. Two interesting approaches to this type of system
are presented in (Rosenboom, 1975) and {(Pinzarrone, 1977).

There are however, several drawbacks to hybrid systems. While the quality of the
sound output by an analogue device may be quite high, the stability and accuracy can
in no way match that of the digital device. Furthermore, whereas with a system such
as MUSIC V, one can hypothetically simulate any number of analogue devices in any -
configuration, with hybrid systems one is restricted by the number and type of actual
devices available.

3.4.3. Mized Digital Systemns

Mixed digital systems are those systems in which a computer is used as a control dev-
ice for a digital sound generator, such as a digital oscillater. Examples of this
approach to sound synthesis are: the Dartmouth synthesizer (Alonso, Appleton and
Jones, 1975), the system designed for IRCAM (Alles and di Giugno, 1978), that developed
al Bell Labs (Alles, 1978), the Samson Box at Stanford (Moorer, 1977), and the SSSP
synthesizer (Buxton and Fedorkow, 1978). In addition, there are: the Moore syn-
thesizer at Stanford (Moorer, 1977), the VOCOM system (Zinovieff, 1972), VOSIM {(Tem- -
pelaars, 1976), the University of Illinois synthesizer (Beauchamp, Pohlman, and Chap-
man, 1975), the EGG synthesizer (Manthey, 1978), and that described by Chamberlain
(1978). This type of system is perhaps the most promising in terms of the future of
interactive computer music systems.

The concept of a mixed digital system can be gained by considering that any procedure
that can be realized as a program (software), could theoretically also be realized by
appropriate apparatus (hardware). That is, one could build a special processor to exe-
cute any programmable task. This processor is in turn controlled by the CPU of the
main computer. While expensive, in realizing a complex procedure in hardware rather
than software, one gains in one area in particular, that of time. Thus, if one developed
an especially good -- but time consuming -- paradigm for sound generation using MUSIC
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V, for example, the paradigm could then be realized in. hardware, enabling it to func-
tion in real time. In many cases, the benefits that acerue out-weigh the drawbacks of
special purpose hardware (as pointed out in chapter two). Consequently, much
research is now being carried out (by Kaegi, for example), to develop models which
lend themselves to such implementation.

Mixed digital systems take the best from both worlds. One has the speed {and associ-
ated convenience) of an analogue hybrid system, combined with the accuracy and sta-
bility of digital synthesis. This is emphasized by the sampling rates of about 50 kHz
possible with this technique (Buxton and Fedorkow, 1978), or the ability of the Alles and
di Giugno synthesizer to output 32 voices of high quality F.M., in real time. One
shortcoming, as with the analogue hybrid systems, is the limitation set by the
hardware configuration of the "synthesizer". This factor merely emphasizes the need
to evolve an adequate acoustic model before realizing it in hardware. While in many
cases the use of mixed-digital systems is the best design choice, the problems of time
and expense in developing special-purpose hardware should be kept in mind when mak-
ing design decisions.

3.5. Summary

In summary, we have seen that there exist several different approaches to computer
music. The various degrees to which a digital computer can participate in the eompo-
sitional process has been discussed, together with the various types of such participa-
tion. Both composing programs and computer "aided" composition were examined. In
addition, we have seen that there exist several approaches to generating sound for
musical purposes using a computer. Techniques considered included digital, hybrid,
and mixed digital synthesis. It has been shown that the various systems extant can be
compared in terms of how acoustic phenomena are represented to the machine and to
the user, and furthermore, in terms of the method of obtaining sounds from these
representations.

From the above survey, it can be seen that the current trend in computer music is
towards systems which are more "accessible" to the composer in the physical,
economic, and music-theoretical sense. This is seen, by this author, as a tendency
towards small interactive systems. It is felt that with mini-computer based mixed digi-
tal systems, coupled with well designed modes of communication (graphic languages,
ete.), the full potential of computers will be felt in both the composition and perfor-
mance of music.

4. Systems Analysis and Design Decisions
4.1, Introduction
We have presented the basis of our approach (Chapter Two) and established the general

context within which we are working (Chapter Three). In this chapter we shall develop
the implications of the former on the latter.
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In Chapter Two it was argued that the key to the sought-after tool lay in good
ergonometrics: tailoring the environment to fit the user’s psycho/motor structures,
Towards this end, several implications in terms of hardware and software structures
were discussed. The central point made, however, was that since we do not possess a
priori the requisite knowledge to achieve good ergonometrics, we must adopt a stra-
tegy for its attainment. The basis proposed for such a strategy was classical problem
reduction combined with an iterative approach to understanding the components of
the problem space. The process, then, becomes ohe of analyse, implement, test and
observe, re-analyse, re-implement, ete. In terms of the base structure -- our main con-
cern - it is essential to provide the flexibility to support the successive stages of this
process.

At this point, the designer is faced with a dilemma: he needs the base structures in
order to gain the desired insights into the user’s problem space, yet seemingly needs
this knowledge before the base structures can be defined. Aspects of this question
have been partially broached in Chapter Two. There it was shown that certain decisions
can be made, once the basic design attitude is adopted. The questions of accessibility,
interaction, special-purpose hardware, and command structure are cases in point. It is
clear, however, that to get beyond a certain point we must take into account problem-
area dependent considerations. Given our introduction to the application area in
Chapter Three, we will devote the rest of this chapter to the consideration -- and the
methodology of consideration -- of such task-dependent issues.

4.2. Composition as Design

The basis for the decisions made by the systems designer is an understanding of the
user’s goals, or tasks, and the strategies which he employs in their attainment. At the
outset, such understanding will be limited, but it will -- hopefully ~ increase through
successive iterations of the system. In terms of music composition, we view these
goals and strategies in the context of a design process: the design of "well-formed”
sonic structures which one construes as "music". In terms of the tool which we are
attempting to develop, the context then becomes one of computer-aided design (CAD).

While not wanting to become submerged in the problems of CAD, there is one issue
which we would like to address. This is the question of the balance between accommo-
dating old strategies in the new tool ws. the new tool introducing new strategies
towards new or old goals. The question posed by the former is, "If we maintain old stra-
tegies, why do we need the new tool?", while the alternative question is, "If we adopt
new strategies (methods of working, conceptualization, notation, ete.), how do we make
them accessible in this new, already foreign, environment?' Not trying to be
superficial, we feel that the issue is somewhat of a "red herring” when viewed objec-
tively. Our response fits neatly in with our comments regarding the naive and
experienced user in Chapter Two. Briefly stated, we feel that a key design philosophy
should be to make the novice user as comfortable and secure as possible right from
the start. The key to this is providing him with as much as possible which relates to his
previous experience. Within this familiar context, he will quickly feel at home, and con-
sequently open to the introduction of more "idiomatic" uses of the tool. The two
approaches are only in conflict when a dogmatic, rigid attitude is taken. The approach
should be, "use the familiar to introduce the new". Furthermore, the notion of familiar
should extend beyond the domain of music. As will be shown in an example in Chapter
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Eight, the use of analogy, or metaphor (based on previous experience), is one of the
most powerful pedagogical tools available to us.

4.3. Music Composition: a basic Task Taxonormy

There are essentially two levels from which one can approach defining a taxonomy of
tasks. Each has its own advantages. The first is general in application, such as that of
Berliner et al (1964) shown in Figure 4.1 8 The second is application specific, and ser-

ves as the main focus of our attention 2.

For our purposes, let us consider "musical design" (viz., composition) in terms of four
main sub-tasks. These are:

1. Definition of the palette of timbres to be available. This we call object
definition, which is analogous to choosing the instruments which are to
comprise the composer’s orchestra. The main expansion on the analogy is
that the composer also has the option to "invent' his own instruments.

2. Definition of the pitch-time structure of a composition, a process which we can
call score definition. In conventional musie, this task would be roughly analo-
gous to composing a piano version of a score.

3. The orchestration of the "score" (defined in step 2) using the repertoire of
instruments, or objects (defined in step 1).

4. The performance of the material developed thus far, whether an entire
(orchestrated or unorchestrated) score, or simply a single note (to audition a
particular object, for example) 1°,

The simple breakdown of tasks is rather straight-forward and may, therefore, provoke
a "so what'" response. It is our intention, however, to show that it is precisely in this
simplicity that the strength of the analysis lies. This simple breakdown of tasks is the
absolute "heart", or "basis", of our approach. In it we have the basis for deriving the
foundation of a very flexible, powerful system -- without pushing beyond our current

8 This we cite second-hand from Meister (1976; pp. 104-108).

? It should be noted, however, that tasks isolated by our application-specific analysig --
e.g., "perform" -- can be explicated in terms of those of the general level -~ such as
"motor processes". We include the taxonomy of Berliner et al. in order to point out
that different approaches to task classification exist, as well as for its contribution in
reducing the "blurr” that often exists between fundamentally different processes.

19 We include performance as part of the compositional process based on the opinion
that a piece of music is not completed until it is heard. While some theorists would
dispute its need, we would argue that composers of conventional music have always
had such aural feed-back -- in the mind’s ear — as enabled by a familiarity with the
long tradition of western music; a tradition which does not exist for the composer of
contemporary music. '
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Classification of Behaviors

M YU It Lere M
Processes Activities Behaviors

Detects
Inspects

Searching for and Obscerves

receiving information Reads

Receives
Perceptial processes Scans

Surveys

Discriminates
Identifying objects, Identifies
actions, events Locates

Categorizes
Calculates
Codes
Information Computes
processing Interpolates
[temizes
Tabulates
Medintional processes Translates

Analyzes
Calculates
Problem solving and Chooses
Decision making Compares
Computes
Estimates
Plans

Advises
Answers
Communicates
Directs
Communication processes Indicates
Informs
Instructs
Requests
Transmits
Activates
Closes
Connects
Disconnects

Simple/Discrete Joins
Moves
Motor processes Presses
Sets

Adjusts
Complex/Continuous Aligns
Regulates
Synchronizes
Tracks

Figure 4.1: A general taxonomy of tasks as developed
by Berliner et al.
(Figure from Meister, 1976; p 104)



{basic) understanding of the problem area. We shall see the consequences of ‘this
analysis through the rest of this chapter; first in the broad, and then in the specific
sense. '

4.4. Control Structures and User Strategies

There are two key properties of the breakdown of tasks outlined above. First, each
task has an analogy in conventional music, which facilitates conceptualization. Second,
while the general tasks/goals are presented, no restrictions have yet been placed on
the strategies -- both mode and sequence of operation -- to carry them out. Let us pur-
sue this second point.

Even with our limited understanding of the compositional process, we can state one
thing with certainty: different composers work different ways (as does the same com-
poser at different times). Some are primarily concerned with timbre, others with pitch
or time structures. Some work "top-down", others "bottom-up". It is clear, therefore,
that our base structures must support these different approaches to whatever degree
possible. Furthermore -- keeping in mind the "onion" concept from Chapter Two -- if
the composer wants to concentrate on one particular aspect of his "design" (for exam-
ple rhythmic structure), we should be able to free him from worrying about other
details secondary to this main concern.

In effect, what the above implies is (a) that there should be no order imposed on the
sequence in which the composer undertakes his various tasks, and (b) that there
should be alternative methods of undertaking any particular task. The latter is largely
a question of supporting different representation for the same data, and allowing for
various processes to input into a particular data structure (such as a score). These
issues are fairly straight-forward, have been alluded to in Chapter Two, and are dernon-
strated in Chapter Right. The question of order of operation, however, requires more
investigation.

Allowing the composer to choose the seguence in which he undertakes the tasks
outlined goes a long way in meeting the demands of various compositional approaches.
For example, allowing all the timbres to be defined before a single note is written, or,
the entire score written before any thought is given to timbre; a score orchestrated
before the "instruments" (i.e., objects) even exist, and at any time enabling the interim
results to be auditioned (the performance task). Furthermore -- in keeping with our
notion of "composer as non-linear thinker" -- the above implicitly implies the ability to
jump back-and-forth from task to task, even before its completion.

4.5. Defaults

The clear implication of the above demands, in terms of the base structures, is that we
must be able to handle incompletely specified data. The obvious approach to doing so
is to incorporate a method of defaults !! into the system design. Not so obvious is the
enormous power that this affords us above and beyond the capabilities described in the

11 The substitution -- by the system - of data not specified by the user.
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previous section.

The prime benefit of defaults is that they allow us to ignore details which are of only
secondary concern at the moment, as well as provide a simple mechanism for érror
recovery. This is pedagogically useful in that we are able to "hide" from the novice -
user details which are beyond his current level of competence. We feel that in too
many previous systems the necessity of specifying every last detail (correctly), before
being able to assess the musical results is an impediment to composers’ access. This
situation, which has been accepted as a property of computer music in general (as
opposed to a deficiency in particular approaches) is well illustrated in the following
quote from Howe (1975b; p. 170):

The note concept and the unit-generator concept require the user to be
absolutely precise with respect to all of the details of the sound qualities
in his music. While this is not so unusual for composers who have had
some experience with electronic music, it is generally more difficult for
composers whose prior experience was restricted to instrumental compo-
sition. Many details must be specified that these composers have come to
take for granted in instrumental composition, and the terms in which the
sounds themselves are described involve new concepts. This is one of the
sacrifices made in order to achieve the advantage of complete control
over all aspects of the music. Computer sound synthesis is a medium for
obtaining what you specify; you get all and only that. At least, one is
always in the position of knowing what one has, whether or not that was
what one wanted.

While there are some legitimate arguments against the use of defaults, if the system
(in particular, through the use of "profile"” files) is flexible enough to allow the more
experienced user to easily '"personalize" the defaults when he is working, these objec-
tions are largely overcome %,

4.8. Scores

4.8.1, Introduction

Having isoclated four basic sub-tasks in the compositional process, we will now examine
the nature of the task-specific structures by which they are supported. Our discussion -
is divided into three sections dealing with scores, objects (timbre), and performance.
We shall begin in this section with scores.

While music presenls some problems not encountered in other areas of CAD, it also has
someae atlraclive fcatures which are equally unique. In particular, the temporal nature
of music provides a key to data organization not found, for example, in a CAD system
for circuit design. Thus, it is "natural” that our representation of a score follow the
form of an ordered sequence of musical events. To this point, there is nothing different

12 A "profile" file is a user-defined file whose contents are used to set system defaults
and initialize various variables in the computing environment.
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conceptually from any of the systems described in Chapter Three. Where our approach
differs, however, is in what constitutes a music event. This we shall develop in the next
two sections of this chapter.

4.6.2. Hierarchical Representation of Scores

In Chapter Three it was pointed out that most systems gravitated towards one of Lwo
extremes: those which dealt with the score from a note-by-note approach (e.g., Ver-
coe, 1975b), and those which dealt with the score as a single entity (e.g., Xenakis,
1971). It is obvious, however, that structures falling somewhere between the "note”
and "score" level play an important musical role. Therefore, systems which lean
towards the "note" and/or "score' level are seen as largely inadequate in dealing with
these middle level structures. Truax {1973) recognized this and his POD system was an
attempt to deal with the problem. His approach, however, was based on the use of sto-
chastic processes, and therefore assumes other problems of compositional programs
detailed in Chapter Three. The problem of dealing with the different structural levels
of a composition -- from note to score -- remain largely unresolved.

Two observations concerning the above provide the basis of our approach to the prob- -
lem. First, what has hitherto been considered two extremes are seen as two instances
of the same thing. Both deal with the composition "chunk-by-chunk'. The only real
difference is the size of the chunk: a note or an entire score. If we could provide a
structure through which the composer could cause an operator (e.g., "play”, "tran-
spose", ete.) to affect any "chunk" of the composition -- from note to score -- we will
have gone a long way in overcoming the problems of previous syslerns.

The key to allowing this "chunk-by-chunk" addressing lies in our second observation:
that the discussion of structural "levels”" immmediately suggests a hierarchical internal
representation for scores. Such a structuring of the data goes a long way in enabling
the specification of scope (definition of "chunks") of operators. A "play" command, for
example, can affect a terminal node (single note) or some non-terminal (thus causing
the sub-tree or "sub-score" below that node to be played). The important point to note
is that such a structuring of the data allows any "chunk" of a score to be treated in
exactly the same manner as a single note; with the same ease and clarity, regardless of
"chunk" size!

In suggesting the use of a hierarchical representation, we are immediately in danger of
having the reader assume the existence of some particular model which functions as
the basis of our approach. One might assume a Shenkerian bias {eg., Smoliar, 1978)
while another might feel that we are attempting to use grammars and techniques from
linguisties {eg., Winograd, 1968) in our approach to music. It is important to point out
that neither of these assumptions is well founded. In the next few sections, we shall
present the basis for our structuring of the data, and show that it does not imply the
composer having to specify grammars, etc., in order to work efficiently.
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4.6.3. The Musical Event

In the introduction to our discussion of scores we defined a score as "an ordered :
sequence of musical events”. Central to an understanding of our hierarchic represen-
tation of scores is the notion of "musical event" as used in this definition.

What is meant by a "musical event" is quite simple. It is an event which occurs during
the course of a composition which has a start-time and an end. Thus, the entire com-
position constitutes a musical event (the highest level), as does a single note (the -
lowest level). Similarly, chords, motives, movements, ete., are all musical events. In
fact, any of the "chunks" -- as described in the previous section -- can constitute a
musical event %, Thus, any musical event (e.g., @ motif) can be made up of composite
musical events (e.g., chords and notes); hence the basis for our hierarchy.

In considering the concept of a musical event, it is important to realize that the star-
ting time of the next event is completely independent of the duration of the current
one. Therefore, as we see in Figure 4.2, for example, the same two events (G4 and C5)
can occur in sequence (Bar one) or parallel (Bar two), or in some combination of the
two (Bar three). Similarly, we see in Figure 4.3, for example, that each of the four
parts in a string quartet can be considered as a separate musical event (each made up
of events of a lower level).

With the musical events, there are two autonomous notions of time: duration and
entry-delay. The first is self-explanatory, and the second is the delay before the onset
of the next event in the sequence. In melodic figures the two are equal. In a chord, the
entry delay is equal to zero. The important thing to note is that in performance, for
example, they can be modified independently or together. Changing both will vary
tempo while adjusting the articulation proportionatly. Adjusting duration indepenently
of entry-delay will result in a change in the articulation of notes, for example. Thus,
there is a great deal of potential for the "conducting” of a score built into the under-
lying structure.

We can express the notion of musical event as a simple grammar (where Mevent is an
abbreviation for musical event): 14

Composition ::= Mevent;

Mevent  ::= Mevent* | Score | note;
Score 1= Mevent;
note ::= terminal (i.e., some musical note);

Besides the ability to isolate different components of the composition, this structure
has the benefit that the tree structure actually represents a "recipe” of how the com-
position was put together. Thus the additional features. of being able to backtrack or

'8 This notion of an event being either a simple sound or a more complex structure is
somewhat similar to the use of sound pattern (simple) and gemishes (complex) in the
system of the Institute of Musicology, Arhus, Denmark (Hansen, 1977; Manthey,
1978).

4 In the grammar, non-terminals begin with an upper-case character.
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Figure 4.3: High level musical events - an
example. Each line of the quartet
can be considered a single musical
event. The events overlap in a re-
lationship similar to Bars 2 & 3 in
Figure 4.2.

(From Bartok, String Quartet No. 4, First Movement)




reassemble scores. are provided. Throughout it should be kept in mind that the com-
mon simple list structure used to represent scores is convered by the model: airee of
level one. Therefore, the user has a choice as:to his score representation. Complexity
is not forced upon him.

4.8.4. Instontiation

Our choice of a hierarchic score representation makes possible additional features not
yet discussed. Consider, for example, the common case where a composition is made
up of certain base material which is then repeated, developed, transposed, ete. In this
case, the score could contain several instances of a particular musical event, but
where each instance may be transformed in some way. One need only consider one of
the examples in the literature of the "theme and variations" form to find a good illus-
tration of this point. In terms of a tree structure, we see that this case could be
described as there being more than one instance of a particular sub-tree. Where we
can derive power from this observation is in stating that consequently, there should
only be one master-capy of that sub-tree, and at each instance we store only the sub- .
tree identifier and the transformations to be effected for the particular instance 15,

There are a number of benefits to this approach. First, it is easy to isolate all instances
of "motif A", for example. Second, the size of the score is reduced considerably, since
only one copy of the motif is saved 16, Third, it is clear that our file system and data
structures must be able to treat any musical event as a free-standing self-contained
structures; a sub-score. Therefore, any sub-score can be played, edited, etc., on its
own. Most important, any change to the master copy of any sub-score in a composition
will be reflected in every instance of that structure. Thus, if a re-occurring figure in
our composition is an octave jurmp up, followed by a semi-tone fall, by simply changing
the master copy of this figure to a major triad, all instances would be similarly affected
by this one action/

4.6.5. Summary ‘

In the preceeding discussion, an argument has been made for the adoption of a
hierarchically based internal representation of scores. Through this approach we can
provide the basis for the composer’s ability to address himself (and his commands) to
the "chunks" of the score with which he is concerned. Furthermore, through the use of
instantiation we are able to exploit the redundancies inherent in musical structures
and gain savings both in space and ease of operation. Further discussion of score-
related issues -- with the required details -- is presented in Chapter Seven. In addition,
illustrative examples, particularly of the use of instantiation, are found in Chapter

15 This notion of instance was developed and used extensively by Sutherland (1965) in
his SKETCHPAD system.

18 This is admittedly at the expense of speed. However, consider that if we do have to
do an expansion before the score can be performed, we are still no worse off than the
linked list representation of MUSIC V, for example. Furthermore, we still have the
hierarchic representation intact, as a master "recipe"” enabling backup, transforma-
tion, etc.
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Eight,
4.7. Objects & Timbre Definition

4.7.1. Introduction

If we are going to synthesize sounds, we have: an obvious interest in being able to con-
trol "timbre"; however, the nature of '"timbre'" for musical purposes is rather elusive.
For example, the American Standards Association (1960) states "Timbre is that attri-
bute of auditory sensation in terms of which a listener can judge two sounds similarly
presented and having the same loudness and pitch are dissimilar.” Traditional explana-
tions (e.g. Helmholtz, 1954) have restricted their description to the physical (viz.
acoustical) properties of sounds. Two things are clear, however: that ideally, timbre
should be described in the perceptual, rather than acoustical domain; second, timbre
is a multi-dimensional attribute of sound, such that the number of dimensions inhibits
the understanding and control of the perceived phenomenon. Thus, our prime objec-
tive is to sstablish the undeplying struétures which will: (4) fdacilitate the implementa-
tion of different high-level external representations of our repertoire of timbres, and
(b) support an eflective editor for exploring the properties of the multi-dimensional -
attributes of this repertoire. Throughout, the intention is that initial work at the lower
acoustical level will provide insights enabling us to develop a control mechanism func-
tioning at the higher perceptual level. As our insights into representations of timbre
improve through experience and experimentation, we are able to refine our external
representations accordingly. Note how this is an instance of the iterative appoach pro-
posed in Chapter Two. Here we have a clear case where the requisite knowledge for
implementing the "preferred" system does not exist, so we adopt a methodology for its
attainment.

In our approach the analogy to the timbre of a musical instrument is an object (after
Schaeflfer, 1968). By our definiticn, an object is: "a named set of attributes which will
result in sounds having different pitches, durations, and amplitudes to be perceived as
having the same timbre". In our definition, it is significant that we have stated nothing
about the nature of those attributes constituting an object. The notion of an object
simply provides a conceptual framework in which the composer can view his activities.
All objects have a name and. all instances of a particularly named object sound "the
same'" 17, Conceptually, this is all that the composer need understand, plus the fact
that there is an editor which will aid him in (a) controlling his palette of timbres -- by
defining and modifying his own set of objects, and (b) "orchestrating" the notes in a
score from this set of objects.

17 Note that we use the notion of instance here in exactly the same manner as during
our discussion of scores. That is, there is only one master-copy of any particular ob-
ject. Any change to that master-copy is therefore reflected in every instance of the
object. This provides an effiecient mechanism for refining the definition of a trumpet
timbre, for example, or changing all "trumpets" to "flutes".
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To the extent discussed thus far, objects have much in common with insiruments in
the MUSIC IV class of programs {Mathews, 1969). Differences will become evident as we
progress, but perhaps the most important is the method in which they are defined.
MUSIC IV instruments are defined in terms of components called unit generators. In
order to define an instrument, the user must understand how to combine these unit
generators into a meaningful configuration. Although the difficulty of this task has
peen somewhat reduced by having the unit generators correspond to modules found in
the electronic music studio, as well as the provision of a catalogue of basic instruments
(Risset, 1969), it is still a significant obstacle in the musician gaining a fluency with the
system.

Qur approach to the problem is to take a few well-proven configurations of unit genera-
tors and "package"” them so as to optimize on the ability of the composer to explore
their full potential. Clearly this decision relates back to the strength vs. generality
issue raised in Chapter Two. Our choice to take the more limiting but strong approach
is based on our belief that the "real" problems in computer music are not in the area of
sound synthesis. We are confident that the research of people such as Moorer (1977)
and Le Brun (1977) will help bring an ever-expanding repertoire of computer-based
sounds to the repertoire of composers. We are less confident, however, that enough
attention is being placed on the development of tools to aid the composer in controlling
these sounds in a musical context. In examinining what we consider as being of prime
musical importance, we see that it is in relationships developed among sounds, rather
than in the intrinsic value of sounds themselves. Therefore, providing the composer
with access to "any sound imaginable"” is not a prerequisite for a musically useful tool.
A reasonably broad palette of musically interesting sound classes -- sounds having
time-varying timbre, ete. -- is adequate.

Having adopted this approach, the problem is to select those instruments or acoustic
models which we will support. In this decision, the prime considerations are: the range
of the timbral palette, suitability to efficient implementation, ease of control protocol,
and perhaps most of all, how well the model lends itself to the implementation of a
user-congenial interface. Moorer (1977) gives a good survey of the alternatives open to
us. One thing which becomes clear in examining the different models available is that
the high computational bandwidth required for sound synthesis is.in conflict with our
desire to reserve as much computational overhead as possible for higher level musical
processes (such as enabling the user to "conduct” a performance). Therefore -- in
spite of our reservations about special-purpose hardware -- it was seen as expedient to
go to a mixed-digital system. The alternative hybrid approach was judged inappropri-
ate in light of both our experience with analogue systems (Vink and Buxton, 1974), and
the benefits of the mixed-digital approach outlined in Chapter Three: speed, stability,
and precission. As a consequence, the constraints on what acoustic models chosen are
cven more pronounced due to the expense of implementation and the resulting fact
that we will have to live with our decision for a long time. The result of our search is
the choice of five different acoustic models: fized waveform, frequency modulation,
additive synthesis, waveshaping, and VOSIM. A description of each of these models, as
well as a discussion of why they were chosen, follows below. Additional details regar-
ding their hardware implementation and supporting data structures appear in
Chapters Six and Seven, respectively.
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4.7.2. Pized Waveform

The fixed waveform mode of timbre specification is the simplest model of sound syn-
thesis. It consists simply of an oscillator whose frequency, amplitude and waveform
can be specified by the user. By itself, the technique is rather limited from a musical
point of view. While any waveform can be output, the waveform -- and hence timbre --
does not change during output '8 Nevertheless, the technique serves as the basis for
others to be discussed below, and therefore serves a useful pedagogical function.

4.7.3. Frequency Modulation

Frequency modulation is a synthesis technique developed by John Chowning (1973) at
Stanford University. Digitally, the technigque has had a large impact in computer music
because it provides a computationaly efficient method of defining and synthesizing
sounds having time-varying spectra. The basis of the model is that in modulating the
frequency of one oscillator by another, we can exercise control over the frequency and
amplitude of the generated sidebands. This control can be exercised through the
specification of about six parameters. Furthermore, many of these parameters can
vary over time, thereby enabling the control of time-varying spectra. While the fre-
quency modulation model means that one object requires two oscillators, its ability to
generate time-varying spectra makes it far more useful musically than the fixed
waveform mode.

4.7.4. Waveshaping

Like frequency modulation, waveshaping is a technique which enables the synthesis of
sounds having complex time-varying spectra; while utilizing a minimum of resources
(both in hardware and control). Furthermore, it enriches the timbral palette which
can be provided to the user by virtue of the breadth of sounds which it can produce.
The basic concepts of waveshaping were developed by Schaefer (1970) and further
refined for digital sound synthesis by Le Brun (1977). Essentially, waveshaping syn-
thesizes complex spectra through the control of non-linear distortion. The technique
involves taking the output of one oscillator and -- rather than using it as a signal -~
using it as an address into a table. The contents of the table entry acessed is treated
as a waveform sample, scaled in amplitude, and output as an audio signal. Audioc spec-
trum is then controlled by a combination of: the waveform and amplitude of the origi-
nal oscillator's output, and the function stored in the table.

4.7.5. Additive Synthesis

Additive synthesis (Risset and Mathews, 1969) is one of the best understood methods of
defining the acoustical attributes of a sound event. One of the prime advantages of the
technique is the existence of working systems to analyze sounds in terms of the model,
This gives great flexibility in acoustic and psycho-acoustic research -~ as well as music
-- through the technique of "synthesis by analysis" (Grey, 1975). This is the process of

18 Strictly speaking, this is not quite true if one counts changes in amplitude.
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analysing sound, then re-synthesizing it with or without effecting transformations on its
various attributes (as isolated by the model of analysis). As long as our vocabulary to
describe sounds is so limited, the benefit of being able to use sounds from nature as a
reference is obvious. The main drawback of the model, however, is that ~ compared to
frequency modulation, for example -- it requires a rather large amount of information
and several oscillators (a critical resource).

Additive synthesis can be understood in terms of the technique of Fourier Analysis. In
a simplified description, any complex periodic waveform can be described in terms of a
set of constituent partials, or simplified waveforms. In the Fourier series, these par-
tials are all integral multiples of the fundamental. They are sine functions whose fre-
quency, amplitude and phase must be specified. In sounds found in nature, the fre-
quency and amplitude of each of these partials may vary in time, thereby giving the
sound it's time-varying timbre. It is exactly this dynamiec phenomenon which charac-
terizes natural music sounds and makes their timbre interesting. We must only ensure
that our hardware and software structures will support efficient control of these
parameters.

4.7.6. VOSIM

We have stated above that a prime goal in object definition is to enable the
specification of timbre according to a perceptual rather than  acoustical model.
Towards this end, one model of sound synthesis is particularly appealing. This is the
VOSIM technique developed by Kaegi and Tempelaars (1978) The attraction of this
model is that it enables us to synthesize quasi-speech sounds, and thereby exploit cer-
tain findings in psycho-linguistics. Below, we shall outline these properties and then
give a brief description of the model which makes their exploitation possible.

The aspect of psycho-linguistics which we wish to exploit is called the 'cardinal vowel
quadrangle", defined by the linguist Daniel Jones (1956, 1972). Essentially, the cardinal
vowel quadrangle -- shown in Figure 4.4 -- is a two-dimensional space, bounded on its
four corners by the four prime cardinal vowels: [i] - as in "heat"; [a] - as in "had"; [a] -
as in "father"; and [u] - as in "cool". Each point on the surface of the space defined by
this quadrangle correlates to a unique vowel sound; furthermore, all vowels in Indo- -
European languages are contained within the bounds of this surface. The most striking
property of the quadrangle, however, is that physical prozimity in the physical domain
equates with subjective similarity in the perceptuall Thus, the closer two points are,
the more similar are their timbre and vice versa (since vowel quality equates to timbre
in musical terms).

To this stage, we have referred to vowels as steady entities defined by points. Clearly,
however, a line between points has meaning, and in phonetics is termed a "dipthong".
The difference between a point and line is seen in the English words "a" and "eye",
respectively. Most musical sounds are "dipthong" in nature; that is, their sound quality
varies in time. Thus, not only is the ability to specify timbres by a line encompassed in
the model, but also the ability to specify the type of motion along that line (linear,
exponential, random, etc). The use of physical gestures -- such as drawing -- is one
obvious approach. [inally, so far all discussion has revolved around vowel (viz., quasi-~
periodic, or pitched) sounds. However, both music and speech include non-periodic
sounds, or sounds with noise components. In speech these are the "consonants”, and in
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Figure 4.4: The primary cardinal vowels
(After Jones, 1956)

music we have, for example, percussive sounds. Again, this feature is encompassed in
the VOSIM model where we have the ability to impose varying degrees of non- -
periodicity on the vowels.

The basis of the VOSIM model is presented by Kaegi (1973, 74), and Kaegi and Tem-
pelaars (1978). The method involves outputing a stored function (such as a sine
squared pulse), as a one shot. That is, only one cycle of the respective function is out-
put, the period of which is determined by a user controlled parameter. Another
parameter is then provided in order to control the delay before a subsequent pulse is
output. Using this model -- shown in Figure 4.5 -- it can be seen that the following
points are true. First: the fundamental frequency (and therefore pitch) of the output
is determined by the sum (#;) of the periods of the pulse (#;) and delay {fg). Second:
the model causes a strong formant to appear at the frequency 1/t, (Kaegi and Tem-
pelaars, 1978). Third: random variation of £ will result in sounds having a noisy spec-
trum. Fourth: all of the variables can be time varying thus enabling one to generate
glissandi {¢;), dipthongs (¢, -- while keeping ¢; constant), and degree of noise {deviation
of tg).

By a combination of two oscillators working in parallel in this mode, we are able to util-
ize Kaegi’s method to synthesize most vowel-type sounds. By adding the ability to -
introduce a degree of random variation (the degree of which is controllable gver time),
we are also able to synthesize consonant sounds.
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Figure 4.5: The basic VOSIM function
(After Kaegi "and Tempelaars, 1978)

4.8. Performance Factors

4.8.1. Introduction

Our discussion of scores and cbjects has focussed mainly on the: organization of the
information structures. In the performance stage we see not only the importance of
these structures, but also the hardware transducers used for control.

The first step in our discussion is to clarify what we are referring to when we speak
about performance. Mathews has described the use of computers in music perfor-
" mance as falling somewhere between two extremes 19 These extremes are described
in terms of the following two modes:

1. Piano Mode
2. Tape-Recorder Mode

The former of these -- piano mode — refers to the instrumentalist situation where all
control information is coming from a human performer. The second mode -- tape-
recorder mode -- refers to the situation where all performance information has been
predetermined. This mode could just as easily be called "player-piano” mode.

18 Mathews' comments were made during a talk given while visiting the University of
Toronto, June 1978.
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The problem now becomes one of determining where one wishes to fit in between these
two extremes. In terms of piano mode, it is difficult to imagine how to develop a per-
formance practice and transducers which were not either novelties or throwbacks to
previous approaches (such as the synthesizer or electronic organ). On the other hand,
experience with tape music has shown the deficiencies of the "tape-recorder” mode,
such as the lack of a visual component and inability to vary performances.

Clearly what is needed is an approach which gives the possibility of real-time interpre-
tation (the ability to follow another instrumentalist, or dancer, for example) without
having to go to the full extreme of "piano mode".

4.8.2. Conducting

In considering the various alternatives, the model of performarnce which seems most
appropriate to our needs is that employed by the GROOVE Systern (Mathews and Moore,
1970). This is an approach in which the performer’s role is analogous to that of a con-
ductor rather than that of an instrumentalist. In this case the computer does the
actual performance -- playing a pre-defined score on the digital sound synthesizer --
while the composer/performer is able to affect aspects of nuance such as articulation,
dynamics, balance, tempo, ete. In terms of realizing this objective, we must look at its
implications in terms of the base structures.

To begin with, let us consider the score organization as already described. One com-
mon function of the conductor is to address himself to one section of the orchestra,
such as winds or strings, and make some gesture regarding balance or articulation, for
example. Here is a clear example of where our use of a hierarchical representation of
scores is advantageous. In this case, the composer need only have the "strings" as a
particular sub-score, and he can then -- assuming adequate computational power ~-
address his commands to that sub-score independent of whatever else is occuring.

In "conducting", we are able to make use of our general-purpose transducers (e.g., the
graphics tablet, sliders, etc., described in Chapter Five). No special hardware is
needed except for the digital synthesizer (as mentioned previously in this chapter, and
described in Chapter Six). It is clear, however, that all "conducting” should not need to
be undertaken during one "master" performance. Similarly (and consequently) a par-
ticular performance should be able to be saved, played back, and subsequently edited.
This places a burden on the real-time capabilities of the computer (saving data) and
the data structures. In this regard, we see that heavy use can be made of stored Junc-
tions (described in detail in Chapter Seven). These are simply functions over time
which we allow to control any "conductable" parameter in a score. If no function is
specified, a default (normally steady state) function is inserted. These functions can
be previously defined, or their values can come directly from the input transducers
(such as the sliders). In the latter case, the data may be saved at the composer’s
discretion. Examples of parameters which can be thus controlled include tempo, note
duration independently from tempo (hence articulation), dynamics, and localization.
Again we emphasize the fact that these parameters can be affected independently for
each sub-score in a composition, thereby building up a very complex, sophisticated
structure.
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It is clear that the features desired and demands made up to now make very strong
demands on our computing environment and information structures. In the next three
chapters we shall present details of a system which meets these demands.

5. The Computing Environment

5.1. Introduction

In Chapter Two we defined "tool” as "a congenial computer-based environment which
serves as a useful aid in the undertaking of some complex task". It is the purpose of
this chapter to examine a bit more deeply the basis of this environment. In particular,
we will discuss the choice and details of the computing environment in which we have
chosen to implement our system. This we shall do in terms of the two main com-
ponents: hardware and software structures.

5.2. Hardware

5.2.1. Introduction

A general overview of the physical environment is presented in Figure 5.1. Here the
main functional components are shown. These can be subdivided into four main
categories: the input/output (I/0) transducers, the host computer, the slave proces-
sor, and the digital synthesizer. Due to its special role in the system, the digital syn~ -
thesizer will be discussed on its own in Chapter Six. The components of the other three
categories are discussed below.

5.2.2. I/0 Transducers

5.2.2.1. General

In selecting the I/0 transducers to be used by the system, it was consciously
attempted to avoid special purpose hardware, according to the ideas expressed in
Chapter Two. The transducers used have been chosen so as to minimize as much as
possible the physical gestures that the user must make in executing a particular task.
In this regard, we have attempted to assemble a configuration in which typing could be
kept to a minimum. As a result, the transducers are oriented very heavily towards
interactive computer graphics. Again, this is in keeping with -- and a result of - the
importance which we place on the flexibility to utilize different representations of data
and processes. Graphics are well suited for the task. We shall now discuss each of the
key transducers independently.
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5.2.2.2. Graphics Display

Perhaps one of the most important components in the system is the graphics display.
The display used is a fast refresh vector-drawing display produced by the Three Rivers
Computer Corporation of Pittsburgh. Use of refresh over the alternative storage or
raster-scan (video) techniques was chosen primarily due to the potential for dynamic
graphics. One can, for example, animate complex processes, have graphic scores :
scroll across the screen, or selectively erase, move, or edit individual picture com-
ponents. With the Three Rivers display and display processor, all of this is possible free
of flicker (even with the most complex images) in real-time.

5.2.2.3. Digitizing Tablet

Equally important to the display of information graphically is to enable the use of
graphical techniques for data entry. Various alternatives are available. These include .
light-pens, "joy-stick" controllers, tracker-balls, touch sensitive panels, digitizing
tablets, and mice (tracker balls mounted in a small housing enabling them to be used
much like a digitizing tablet). For our purposes, we have chosen to make use of a digi-
tizing tablet. This device facilitates sketching and pointing, and provides for very high
resolution when required.

The tablet consists of a flat panel over which one can move a small device called the
"cursor"”. Most important, the device can be used in combination with the graphics
display in such a way that placing the cursor-at a particular position on the tablet will
cause a graphic ikon called the "tracking cursor" to be positioned at the corresponding
position on the surface of the graphics display. Thus, all of the facilities of a light-pen
are provided (for example, drawing or pointing), without the associated arm fatigue
and visual problems. :

Besides the uses already mentioned, the tablet has certain other attractive features.
For example, mounted on top of the cursor are four buttons which can be used to ini-
tiate different events or indicate responses to questions. One of the values in this is
that the hand need not leave the cursor for the typewriter-type keyboard in order to
reply to quries requiring a key-stroke response. (Note that of the graphic input devi-
- ces listed above, only the tablet and the mouse conveniently lend themselves to the
incorporation of such buttons.) Finally, coupled with appropriate software, the tablet
can function as the input device to a pattern-recognizer which the user can "train" to
learn and recognize a set of user-defined shorthand graphics symbols (such as. for
eight-note, rest, etc.).

5.2.2.4. Sliders

The "slider box" is another input device useful in interactive computer graphics. Desig~ -
ned by Fedorkow (see Fedorkow, 1978 for details), the device consists of a box con-
taining three general purpose switches and two infinite sliders. Fach slider (shown in .
Figure 5.2) consists of a touch sensitive continuous plastic belt in combination with a
motion detector *. The user may touch the exposed part of the slider (circa 13 c.m.)
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and move the belt up or down. All of these interactions can be monitored by the host
computer and used as control information. For example, in "eonducting' a score, one
slider can be used for tempo and the other for dynamics. Controlling the sliders with
one hand leaves the other free to use the tablet. Thus very high bandwidth is possible
with no typing and very little physical effort. Furthermore, even though there are only -
two physical sliders, they can be used to control several different "virtual” potentiome-
ters which may be displayed on the CRT. In this case, one can rapidly change their
context (i.e., reassign a slider to a different potentiometer) simply by pointing at the
potentiometer with the cursor and touching one of the sliders. In so doing we see one
of the most attractive features of the slider: it is motion rather than position sensitive.
Therefore, unlike a normal potentiometer, there is no need to "null" it, or reset its
position when switching it to control graphic fader A from controlling graphic fader B
(which may be in a different position).

5.2.2.5. Typewriter-type Keyboard

In addition to the above, a normal typewriter-type keyboard is provided. This enables
the graphics display to be used as a conventional terminal. When working graphically,
however, a system can be designed such that about the only time the user need use the
keyboard is in initially calling up a program and when assigning names to files, such as
scores.

5.2.2.8. Loudspeakers

Obviously, it is important that the user be able to audition his material under the most
ideal circumstances possible. In this case, the work station should be in a room desig-
ned to the standards of a recording studio control room. While this is seldom possible,
every effort should be made to provide good monitoring facilities away from the noise
of the computer room, and away from other workers. In many cases, even this is
impossible. In such a situation, perhaps one of the best investments to be made is in
high quality headphones. In choosing headphones, however, besides the normal cri~
teria of sound quality, comfort, and durability, the ability to exclude external noise
should be considered.

5.2.3. Host Computer

The key demand on the host computer is the ability to support the demands of the
software and peripheral hardware described. In particular, attention must be paid to
the ability to meet the real-time demands of the system. Finally, in keeping with our
axiom of accessibility, the system should be the smallest, least expensive machine
capable of meeting these demands. For the initial implementation, we have chosen to
utilize a Digital Equipment Corporation {DEC) PDP-11/45 machine. This processor is
complemented by three disk drives, a magnetic tape drive, hard copy output {(both

R0 While all electrical components were developed by Fedorkow, we are indebted to Alli-
son Research, Inc., Nashville, Tennessee, for their co-operation in letting us utilize
the slider mechanism developed by them.
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graphic and alpha-numeric), cache memory {to increase speed of program execution),
and full memory complement.

There are various good reasons for choosing this machine, apart from the fact that it
was available. First, it supports the UNIX operating system, the attractions of which
are discussed below. Second, it provides a powerful tool during the research and
development phase, and yet is downward compatible (hardware and software) to a
smaller, less expensive, more portable machine, the DEC LSI-11/2. Thus, once the ini-
tial research and development phase is completed and a more stable system evolved,
accessibility can be greatly increased.

5.2.4. Slave Processor

The main function of the slave processor is to enable redundant computation and
"mindless crunching” to be farmed out by the host computer. This frees valuable com-
putational overhead for higher level processing. That is, the host machine serves a
supervisory role while the slave does the leg work. An example of the type of computa-
tion carried out by the slave is the expansion and interpolation of stored functions and
the direct servicing of the real-time demands of the synthesizer.

For the function of slave processor, a minimal configuration of a DEC LSI-11/2 was
chosen. The processor includes 16K RAM, floating-point option, and interfaces. It is
mounted in the chassis of the synthesizer and utilizes the synthesizer's power supplies.
While this processor is perhaps more expensive than some micro-processors, it has the
attraction that it is able to execute code written in the high level language of the host
processor. Code can be written, tested, and debugged on the host and then down-line
loaded to the slave. The 1B-bit machine is also significantly faster in carrying out arith-
metic operations than most of its 8-bit counterparts. Finally, it will retain compatibil~
ity even when the host is scaled down to the LSI-11/2.

5.3. Software

5.3.1, Operating System

One of the main attractions of the PDP-11/45 is that it supports the UNIX operating
system (Thompson and Ritchie, 1974). Simply stated, in our opinion, UNIX is the most
‘state-of-the-art operating system available commercially today for use on mini-
computers. UNIX is a time-sharing system for which there exist single-user subsets for
smaller machines (eg., Lycklama, 1978). Therefore, the same basic system can be used
on both the large PDP-11/45 and the future LSI-1 1/2 host processor. In addition, there
exists a UNIX based system for the slave processor {Lycklama & Christensen, 1978),
which provides for overall system unity. With the time-sharing version, the attraction
is that several users can utilize the music software simultaneously, thereby increasing
accessibility. Furthermore, both research and development and application work can
be undertaken simultaneously. An impression of the power of UNIX in combination with
the PDP-11/45 can be gleaned by considering that the system can support up to eight
other users - doing text editing, graphics, ete. -- and still perform a gsixteen part com-
position in real-time without resorting to use of the slave processor! Again, remember
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that all this is on a time-sharing system running on a mini-computer.

In terms of its other features, UNIX has a very convenient hierarchically structured file
systern which facilitates the handling of the numerous files used in a composition.
Through the feature known as the "shell”, often-used sequences of commands can. be
abbreviated by the user into a single command. In addition, it is the shell which ena-
bles us to achieve two of the demands made in Chapter Two. First, to be able to use a
control condition (such as type of terminal) to determine which version of a particular
command is to be executed. Second, to enable the current process to be suspended .
while the user temporarily branches off to another. The system not. only supports, but
is written in one of the most sophisticated high-level languages available on a mini-
computer: the language "C", which is discussed below. Partially due to UNIX being
written in C, the system can be modified to suit the needs of a particular installation.
UNIX is documented {Thompson, 1978; Lions, 1977) and has a good text editor. In sum-
mary, it is felt that our development would be nowhere near its current state were it
not for the tools provided by this system.

5.8.2. High Level Language

As stated above, the language chosen for implementing the base structures is the
language "C" (Kernighan and Ritchie, 1978). The attraction of this language is that it
supports complex data structures (such as aggregates of data types) coupled with -
dynamic storage allocation. "C" is a structured programming language with a clear
control structure. Since it was written for the PDP-11, it generates very efficient code,
which is important, given our real-time constraint. Furthermore, it is well documented
(Kernighan and Ritchie, 1978). Again, a great deal of our success has been due to the
availability of such tools.

5.3.8. Graphics Support

One of the main software packages on our system which serves to illustrate the power
of UNIX and the PDP-11/45 in combination with well-chosen peripherals is the graphics
support package, GPAC (Reeves, 1976). GPAC is a comprehensive package for suppor- -
ting interactive computer graphics, including animation. The package includes many
high level routines {such as scale, rotate, etc.), the composite effect of which is to free
the programmer from low level details in order to concentrate on more important
issues. The package is device independent. That is, the same routines will function
whether the output device is a CRT (raster-scan, storage, or vector-drawing), or a
hard-copy plotter. Second, the facility for interaction is augmented in that GPAC is
what is known as "event-driven”. That is, programs (with the resulting graphical
display of information) can be structured so as to have the flow of control determined
by the type and value of various user generated "events'. Examples of such events
would be: pushing one of the buttons on the cursor, moving the cursor or fader, lifting
the cursor from the tablet, the absence of user activity for a given period of time, etc.
Finally, GPAC is well documented (Reeves, 1977).- In summary, GPAC makes it very
easy for the programmer to provide immediate visual feedback to the user following a
particular action. That this feedback can be in graphical form greatly increases our
bandwidth of communication and improves the potential for our achieving a good user
interface.
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8. Digital Synthesizer

8.1. Introduction

The synthesizer is one of the most important components in the system. Generally
described, it consists of one "real” oscillator which is time-division-multiplexed into six-
teen "virtual” oscillators. The design owes much to the Dartmouth synthesizer (Alonso
et al, 1978) as well as the VOSIM oscillator (Termpelaars, in press; Kaegi and Tem-
pelaars, 1978).

The device is essentially a fixed sampling rate, accumulator-type digital oscillator. The
sampling rate of each oscillator is 50 kHz, giving a bandwidth of 25 kHz. Dynamic range
is well over 60 dB (and should improve with further adjustment) while freguency resolu-
tion is approximately .7 Hz (linear scale) over the entire bandwidth. This will shortly be
improved to enable resolution of less than 1 "cent" at even extremely low frequencies
Rl The output signal of each oscillator can be fed to one of four analogue output -
busses which may then either be fed directly to an amplifier, or to a channel distribu-
tor (Fedorkow, 1978; Fedorkow, Buxton and Smith, 1977). The waveform ouiput by
each generator may not only be user defined - up to 8 waveforms available at one time
-- but one may switch waveforms in mid-cycle. This is possible since the 18 oscillators
share a 18k buffer of 12-bit words to store waveforms. This 16k of RAM is partitioned
into 8 2k blocks, one for each of the 8 possible waveforms defined by the user or sys-
tem. Apart from this memory configuration, this synthesizer is particularly interesting
because the oscillators may be used to generate sounds according to the synthesis
modes described in Chapter Four (i.e. fixed waveform, frequency modulation, VOSIM,
additive synthesis, and waveshaping modes) ?2. This goes a long way towards a "univer-
sal module" -- that is, all modules of a uniform type (with the resulting ease of concep-
tualization and communication). While this is in direct contrast with analogue syn-~
thesizers, a very wide repertoire of sounds is possible (including all phonemes in Indo-
European languages, for example). We shall now present in greater detail the actual
design of this device.

6.2. Techrical Details

In this section, we shall give the design details of the digital synthesizer. Details will
not, however, be taken to the logic level. Rather, the purpose is to illustrate and dis- -
cuss the design approach to a level to enable the reader to evaluate the appropriate- -
ness of this design as compared to the alternatives. We shall begin by presenting an -
overview of the general architecture. This is followed by a discussion of the method of

21 One "cent" is an interval equal to 1/100 of a tempered semi-tone. One cent is slightly
below the limit of human pitch discrimination and therefore represents the prefer-
red piteh resolution of the oscillators. See, for example Backus (1969).

%2 An important point to note is that the use of the various modes is not mutually ex~ -
clusive. That is, it is perfectly possible to be synthesizing an 8 partial tone using ad-
ditive synthesis, while we have VOSIM, FM, and fixed waveform modes being utilized at
the same time. The flexibility of the arrangement is obvious, as is its benefit.
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frequency control. Finally, a presentation of the various acoustic models embodied in
the design is made.

8.2.1. General Architecture

The general layout of the device is shown in Figure 6.1. Here it is seen that the syn-
thesizer itself is made up of four main modules: the controller, memory, oscillator,
and digital-to-analogue converter modules, respectively. Communication among the
modules is via a single high-speed data bus which is under the supervision by the con-
troller module. Communication with the host computer is achieved via a parallel bus -
connecting the controller with an: address decoder residing on the host computer's -
input/output bus.

Before proceeding to present details of the synthesizer's functional organization, a few -
points should be made concerning the method of interfacing. By isolating the syn-
thesizer from the host, we are able to power down, test, repair, and/or modify the syn-
thesizer without having to also power down the host. Furthermore, the host is pro-
tected from damage due to faults or damage in the synthesizer. These were important
considerations given that the synthesizer was hosted by an expensive time-sharing sys-
tem. Other users could not be allowed to suffer due to work being undertaken on the
synthesizer. All of this was even more important since we take the same iterative
approach to implementing hardware as we do for software. Namely, the device was up -
and running in the simple fixed waveform mode well before -~ one by one -- the other -
modes were added.

6.2.2. Freduency Control

The basis of the digital oscillator is the sampling of a stored function. In this case, the
function stored is one cycle of a selected waveform. The waveform is stored as 2K 12-
bit samples in a random access memory (RAM) internal to the synthesizer. Sound is
generated by outputing (scaled) samples from this table through a a digital-to-
analogue converter (DAC) which is connected to some transducer such as a
loudspeaker.

Since the waveform buffer (WFB) contains only one cycle of the waveform, frequency
{cycles per second) is controlled by the number of times we cycle through the samples
of the buffer each second. This can be controlled two ways. One is to sequentially out-
put each sample of the buffer every cycle. Since the number of samples output per
cycle is constant -- as is the WIFB size -- the rate at which samples are output must vary
for each frequency. The second alternative is to keep the sampling rate constant and .
vary the number of samples output each cycle; for example, if at frequency f every
sample is output, then to output the frequency 2f we would output every second sample
in the buffer. (Outputing half as many samples -~ equally spaced throughout the buffer
-~ at the same rate doubles the frequency.) In the first case, frequency is specified in
lerms of the sampling rate; in the second, in terms of the offset between subsequent
samples in the buffer.
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Both approaches have been used with success. The variable sampling rate oscillator is
used, for example, in the Dartmouth Synthesizer (Alonso et al.,, 1978) and the VOSIM
oscillator (Tempelaars, in press; Kaegi and Tempelaars, 1978). However, two main
problems must be overcome in taking this approach. First, when a bank of such oscil-
lators is used - each at a different frequency -- their samples are output asynchro-
nously, making it difficult to mix or process them digitally. Hence, for example, each
oscillator in the Dartmouth synthesizer has its own DAC. The second main problem is
that at low frequencies the sampling rate may enter into the audio band {below about -
16 kHz). This requires special consideration in terms of the filters following the DACs.
Consequently, the cut-off frequency of the low-pass filters may be required to vary with -
the sampling rate.

In our system, we have chosen to take the more straightforward fixed sampling rate
approach. The technique is well understood (it is the basis the MUSIC V software oscil-
lators), the sampling of different oscillators is synchronous (making the time-division
multiplexing of several oscillators rather straightforward), and the final stage filters
have a fixed cut-off frequency. As has been stated above, frequency in this type of
oscillator is controlled by specifying the offset in the WFB between subsequent samples.
This offset -- or increment -- we call F_INC ("frequency increment’). Given the address
of any sample n (4, ), then:

Ay = (4, + F_INC) modulo WFB size

A generalized view of this mechanism is shown in the simple ramp generator shown in
Figure 6.2. Here it is seen that the sum of the addition (and hence the address of the
current sample) is accurnulated in the register ACC - to be used in calculating the
address of the next sample. The modulo arithmetic is accomplished by simply ignoring -
the carry bits. Converting frequency from Hz to F_INCs is straightforward, given the
sampling rate and WFB size. This is effected using the following formula:

F_INC = Hz * WFBS/SR

where Hz is the frequency in Herz, WFBS is the waveform buffer size, and SR is the sam-
pling rate.

6.2.3. Fized Waveform

We obtain the fixed waveform mode of operation through a slight extension of Figure
6.2. A simplified presentation of this mode is made in Figure 6.3. Here, the principal
components added concern the WFB table lookup and the DAC mechanism. In addition -
to F_INC, four new addressable registers appear. These are: WF_SEL, OP_SEL, ENV,
and AMP,

As was stated in the Introduction to this chapter, there are eight buffers in which
waveforms can be stored. Therefore, besides calculating the address within any partic-
ular WFB (the process illustrated in Figure 6.2), one must also specify from which of
the eight WFBs the samples are to be taken. This is the putpose of the register WF__SEL
("waveform select"), which is simply a 3-bit value catenated onto the address calcu- -
lated by the ramp-generator. One benefit of being able to easily change waveforms is -
in the potential for minimizing distortion due to aliasing, or fold-over. This can be
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accomplished simply by substituting simple sine tones for complex signals whose fun-
damental frequency is above a certain threshold. Since the harmonics of such signals
would fall outside of the bandwith of human pitch perception, the substitution would be
not be perceived and the generation of partials above the Nyqguist frequency avoided.

There are four audio output channels in the synthesizer. The output of each of the six-
teen oscillators may be routed to any one (and only one) of these four channels. The
purpose of the register OP__SEL is simply to specify to which of these output channels
the oscillator’'s output is to be routed.

Once a sample is obtained from the WFB, it is generally scaled in amplitude so as to be
able to produce sounds of different loudness.: One technique of doing so is to digitally -
multiply the sample by a scaling factor and then output the product through a normal
DAC. This is the technique used by Alles and di Giugno (1978), for example. At the time .
of design, however, it appeared more economical and better from a control point of
view to take an approach similar to that of the Dartmouth synthesizer. Here we carry
out the scaling through the use of multiplying DACs, which were less expensive and
complex than digital scaling. The waveform sample is placed in a 12-bit multiplying
DAC and the output is scaled according to a reference voltage input. Thus, even at low
amplitudes there are 12-bits of resolution of the waveform, resulting in better dynamic
range than would be possible with an ordinary "fixed-point" 12-bit converter.
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One interesting idea of Alonso’s which is incorporated intc our design deals with the
derivation of this reference, or "scaling” voltage. Rather than coming from a single
amplitude value, separate notions of "envelope" and "volume” are carried over into
hardware. That is, the envelope of a sound is scaled in hardware rather than software,
thereby saving valuable CPU time. Amplitude scaling is, therefore, aceomplished by
three DACs in series. The first is the volume DAC. The second and third -- both multi-
plying DACs -- are the envelope and waveform DACs, respectively. The output of the
volume DAC (as determined by the contents of register VOL) is used to scale the output
of the envelope DAC (whose unscaled output is determined by the contents of register
ENV). The scaled output of the envelope DAC is then used as the scaling voltage for the
waveform DAC. One point worth noting in the current implementation concerns the
volume DAC. Since loudness varies logarithmically with amplitude, a logarithmic -~
rather than linear output -- DAC is used. Thus we have an example where psychoacous-
tic research has affected hardware design.

6.2.4. Additive Synthesis: Bank Mode

In the preceding section we saw how we can generate a sound having a particular fixed
waveform and a varying amplitude contour. Given our knowledge of additive synthesis
(discussed in Chapter Four), we see how a group of fixed waveform oscillators can be
used to generate complex sounds having time-varying spectra. In this case, we have
one oscillator corresponding to each partial to be synthesized. Since the technique
simply involves the use of a group of fixed waveform oscillators, we refer to it as bank
mode. For the same reason, we see that the technique requires no special-purpose
hardware beyond that already described.

6.2.5. VOSIM Maode

The basis of VOSIM is the ability to output one eycle of a particular function {(such as a
sine pulse) followed by a controlled delay before the next cycle is output. Let us
assume that the function is stored in one of the WFBs. Our method of implementation,
then, incorporates a mechanism which outputs one ecycle of the function stored in the
WFB {(the period controlled by F_INC), and then steps into a time-out mode for a
specified delay period. A simplified illustration of our implementation of this mechan-
ism is shown in Figure 6.4. Here it is seen that the period of delay is controlled by the
contents of the register DEL. The oscillator functions in two modes: cycle and timeout.
Cycle mode ends and timeout is triggered when there is a carry-bit out of register ACC
(i.e., at the peak of the ramp, or when the WFB addressing "wraps around"). At this -
time -- timeout -- the contents of DEL are loaded into the count/compare (CNT/COMP)
register which is decremented every 50/1000th sec. When the contents of this register
equals zero (0), cycle mode is re-triggered and the CNT/COMP register disabled. We
see, then, that when DEL equals zero we are continually in cycle mode and therefore
effectively in fixed waveform mode of operation.

The VOSIM mechanism as described thus far is an over-simplification to facilitate the
presentation of material. What the description omits is the method for controlling ran-
dom deviation, or noise in the sound. The mechanism employed is illustrated in Figure
6.5. Again, the register CNT/COMP is loaded at the start of each timeout cycle. Simi-
larly, CNT/COMP containing the value zero still triggers eycle mode, while an overflow
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from ACC still triggers timeout. The difference, however, is in the value which is loaded
into CNT/COMP. Instead of simply loading the value contained in register DEL, as -
diagrammed in Figure 6.3, the value loaded is the value contained in DEL plus a ran-
dom value. The range of this random value is plus or minus some specified percentage
of the contents of DEL. This percentage value is determined by the contents of the
register DEV (% deviation). The actual origin of the random value is the random
number generator labelled RNG.

It is clear from Figure 6.5 how the actual delay -- the value loaded into the register
CNT/COMP -- is arrived at. A few points are worth noting, however. First, when the con-~
tents of DEV equals zero, we have effectively the situation diagrammed in Figure 6.4.
Second, when the contents of DEL equal zero, we still effectively have fixed-waveform
mode. Finally, the eflective (average) fundamental frequency in VOSIM mode is deter-
mined by a combination of the contents of both the F_INC and DEL registers.

6.2.8. F'requency Modulation

The synthesizer has sixteen digital oscillators. Frequency modulation (FM) is imple-
mented such as to allow any oscillator '"n" to frequency modulate oscillator n+1
{modulo 16). While this format does not allow the use of multiple modulators of a single
carrier wave (such as described in Schottstoedt, 1278), this deficiency is largely made
up for by our ability to use modes other than FM. At the time the device was designed,
the tradeoff was weighted towards economy and accessibility rather than generality.

In implementing FM certain extensions had to be made upon the basic oscillator as
described thus far. These fall into two categories: those which enable the oscillator to
be modulated, and those which enable it to modulate. The method of implementation
is shown in Figure 6.6. Here a pair of oscillators are shown. For simplicity’'s sake the
VOSIM components have been omitted (as in fixed waveforin mode, register DEL would
be set to zero). Similarly, since the DACs of the modulating oscillator are not used
(i.e., are set to zero), they are not shown. Finally the diagram is made such that the
first oscillator shows only the modulating mechanism, while the second shows only the
additions to allow it to be modulated. It should be remembered, however, that both
oscillators are in fact identical. This is seen in Figure 8.8, which shows a single oscilla-
tor which includes the mechanisms for all oscillator modes.

Returning to Figure 8.8, we see several points of interest. First, the maximum devia-
tion of the frequency of the carrier oscillator is determined by the product obtained by
multiplying the contents of the registers F_INC and MOD_INDEX of the modulating
oscillator. Second, the actual instantaneous amount of deviation (MODULATION) is
derived by multiplying the maximum deviation by the current sample taken from the
WFB (again, of the modulating oscillator). Finally, the actual modulation is effected by
adding the MODULATION to the contents of the register F_INC of the carrier oscillator.
The sum of this addition is then used as input into the ramp generator.

There are a few additional points to note in the above. First, remember that both
modulator and carrier may address any one of the eight WFBs through the use of their
WF_SEL registers. Thus, we are not restricted to FM with sine waves only. Second --
and not so obvious -~ every oscillator is always modulating its neighbour. However, in
fixed-waveform mode, for example, these MOD_INDEX registers are set to zero --
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effectively switching off ‘the modulation. Finally, note that the richness of sound
obtainable through FM is gained at the expense of two oscillators per sound. In com-
plex structures this makes the low number of oscillators (sixteen) felt rather strongly.
(This is equally true in waveshaping mode, and even more true in additive synthesis.)
The user must, therefore, often resign himself to resources comparable to a quartet or
octet rather than that of a symphony. Given the other benefits of the system, however,
these limitations seem not so serious. There has, after all, been a great deal of "accep- -
table" chamber music written over the years.

8.2.7. Waveshaping

Inspired by LeBrun (1977), we decided to determine if we could incorporate
waveshaping into the hardware structure. This turned out to be rather easier than
expected and the result is a slight variation on the FM mode already described. A func-
tional representation of the waveshaping implementation is shown in Figure 6.7. Like
Figure 6.8, we see only the critical. components of two oscillators. However, instead of
referring to the oscillators as "modulator" and "carrier" as in FM, we will refer to them
as "excitation” and "distortion", respectively.

Starting with the excitation oscillator, note. that the configuration is just as in FM
except that the multiplication of the contents of the F_INC and MOD_INDEX registers is
missing. The contents of MOD_INDEX, therefore, function as a simple scaling factor for
the samples talcen from the WFB. Secondly -- concerning the distortion oscillator --
notice that the entire ramp generating mechanism for WFB address calculation {inclu-
ding ACC) is missing. In this mode, the contents of F_INC is set to a value such that {by -
itself) it addresses the sample midway into the WFB. The output of the excitation is
then simply added onto this constant and the sum is used as the address into the dis-
tortion WFB. The sample thus addressed is then output to a DAC, thereby completing
the basic waveshaping process.

It still remains, however, to present how the mechanism shown in Figure 6.7 is obtained .
using that shown in Figure 6.68. The key to doing so lies in having the MOD_INDEX regis- -
ter function in two different modes. The current mode is determined by the most
significant bit (msb) of the MOD_INDEX register. When this bit is zero, we have regular
F'M as described in the preceding section. When, however, the msb is equal to one for a
particular oscillator, the following happens:

1. In the multiplication of the contents of the F_INC and MOD_INDEX registers,
the F_INC factor is replaced by the constant "one". This effectively nulls the
effect of the multiply. F_INC still controls the frequency of the excitation °
oscillator. |

2. The ACC register of the next oscillator (i.e., that of the distortion oscillator in -
the pair) is cleared after every sample. This effectively disables the ramp -
generator in the way diagrammed in Figure 6.7.

Thus, the requirements of waveshaping are seen to be straightforward, and the imple-
mentation not difficult.



O — e . o m

v o

[ e e e o e

*039 ..

wsTueyosw burdeyssaem JO MSOTA TRUOTIOUNI :/°9 2INBTI

B e w8 wet s mem s e s amer ¢ ame b e b et .

*oqe . 1

dnyoo]
S19eL
d4M

— !
Vi il
+ 5 |

C

I01eITTOSO ,UOT31I01STIq,

- ot b oemm b mon e e

dnyoog

029

aTgeL
M

R ™

L

/o

DY

N

¢ e e mm s e s e - me e ¢ G e mee r em . e s m.

IO3RTTIOSO UOT3eITOXH

e B R I T T T T

. |

P 4 me oy o v e pam g e e om0 s y kem v ma

. oy



8.3. Summoary

An outline of the implementation of the various synthesis modes used in the digital syn-
thesizer has been presented. Perhaps the most significant point about the implemen-
tation is that all of the oscillators are, in effect, functioning in all modes at all times.
The effects are simply made invisible by "nulling" appropriate registers. The effect of
this is that the synthesizer’s resources can be easily distributed so as to permit sounds -
utilizing different acoustic models to be synthesized simultaneously with very little
overhead on the CPU. In addition, while FM mode does not allow the use of multiple -
modulators for a single carrier, the hardware does allow for obtaining similar effects by
using the output of waveshaping mode as the modulator in FM, or waveshaping the out-~
put of FM. The device is designed so as to produce good audio quality, and is able to be
easily interfaced to a large number of different computers.

The prime drawbacks of the device are the limited number of oscillators and the lack
of generality -- when compared, for example, to MUSIC V. These are not felt to be too
serious in our context, however, when one recalls that one of our prime interests is the
relationships among sounds, rather than the intrinsic value of the sounds themselves.
This is something which: we feel can be effectively exploited with the available resour-
ces.

One other aspect of the design which is now somewhat questionable is the method of
implementing the digital-to-analogue conversion process. While we would retain the
control mechanism - that is, the method of scaling the waveform using the ENV and
VOL registers -- the actual scaling would be done digitally rather than using multiplying
DACs. Furthermore, digital scaling would then enable us to use only four DACs in total.
Again, the current design was made in the interest of economy, and has served well in
terms of fidelity and reliability. If changes are made in the future, it is worth noting
that the modular nature of the architecture enables us to change one module with only
minimal trauma to the others.

Finally, the reader is directed to Appendix One which presents a summary of the syn-
thesizer registers discussed. Also in this regard, the reader is redirected to Figure 8.8
in which these registers are collectively illustrated.

7. Data Structures

7.1, Introduction

This chapter presents a data-structure which meets the criteria presented in previous -
chapters. A version of the structures has been implemented and utilized with success
at the University of Toronto. An overview of the structures is presented in Figure 7.1.
Here we see that there are four main types of structures, each of which constitutes a
particular type of file. These are:
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1. Scores
2. Objects
3. Functions
4, Waveforms

In addition, each of these file types is made up of various composite structures. The
purpose of this chapter, therefore, is first: to present the internal representation of
each of these four types of files, and second: to define the methoeds of cornmunication,
or links, among these files.

Since it is a struciure common to various file-types, and since it is the prime medium -
of inter-file communication, we shall begin by presenting the form of the symbol {able
data structure #3,

7.2. Inter-file Communication

7.2.1. The Symbol Table

The symbol table is the method of linking auxiliary files to both object files and score
files. Therefore, both score and object files contain symbol tables.

A symbol table is an array of symbol structures, where the size of the array, or table,
corresponds to the number of symbols, or entries, in that table ?*, The symbol struc-
tures for a particular table are stored in contiguous memory. Each entry in a symbol
table has the following structure format: %

% Note that in the discussion which follows, any name or value specified entirely in -
upper-case characters (such as OBJIECT, UNDEFINED, etc.) is a defined constant for
the music system.

4 In the implementation described, the symbol table size is limited to 258 entries,
which has not proven to cause any constraints on the user. We can, therefore, take
advantage of a space saving in that indices into the table can be represented by a
single byte of information.

?6 Note: all examples are given in the programming language "C" (Kernighan and
Ritchie, 1978). In the examples, a structure is an aggregate of data. The name fol-
lewing the label "struct” is the name of the aggregate. The names within the curly
brackets define a template for the data in the aggregate. The first value in each row
indicates data-type (char: 1 byte; int: 2 bytes; float: 4 bytes), while the second value
is the variable name. Values preceeded by a "*" are pointers to data of the indicated
type (such as a structure). Pointers occupy one word of memory. Memory for such
structures may be dynamically allocated or freed, and several structures of the
same type may be allocated space in contiguous memory to form a table, or vector,
of structures (as with a symbol table). Finally, variables terminating with a value in
square brackets ("[" and "]") are arrays whos dimensions are contained within the
brackets. ‘
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struct symbol

char name[FNAME_SIZE]; - File name

int stype; ~ Type of symbol
int svalue; - Value of symbol
! (may be pointer)

The name field simply contains the name of the file associated with the symbol in ques-
tion. The stype field then indicates the type of file this entry in the symbol table is.
Valid symbol types include:

1. OBJECT

2. SCORE

3. FUNCTION
4, WAVEFORM

Each of these symbol types corresponds to one of the file types mentioned above, and
will, therefore, be dealt with in more detail below. Finally, if the file in question is in
primary memory, the third fleld of the symbol entry -- the svalue -- contains a pointer
to the file’s core image.

We see, therefore, that access to subordinate files is accomplished through a symbol
table; via the name fields for files not in primary memory {i.e., those requiring system
i/0), and via the svalue field for others (thereby avoiding the time-consuming i/o) *8,

NOTE: A particular symbol entry is accessed by providing an index into the table. An
important convention to note in this regard is that the first entry in the table is
accessed by an index of one (1) not zero (0). An index of zero into the symbol table has
the special meaning that that symbol to be referenced is not yet defined; a default
symbol of the appropriate type (context dependent) is substituted. Thus, the mechan-
ism for handling default situations is provided, the user never having to provide details
beyond his current concern.

7.3, File Types

7.3.1. SCORE Files

For our purposes, a score is essentially a list, or sequence of musical events, called
Mevents. Thus, it can be seen as a performance script for a composition. A great deal
of effort has been spent in providing the flexibility in the data structures of a score to
enable the structuring of a score in a hierarchic manner.

%6 Note the special case for WAVEFORM files, where we interpret primary memory as the
eight 2k word waveform buffers in the synthesizer. Thus, a non-NULL svalue for a
WAVEFORM entry indicates which of the buffers (1-8) contains the waveform..
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A SCORE file consists of three main data structures: a score structure, a linked list of
Mevent structures, and a symbol table. We will now proceed. to present the details of
each of these structures.

7.3.1. 1. ‘score’ Structures

The score structure functions as the header to the SCORE file. Besides storing the file
name and a "magic" number identifying the file as type SCORE, it contains pointers to
the head and tail of its associated list of Mevents. As well, it contains a field indicating
the total duration of the score, and links to functions affecting the score’'s perfor-
mance.

When the score is saved on disk, all of the score structure is written first, followed by
the symbol table, and then the Mevents in sequential order. Thus, the link fields are
not needed on disk.

The detailed composition of the score structure is as follows:

struct score

{

int magic; - Magic number

char fname[ FNAME_SIZE]; - File name

int nsyms; - Number entries in table

struct symbol *sym__table; - Pointer to symbol table

float tot__dur; - Total duration of score

int nMevents; - Total number Mevents

struct Mevent *head; - Pointer to start of Mevent list

struct Mevent *tail; - Pointer to end of Mevent list

char dyn__ind; - dynamic (volume) variation

char tempo_ind; - tempo variation

char deltat_ind; - entry-delay (articulation)
variation.

i

The last three fields are-indices into the SCORE symbol table accessing functions con-
trolling global features of the score: dynamics, tempo, and articulation, respectively.

7.3.1.2. The Mevent
As stated above, an essential component of a score is a sorted list of musical events

which we call Mevents. While there are various recognized types of Mevents allowable in
this list, they all conform to the following structure template: #7

" It is important to note that the Mevent structure is simply a template. It functions
as a generalization for the different types of events which may occur in & score, and
is.included for purposes of convenience.
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struct Mevent:

¢

struct Mevent *Alink; - Pointer to next Mevent
Last Mevent flink = NULL.

struet Mevent *blink; - Pointer to previous Mevent
First Mevent blink = NULL.

int tag; - User definable tag

float delta_t; - Entry delay before start of

, next Mevent.

char type; - Mevent type

char MEfid1; - Field is type dependent

int MEA4R; "

int MEf1d3; "

int MEfid4; "

int MEAAS5; "

int MEAdB; - "

};

As can be seen from the above, Mevents are represented-as a doubly linked:list (i.e.,
pointers to both the previous and next Mevents). This is to facilitate insertions, sear-
ching and other transformations on the list (playing the score in retrograde, for exam-
ple) *®. In the list, the order of the linking specifies the order in which the Mevents are
to be played. The delfa_t field in each structure specifies the time between the start
of the current Mevent and the start time of the next. If this value is zero, the Mevents
are played simultaneously (such as with a chord). On the other hand, if the delta__¢
value exceeds the duration of the Mevent, the result is a rest whose duration is equal to
their difference.

The currently available types of Mevents: (as specified in the type field) are:
MUSICAL_NOTE, and SCORE. An Mevent of the MUSICAL_NOTE type is simply a single -
sound event. A SCORE-type Mevent is just that, a (sub)-score which commences at a
particular point in a composition. It is this implementation of the notion of sub-score
which enables us to create scores which are hierarchically structured. (See Figure 8.3,
for example.) More formally, we can view a score as a tree. structure in which a SCORE
Mevent (called Mscore) constitutes a non-terminal node, and each MUSICAI_NOTE
Mevent (called Mnote) contitutes a terminal, or "leaf", in the tree.

In the above sti‘ucture. one feature is of particular note. This is the choice of using
"delta" rather than "absolute" values for time (i.e., the entry delay value delta._£). This
choice is based on the ease with which several instances of the same sub-score can be

8 Many music systems, for example Tucker et al. (1977), avoid linked lists in the score.
Instead, "notes" are stored in contiguous memory; the pointers then being implicit.
While such a representation provides a more compact representation and a more
efficient perform program, editing -~ which is the prime function of our system -- is
considerably less efficient. Furthermore, if in using the linked list approach the per-
formance is too complex for the system to keep up with in real-time, we have found -
that enabling a score to be "compiled" into a more efficient representation is ade-
quate for handling these special cases.
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merged into another "master” score.

Since the interpretation of the Mevent structure fields MEfld1-8 are dependent on the
Mevent type, we shall now consider the individual types in more detail.

7.3.1.2.1, The MUSICAL_NOTE: Mnote
An Mevent of the MUSICAL._NOTE type is a single sound event which has certain charac-
teristics (or parameters) as defined by the following Mnote structure. (Note that this

structure exactly follows the template of the Mevent structure.)

struct Mnote

¢

struct Mevent *flink; - Pointer to next Mevent

struct Mevent *blink; . - Pointer to previous Mevent

int tag; - User definable tag

float delta_t; - Entry delay before start of
next Mevent.

char type; - Mevent type: set to MUSICAL_NOTE

char volume; - Volume of note

float frequency; : - Note frequency

char object_ind; - Index into symbeol table to
access object (timbre).

char chan__no; : - Qutput channel of note

float duration; - Duration of note

5

7.3.1.2.2. The SCORE: Mscare

An Mevent of the SCORE type is called an Mscore. The fields of the Mscore structure -
are given below. Again, note that the structure format follows that of the Mevent.
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struct Mscore

¢

struct Mevent *flink; - Pointer to next Mevent

struct Mevent *blink; - Pointer to previous Mevent.

int tag; - User definable tag

Hoat delta_t; - Entry delay before start of
next Mevent.

.char type; - Mevent type: set to SCORE

char vol_factor; - Relative shift for sub-score.
(vol. is log, so is addition)

float piteh__trans; - Relative shift for sub-score.
(i.e., pitch transposition) .

char score_ind; - Index into symbol-table
to access sub-score. A

char time__interp; - Determines if time_factor affects

: entry_.delay, duration, or both
foat time_ factor; - Temporal transformation

(augmentation/diminution)
of sub-score.

%

There are a few very important points to note regarding the use of sub-scores. First,
note that each appearance of a particular sub-score constitutes an instance rather
than rmaster copy of that sub-score. The difference is that there is only one master-
copy of the sub-score (accessed through the symbol table) and any changes to the ori-
ginal are reflected in each instance during a composition. Therefore, if we view a score
as a tree structure, then the pitch_trans, vol_factor, and time_factor fields of the
Mscore structure will effect transformations on the sub-score (or sub-tree) below them. -
Musically, therefore, these fields allow for the occurence of the sub_score starting at
any pitch (i.e., transposition), the dynamics to be scaled, and the augmentation and
diminution of the time structure ?, The result is that we can obtain several versions of
@ single "score", while maintaining only one copy of the original.

7.3.1.3. SCORE Symbol Table

The types of symbols which are legal in a score’s symbol table are: FUNCTION, (sub)
SCORE, and OBJECT. If the stype field of a symbol's entry is UNDEFINED, a default sym- -
bol is substituted. If the entry's svalue is non-zero (viz., not UNDEFINED), there is an
image of the symbol in primary memory and the suvalue is a pointer to it. Otherwise,
the svalue must be UNDEFINED, '

Finally, if the nsyms field of the associated score structure equals 0 (zero), there is o
symbol table, the field *sym_.{able should equal NULL, and default values of the
appropriate type will be inserted during performance. The implications of this are
(musically) important in that no ordering of operations is imposed on the composer.
He may, for example, perform the pitch/time structure of a composition before any .

% Note that space/time trade-offs dictate that the time._factor field affects either
Mevent durations or delta_.ts, or both (as determined by the time_interp field).

- 65 -



thought is given to orchestration. Furthermore, he may crchestrate the score with yet
undefined objects (see below), and still audition the work with default objects substi- -
tuted. Finally, in either case the default object(s) substituted may be user defined
(i.e., the user may personalize the system by over-riding the system defined defaults).

7.3.2. OBJECT Files

One of the aims of the music system is to provide a facility whereby a composer can
specify his own palette of timbres to be used in a composition. FEach set of timbral
characteristics defined by the composer, called an object, is then stored in a file named
by the composer. Notes in a score may then be "orchestrated” by establishing an asso-
ciation with a particular object file. This is accomplished via the object_ind field of the
Mnote structure, in combination with the score symbol table (as outlined previously).

We saw above that there may be several instances of the same (sub)-score in a compo-
sition. Similarly, there -may be numerous Mnotes of various durations, pitches, and
amplitudes, all deriving their timbral characteristics from the same object. Further-
more, any change of the object file will cause that change to be reflected in all instan-
ces of that object in a score. We see, therefore, that the object functions as a type of
timbral "template’. Finally, due to this template nature of the object, the only restric-
tion on how many instances of that object which may occur simultaneously is the -
number of oscillators in the synthesizer. This is in contrast with the notion of "instru-
ment" as developed in MUSIC 1V (Mathews, 1969), for example.

While all objects serve the same musical purpose of timbral control, there exist
different internal representations for object data. These differences primarily reflect,
the different modes -~ or acoustic models -~ whereby sound can be generated by the
ZYSP digital synthesizer. We will see, therefore, that there are three main data struc-
tures in an object file. These are: the object structure and symbol (table) structure
(both common to all objects, regardless of mode); and the type_object structure, which
contains the data peculiar to the mode of that particular object.

7.3.2.1. ‘object’ Structures

The object structure contains information common to all objects, regardless of mode.
Such information includes the objects’s name, mode, and a "magic" number to dis-
tinguish OBJECT files (from, for example, SCORE files) during various operations such
as reading and writing. The structure also specifies the number of critical resources
(i.e. synthesizer oscillators) required by that object. This information is represented -
as follows: :
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struct object

i

int magie; - Magic number
char fname[FNAME_SIZE]; - File name -
int ngyms; - Number symbols in table

struct symbol *sym__table; - Pointer to symbol table
nsyms long.

int mode; - Designates type of object

int noscils; - Number of oscillators needed.

union type_object §

struct fixedwf__object fwfobj;

struct fm__object fmobj;

struct bank_object bankobj;

struct ws__object wsobj;

struct vosim_.object vosimobj;

} *data; - Defines "*data" as a pointer to
data peculiar to one of the possible
object types (see below).

char rigidfunc__ind; - Index into symbol table
to access basis of function
time-scaling.

i

One field of the object structure warrants special attention. This is rigidfunc_ind. As
will be seen below, each mode of object specification includes the specification of func- -
tions which determine how parameters vary over time. The time base of such func- -
tions, however, must be able to be scaled over Mevents (eg., Mnotes) of various dura-
tions. This is in keeping with the notion of an object being a general template for tim-
bre. One problem is, however, is that in compressing and expanding functions we do
not always want the scaling to be linear. That is to say, if we consider the x (or time)
axis of a stored function as a spring, we do not always want the spring to be of uniform
stifiness. In imitating sounds which occur in nature, for example; we would want the
attack and decay portion of the amplitude function to be more "stiff" than the steady-
state. Similarly, in other objects we might want just the opposite. In view of this prob-
lem, each object has associated with it a user-definable "rigidity" function, which deter-
mines how the functions of that object are to be scaled -~ in time - in their various
instances throughout a composition. The rigidfunc_ind field provides, therefore, an
index into the symbol table which identifies the "rigidity" function for that object.

7.3.2.2. Object Types

As was stated above, there are different methods of representing objects which reflect
the method of sound synthesis used. These modes are as follows:
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1. Fixed Waveform (FIXEDWF)
2. Frequency Modulation (FM)
3. Pulse Modulation {(VOSIM)
4. Additive Synthesis {(BANK)
5. Waveshaping (WAVESHP)

The amount and type of data required is different for each of these modes. Therefore,
there is a different type of structure used for each. The definition of the structure
peculiar to each object type is given below. The appropriate structure for a particular
object’s type-specific data is accessed via the *data field in the object structure, whose
mode field indicates the structures type.

7.3.2.2. 1. FIXEDWF Objects

The fixed waveform synthesis:mode utilizes a single oscillator as a function generator.
The only parameters at the object level in this mode are: the waveform used, the ampli-
tude contour (or "envelope"), and the frequency contour {(or deviation over time). The
amplitude and frequency contours are stored functions (see FUNCTION files, below) and -
are accessed through the object symbol table. The format for FIXEDWF data is as fol-
lows:

struct fixedwf__object

char fwi_ind; - Index into object symbol
table to define waveform.

char envel__ind; = Index into object symbol
table for amp. function.

char freq_ind; - Index into object symbol

table for freq. function.

L

7.3.2.2.2. FM Objects

The FM mode of object specification enables sound to be synthesized by having one
oscillator ("m") modulate the frequency of another (the "¢", or carrier oscillator).
The resulting relevant parameters include: the ratio between the frequencies of the two
oscillators (the "e:m" ratio), the maxirnum degree of modulation and how modulation
varies in time, and the amplitude and frequency contours {as seen with FIXEDWF
objects). The format of FM mode data is as follows:
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struct fm__object

struct fixedwf__object car; - Carrier waveform
(as in FIXED_WAVEFORM)

char mfwf_ind; . -Index into object symbol
table defining mod. waveform.

char mdev_ind; - Index into object symbol
table for mod. function.

int maxindex; - Max. Modulation Index

int cval; - C term in C:M freq. ratio.

int mval; - M term in C:M freq. ratio.

i

7.3.2.2.3. VOSIM Objects

The VOSIM mode enables voice-type synthesis via a form. of pulsewidth modulation.
There are different degrees of complexity possible; generally, the more complex, the
more oscillators or "VOSIM functions" must be used. Besides the pulse-shape
(waveform) select and the amplitute and frequency functions, each VOSIM function also
has the following parameters: the pulse-width, how the pulse-width varies in time, and
the degree of randomization (to produce consonants, or noisy spectra). The format for
the VOSIM data is as follows:

struct vosim__object

struct fixedwf_object vosfn;- As in FIXEDWF.

char maxdev; - Maximum deviation (i.e.,
noise) factor.

char dev_ind; - Index into object symbol.
table for dev./time function.

char pw_ind; - Index into object symbol

table for pulse-width (i.e.,

formant) change function.
int pwf; - Pulse-width expressed as
! freguency.

Note: Complex VOSIM objects utilize more than one VOSIM function or oscillator. When
this is the case a table of vosim_object structures is kept in a contiguocus portion of -

memory. The number of entries in this table is given by the noscils field in the parent
object structure.

-89 -



7.3.2.2.4. BANK Objecis

This mode enables the use of several generators together, such that each oscillator
functions as one component, or partial, in a complex tone. The frequency and ampli-
~ tude of each component may vary over time. The actual frequency of any component

is its partial number times the fundamental frequency (where the fundamental Ire-
quency is considered partial number 1). The data for the various partials in a particu-
lar object are stored in a table of bank._object structures. The format of these table
entries is given below. The number of entries -- which are stored in contiguous
memory -- is given by the noscils field of the object structure.

struct bank__object

t
struct fixedwf_obj bnkmd; - As in FIXEDWF.
float partial; . - Partial number (fund. = 1).

I

Note that the partial number is specified as a "float" value so as to enable arbitrary
partial structures.

7.3.2.2.5. WAVESHP Objects

Waveshaping is a technique which enables the synthesis of complex sounds having
time-varying spectra. The technique makes use of a form of controlled non-linear dis-
tortion. Essentially, the output of one oscillator is scaled by an index (which may be a
time-varying function), and then used as an address into a look-up table. The sample
taken from the table (which contains the 'distortion” function) is then used as a
waveform sample and therefore scaled in amplitude and sent to a digital-to-analogue
converter. The technique utilizes two oscillator modules, and has its parameters
stored in the following structure format:
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struct ws__object

char fwf _ind; - - Index.into object symbol
table to define waveform -
. previous to distortion. .
char envel__ind; - - Index into object symbol
table defineing envelope
of waveform after distortion.

char freq_ ind; - Index into object symbol
table for frequency function.

int dindex; - - Index of distortion to which
dist_.ind function is scaled.

char dindfn_ind; - Index into object symbol

table specifying time-
varying function for dindex.
char distfn__ind; - Index into object symbol
table indicating waveform
buffer containing distortion
function. -

7.3.2.3. O0BJECT Symbol Table

The only valid symbol types for object symbol tables are: FUNCTION and WAVEFORM.
Functions at the object level provide the means of specifying how parameters of the -
micro-structure vary in time. This is-essential for sounds to be of musical interest.

Just as with the score symbol table, if object.nsyms equals 0, or if any function named
in the table is UNDEFINED, default functions will be substituted. Again, the user is able
to over-ride the system defined defaults.

7.3.3. FUNCTION PFiles

Stored functions are used throughout the various hierarchies of the music system to
control the variation of parameters over time. Just as there may be many instances of
the same score or object in a composition, there may be several instances of the same
function. In addition, each instance of the same function could quite conceivably be
affecting a different parameter. Functions are stored as a set of straight line segments
which approximate a continuous curve. Each file has a unique, user defined name. In
performance, each function is scaled in both the x and y domains according Lo applica-
tion. Since there is no set number of segments in a function, we resort to using two
different types of structures for their representation. These are outlined below.
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7.3.3. L. ‘function’ Structure

This is the "header” structure of a function. It contains the function’s name, a "magic"
number to identify the file as type FUNCTION, the total number of segments, and a link
to the segment data. The actual format of the structure:is as follows:

struct function

{

int magic; - Magic number defining
function

char fname[FNAME_SIZE]; - File name -

int nsegs; ~ = Number of segments

char starty; - Initial y value

struct segment *breakpoint;- Pointer to breakpoints.
Functions as:
breakpoint[nsegs]

7.3.3.2. ‘'segment’ Structure

The data for the actual segments is stored in a table of segment structures. There is
one structure for each segment and all structures are in contiguous memory. Rather -
than represent segments by integer breakpoints, we have chosen a slightly different
approach which is computationally more efficient (when scaling functions during real-
time performance). Simply, the y value is stored as would be expected, but the x value
is stored as a fractional value representing that segment’s relative duration with
respect to the complete function. The format of the structure is as follows:

struct segment

¢

float reldur - Relative duration of
segment
(0. <= reldur <= 1.)
char yval; - End Y value of segment

;

7.3.4. WAVEFORM Files

Waveforms are a particular-form of function which we choose to treat differently than
FUNCTION files. In the case of a waveform, we store the function as a series of point
samples, where the number of points equals the size of a synthesizer waveform buffer .
(i.e., 2048). Consequently, only the y value of the function need be stored, the x value -
being the index into the table. Besides storing the actual function data, the waveform
structure also contains a "magic" number to distinguish it as type WAVEFORM, and the
actual waveform name. The data format for waveforms is: ‘
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struct waveform

{

int magic; - Magic number.
char fname[ FNAME__SIZE]; - File name.
int wisamp[WFB_SIZE]; - Waveform samples.

8. The Base Structure in Practice: Selected Examples

8.1. Introduction

The bulk of this report has dealt with the foundation structures. The purpose of this .
chapter is to present selected examples of high-level structures which can be built on
this base. It is nof our intention to present a comprehensive description of a music
system. Rather, we hope to tie together some of the concepts presented, as well as
demonstrate that the foundation structures developed through the course of this
report do, in fact, function as desired.

The format that we will follow will be to illustrate specific features by taking examples
from programs which have been written on the system. Virtually all of the programs
described are in prototype form, for which we make no apology -- given our attitude to
an iterative approach to system development. Of the: programs used as examples, .
many have not been written by the author. Where this is the case, we give appropriate -
acknowledgement. We justify their inclusion in this context on three points: all were

written in consultation with the author; all make use of the structure developed in this -

report; and -- perhaps most important -- that several different programmers can write
compatible software using these base structures is one of the strongest indications of -
their success.

8.2. Ezamples

A founding principle of our design approach has been that we should be able to
represent data in different ways. This is important both in developing new representa-
tions, and where the user might simply want to view his data in a different way due to
context. Figures 8.1 through 8.3 demonstrate the flexibility of our internal representa-
tion for scores. All three scores -- common music notation (CMN), "piano roll”, and
tree structure -- are drawn from the same type of data. No special graphic information -
is saved (or necessary).

In addition to the above, it is important to enable data to be represented at different -
conceptual levels. One example which we have discussed is the representation of
object data in the acoustic domain, on one hand, and the perceptual domain, on the
other. The next two figures demonstrate these two levels of representation. Figure 8.4 -
shows a graphic representation of the parameters of a frequency modulation object (in
the acoustic domain) while 8.5 shows a vosim object represented using the cardinal
quadrangle (perceptual space).

-73 .



Serollar VYarbooar off Qbjectt trab flarge Bdtt Orchestrote
Seorer prelude Noto modes Vols 200 Read Sot volume
fites 5 Seecing: pcore Chons B Append Hrite §ot channel
Koy ° Inaurt
Timor 478 Change Soarth
Detote Play
Doleto slb aurr
6 69 D pralude
bed ______—_ r————
- i r——r — e —
108 = — O
® vorrecTs« 310 [
D D D D D D HMAIN HENUS
WRITE SCORE PLAY
208 READ SCORE
EOIT SCORE obaws
trab
4

Duratlon Volume Chennel

CHANGE NAME
ASSIEN SLIDER

CUIT

LOCAL._TABRLE®

Figure 8.1: Representation of
score in common music notation.
(This, as well as all other
examples using CMN are from the
program "ludwig", by W. Reeves
and R. Pike,)

Figure 8.2: Representation of
score using "piano-roll" type
notation.

(From the program "scored", by
S. Hume.)



SURa

t ime Level

idth

pitch

Ay

K

perspactive

Eie

Figure 8.3: 3-D Tree representation of score

(From the program "treed", by A. Kwan.)




O
FREQUENCY D (-] c.p.m. E.—.] E]
NAME: Freq.glius Quit
Pley
AMPLITLUDE [:] 255 Unlts: 6-255 [:l
NANEs eitack doacay
Ero)-
Neme
DURATION T 100 sothareec.
. Sa va
Scove varlables For tesitng Objocl
Get
WAVEFORNS Tali W le
Qb ject
Hoda
MODLLATION
INDEY® E] 20 Unlias: §-32767 D [:]
NAHE: ww.fn Score
Mede
o
c.m ratio L] 1
Object Name: bass.obj
1
sreliby :
[
1
T
=L
1
203 ] 79
Y1
81de vowat N
e |
B
1
143:1:] 20
|/ aemmmeeeeemy o
1
L I
-1l
front vowel
valume pitch notes duretian sautrdl kaap plartna | OK
sound2 adft
opundd asoldh XX
oouhd4
sound5 nama QuiT
auva
rocall SNAP
delote
voHol tobole

Figure 8.4: Representation of

an (FM) object at the acoustical
level.

(From the program "objed", by

W. Buxton.)

Figure 8.5: Representation of

a: VOSIM object at the percep-
tual level (making use of car-
dinal vowel quadrangle of Jones,
1956) . .

(From the program "voice" by P.
Chow and D. Galloway.)



In many cases where the data structures are "fuzzily" defined, it is difficult for theuser -
to make a clear distinction between data and process. Perhaps the best example of
this is where a user can not keep separate the difference between a score and the pro-
cess which created it.. We attempt to emphasize the compatability of scores to
different forms of notation (such as illustrated in previous examples) regardless of -
whether the score was created stochastically, using a composition program, or deter-
ministicaly by the user, note-by-note. This is illustrated in the next two figures. Figure
8.6 shows the partial specification of a score (frequency characteristic using a ten-
dency mask) to a compositional program. Figure 8.7 shows a CMN representation of
part of the resulting score. There are several interesting features in this example.
First, the pitches generated by the composition program come from the continuous
frequency domain. Nevertheless, they can be displayed in relation to the discrete
steps of a diatonic system. Most important, the data is not changed, and is displayed
by a ""best fit" paradigm. In addition, we see that the stochastically generated data can
-- to the horror of purists -- be deterministically edited, merged, concatinated, ete.
with other scores (regardless of how created)..

Figures 8.4 and 8.5 illustrated the representation of data at diffierent conceptual levels; -
however, except for Figure 8.3, none of the examples yet discussed have dealt with the
representation of the sfruciural hierarchies of scores, or the use of instantiation. The -
next three figures illustrate both. In Figure 8.8, we have three bars of music. Each bar
is a separate score. The first functions as a master score, while the second bar -- a -

major chord -- functions as a sub-score. In the third bar is a new score which is an -

example of the master score being "scorchestrated" by the chord of the sub-score.
The result is that we now have a sequence of major chords following the pattern defined
by the master score. Thus, we see scorchestrafe simply means "orchestrate with a '
score'. Note, however, that while there are three instances, there is only one copy of
the major chord in memory. Furthermore, each instance is a "sub-tree” in a hierar-
chy, whose "parent mode'" is a note in the master score. In this regard, note how the
pitch and duration information of the parent has been imposed on the descendents.
Figure 8.9 further illustrates the benefits of instantiation. Here we have simply made -
the sub-score into a minor chord (one action), and as a result all instances of that sub-
score are automatically modified. Figure 8.10 is similar to the above except in this -
case, the sub-score is a three note motif. We see, then, that the scorcestrated sub-
score becomes a canon-like figure.

Up to this stage, the prime intent of the examples has been to illustrate points dealing
with representation. In the examples which follow, we would like to change our
approach and centre on issues of interaction. In so doing, we remind the reader of the
importance of the dynamics of this interaction. Viewing the examples as frozen frames -
is sornewhat akin to viewing a three-dimensional sculpture in a two-dimentional photo-
graph. Most of the examples make use of an interactive score editor called "ludwig"
(sic.), written by my colleague Bill Reeves. The choice of using this score editor for our
examples does not imply an afinity for, or bias towards, CMN. Rather, just as with
beginning users, CMN is helpful to present new concepts in a familiar environment.
Other -- often more appropropriate -- forms of notation have already been demon-
strated.
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Figure 8.8: "scorchestration", example 1.
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has been transposed in both pitch and
time.
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in bar 3.

Figure 8.10: "scorchestration" example 3.

As above two figures excepting that a
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is used in scorchestrating the master score.



While many systems utilize piano-like keyboards as input:devices {eg., Vercoe, 1975),
we feel that too heavy a reliance on such transducers "locks the user in" to a particular
‘mode and notation in composing. We would like, therefore, to investigate different
input techniques which do not go to the other extreme of typing (which is somewhat
akin to an obscene gesture in our approach). In this regard, we find recourse in
graphic techniques. The next three figures illustrate one type of such interaction
which is supported by the base structures which we have provided. Figure 8.11 shows
the {racker - cross being positioned over the desired pitch. This is accomplished simply .
by moving a cursor on the graphics tablet. On depressing a button on the cursor, a
“marker" note appears at the indicated pitch. Concurrently, the tracking-cross is
replaced by a sequence of notes. This is shown in Figure 8.12. This sequence of notes -
(shown to the right in Figure 8.12) "tracks"” or follows the motion of the cursor on the
tablet. By placing the note of the desired duration over the marker note, and releasing
the cursor button, a note is input. This is shown in Figure 8.13. Ledger lines, tail direc-
tion, and spacing are -- naturally -- taken care of by the program. While our long-
winded explanation may indicate otherwise, after about a five minute introduction a
new composer can input notes as fast or faster than on manuscript paper. This has
been verified with several musicians, including Yehudi Menhuin {one of our first "guinea

pigs").

Since one of our functions is to provide an efficient score -editor, it is important to ena-
ble the composer to "get around” the score; to acecess notes both in or out of the
current viewport. Examples of techniques for doing so are presented in the next three
figures. To begin with, any note in the current viewport .can -~ for editing purposes -~ :

become the current note by pointing at it and depressing a button on the cursor. That ..

is to say, the graphics system is flexible enough to do hit detection with immediate
response. If, on the other hand, the note we want is not in the current viewport, we can
scroll the score across the screen in real-time at the touch of one of the hardware slid-
ers. This is how, for example, we moved the quarter rest from the left of the viewport
(Figure 8.14) to the right (Figure 8.15). This ability to scroll through the score - espe-
cially during performance -- is a good example of the importance of our reliance on a
display capable of dynamic graphics. A storage tube or most video devices could sim-
ply not support this type of interaction. This is also the case for the next example.
Again, we want to examine part of the score in the current viewport. This time we take
an alternative approach. We point at the light butffon "search", and press a button on
the cursor. What appears on the screen {seen in Figure 8.18) is a "time-line" represen-
ting the entire duration of the score. (This appears at the bottom of the score viewport
in the example.) On this time-line, we see two "angle brackets" which indicate what por-
tion of the score is in the current viewport. By placing the tracking-cross {which has -
- become a mini magnifying-glass icon - to indicate "searching") anywhere on the timel-
ine, and depressing a button on the cursor, the viewport will move and centre on that
portion of the score. The use of labels (not shown) further strengthens this technique, :
providing something analogous to orchestral rehearsal marks. Of course all of these
technigues also apply to forms of notation other than CMN.

In the above example, we saw a case where the tracking-cross was replaced by an
"icon" in order to convey some information in a pictoral manner. The graphics pack-
age used enables us to make great use of this facility in order to communicate without
wordy messages. Other icons used, for example, are: a buddah (to indicate patience
when a user must wait), a "?" (when an unintelligible request has been made), a
" loudspeaker (to show "perform" program is active), and a picture of a terminal (to cue
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Appending a Note to a Score;
an example.

Figure 8.11: step l: the tracking cross
is placed over the desired pitch (g4),
as indicated by the arrow.

Figure 8.12: step 2: on pushing a button

on the cursor a "marker" note appears over
g4, and the tracking cross becomes the series
of notes seen to the right.

Figure 8.13: step 3: on placing eighth-note
of "tracking-notes" over the "marker" note
and then pushing a button on the cursor,

an eighth-note g4 is entered. Note that

the tracking cross is restored.
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Figure 8.14: The "before"
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the user that he may type a message). While on the topic of typing, it is worth pointing
out that in ludwig, the user has continual access to system level comimands. The bot-

- tom left-hand corner provides a space for scrolling alpha-numeric text. At nearly any

timme the user may type a system command which will suspend ludwig, execute, and
- then return control. Again, this is an invaluable feature for non-linear thinkers (i.e.,
- most users), which is provided by the UNIX operating system.

As any good teacher knows, one of.the best aids in presenting new concepts is a good
analogy. This is especially true for concepts used in human interfaces to computers. -
One technique that we use which has a good analogy in the "real.world" is what is often
called a "paint pot" technique {Baecker, personal comimunication). The next set of
figures shows how this techpique can be used in orchestrating the notes of a score.
After selecting the "orchestrate" lightbutton, the tracking-cross becomes a paint-
brush, and our palette of timbral colours {objects) appears in the box at the bottom of
the viewport (Figure 8.17). The "colour" currently on the brush is that object between
the double bars in the centre of the "palette”. (In this case "sax".) Simply pointing at
notes with the brush and depressing a button on the cursor, will orchestrate them with
the current object. (In this case, an analogy to a spray-can would be more appropri-
ate). At any time, the user is able to change the "colour" on his brush either by dip-
ping into his palette (i.e., pointing at the desired object in the box), or scrolling
through the list of objects -~ using a hardware slider -- until the desired object lies
-between the double bars in the centre. The figures show the former case: the object
' pointed at in Figure 8.17 ("flute")appears as the current object in figure 8.18. The
" object pointed at in Figure 8.17 appears in the centre box in Figure 8.18.

There are a few significant points which arise out of the previous example. First, notice
that in accessing the various object files, no typing was done.” (For that matter, notice
the lack of typing in all of the previous examples.) Second, notice that there was no
burden on the user’s memory to recall the names of the objects in his directory. In
this we see the exploitation of cur ability to tag all file types with a magic number. (A
process is invoked which makes use of this magic number in extracting all objec! files
from the directory and listing them - and them alone - as the "palette".) Another
point to notice is how a simple transducer, the slider has been used for several
different functions in different contexts. Here we have an example of where
forethought to custom-built but generally-applicable hardware has paid off. In the last
example, for instance, the use of sliders to change the "current” object in the palette
meant that the cursor need not move down. Orchestration is carried out with the cur-
_sor in one hand, and the object selection - using the sliders -- with the other. The
resulting economy of motion results in a more smooth, efficient, and congenial inter-
face, Finally, it is important to note that what was described is an instance of a general
protocol. Once learned, the same technigue can be used for several othser parametlers;
channel number and volume, for example. Again, this type of consistency -- enabled by
the underlying structure -- can only accelerate the rate at which the novice user
becomes acclimatized to the system. The benefits resulting from this concentration on
ergonornics is obvious, and must pervade the entire human interface.

In our final example, there is one additional point which we would like to make. Too

often systems are designed to accomedate only "rational” behavior. That is, when the
user does something "wrong" the process either aborts (as in most "batch" systems) or
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suspends until a legal cornmand is given. All of this can-only lead to the user building-
up a fear of making mistakes. This, we feel, is completely antithetic to the establish-
ment of a congenial human interface. The system must not only accept "irrational”
commands, but attempt to "fix'" them and advise the user about what he did wrong. Ve
believe that the beginner learns by doing, and if he is paranocid about doing something
wrong, or crashing the system, he does -- and therefore learns - very little. Again, lst
us emphasize, five: minutes of doing something -- mistakes and all -- usually surpasses
half an hour of reading about how to do it. We conclude by looking at a specific exam- -
ple.

Many parameters in the musical hierarchy can vary over time and are controlled by
. stored functions. Such parameters range from the micro-level (amplitude envelopes)
to the macro-level {the dynamic contour of an entire score). Many other systems atso
meke use of stored functions in a similar manner. For illustration we will take an
example from the batch-processing based MUSIC 4BF system (Howe, 1975b). Here we
find that Howe (pp 194-200) takes about six pages to describe the workings and
definition of stored functions 2°. Even then, if the user makes an error, the chances
are that the job will be aborted. Alternatively, by taking a limited-but-strong approach,
we can use graphics in combination with computer-initiated dialogue to guide the user
in carrying. out his task. For example, Figure 8.19 shows a function being drawn as a
free-hand curve using the graphic tablet. If, as is shown in Figure 8.20, a meaningless
curve is drawn by the user, the system can attempt to "understand” what was drawn
and do something reasonable. The result in this case is shown in Figure 8.21. The user
‘will clearly see that what the computer returned was not what he drew. A little thought
or a well placed question will clear up his problem. He may then either accept what
the program returned (which is, in fact, a legal function) or try again - reassured that
he not only may make mistakes, but he might even learn something if he does!

9. Conclusions

9.1, Summoary

The general theme this report has been that of making computer-based tools accessi-
ble to the computer-naive but application-sophisticated user. It has been concerned,
therefore, with problems in human engineering. Specifically, it has dealt with deter-
mining how to evolve the base structures to support such tools. In this regard, we have
oriented our discussion around the problems of a particular application area: that of
music composition. '

The first section of the report (Chapter Two) dealt with issues which were mainly gen-
eral in application. The main point stressed; however, was the importance of under-
standing the user for whom the tool is intended. The appropriateness of different
forms of dialogue was discussed in terms of different types of users. It was suggested
‘that a particular methodology be adopted so as to accumulate the knowledge to enable

30 We do not take this example for the purpose of criticism. MUSIC 4BF has functioned
as well as could be expected and made good use of the resources available. The
point is, we now have different resources and should make better use of them.
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the design of a congenial user interface. This methodology was based on an iterative
strategy of "quick-and-dirty” implementation followed by extensive evaluation and -
redesign. It was argued that, given suitable tools, such an approach would be economi-
cal in many cases. Some of the main considerations -- such as the dperating system,
interaction, and special-purpose hardware -- were then discussed.

In order to establish a context for the application-specific aspects of our discussion, we .-
then proceeded to present a review of the literature in computer music. This was
divided into a discussion of compositional problems, on the one hand, and problems of
. sound-synthesis, on the other. In terms of the former, problems were pointed out with -
respect to musical decision making on the part of computer programs. This was con-
trasted with systems in which the computer plays the role of a composer’s "agsistant’”.
In terms of sound synthesis, the trade-offs between the various approaches (digital,
hybrid, and mixed-digital) were discussed. In particular, the appeal of the high sound
quality and interaction available from the mixed-digital approach was emphasized.

' The combined effect of the chapters discussed thus far was to motivate the major
design decisions made in the next section, Chapter Four. Here a basic task taxonomy
for music composition was presented, The taxonomy considers composition in terms of-
four tasks: definition of a palette of timbres, definition of a pitch/time structure,
orchestration, and performance. The simplicity of the conceptual framework provided .
by this analysis is one of its most important features. Within this framework, we went. .
-on to develop several important points. Central among these was the importance of
providing base structures which enable the user to have as much freedom as possible
in the strategies which he employs inimusical design. In particular, it was shown how
flexibility could be provided in the order in which the basic tasks were undertaken, how
the composer could work with and perform incomplete scores, and how he could be
- allowed to address himself -- with equal ease -- to any structural unit within the score.
These features were made possible as the result of several key design decisions. These -
include the adoption of a sophisticated system of defaults and the introduction of a
hierarchical representation of scores. In addition, the choice of a strong-specific -~ as
opposed to weak-general -- approach to sound synthesis contributed a great deal of
power to the design. The main result was to minimize the problems of acoustics
thereby enabling the composer to focus attention on higher-level musical decisions.

. Details of the basis for the above structures was presented in the next section of the

report (Chapters Five to Seven). The key features of this foundation were seen to be:
the ability to support a high degree of interaction, complex control and data struc-
tures, good graphics support (to allow flexibility in external representations), and the
digital synthesizer. All of these features were then brought together and demonstrated
in selected examples in Chapter Eight. .

9.2. Discussion

1t is felt that the prime contribution of the work described in this report is in the
chosen application area, computer-music. The most significant points will be discussed
‘below. However, in doing so, it is important to keep in mind the attitude and appreach
to design which has made these contributions possible. This is the iterative approach,
with the bulk of our attention focused on the user. We feel that the success of the
approach in the current system is indicative of a more general applicability. It is
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hoped that this work may stimulate other designers-to adopt the same approach.

In terms of the application area, it is felt that the heart of our approach lies in the
basic division of composition into the four sub-tasks mentioned. A clear context is pro-
vided in which the both the composer and designer can view their activities. Having so
divided the tasks, data were then structured accordingly. This gave rise to the notion
of object, score, and musical event, all of which are key features of the design.

In terms of objects, we feel that limiting the system to a few well chosen acoustic
models has been a key design decision. This enables the composer to escape the all
too commion domination of "sound" over "music". By limiting ourselves thus, we have
been able to develop a state-of-the-art sound synthesizer which has proven reliable,
economical, and of high audio-quality, and which enables us to achieve the high degree
of interaction which we feel is so necessary. o

In terms of scores, one of the key concepts which we have introduced is the ability to
deal with any (user-defined) sub-set of a score in the same manner, and with the same
ease, as with a single note. This we have been able to accomplish by allowing scores to
be structured as arbitrary hierarchical (tree) structures. Scope of operators (such as
"play" or "delete") then simply apply to the descendants of the indicated node. Furth-
ermore, with both scores and objects we have been able to make use of instantiation.
Thus, for example, an entire score can be re-orchestrated simply by changing a file
name,

Throughout, our intention has been to facilitate the use of different forms of external
representalion without any changes to the internal representation of the data. The
preliminary results shown in Chapter Eight demonstrate a reasonable degree of suc-
cess. This success, however, is equally due to the basic graphics and computing
environment, as to the actual information structures used. Acknowledging this fact
brings us to a final conelusion of our report: the importance of developing better tools
for systems development, tools which enable the designer to view and define his prob-
lems in ever more succinet terms. This will only come about when systems for
research and development are designed as integrated environments. Without such
. integration, the economics of design will continue to dictate a continuation of the "get

it right the first time" attitude. '

The music system described in this paper has been designed and implemented in a
relatively short period of time (eighteen months for both hardware and software). This
simply would not have been possible in most other computing environments., Systems
such as our own and that developed by the Learning Research Group at XEROX Parc
(Kay, 1977 and Ingalls, 1978) are a good examples of what is possible when a system is
designed as an integrated whole. 1t is hoped that the work described in this report
might in some way stimulate further research in this direction. Then - and perhaps
only then -- we may see computers realizing their full potential in serving non-
specialists -- such as composers.
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11. APPENDIX 1: Synthesizer Register Summary

DEL: Non-zero value implies VOSIM mode. DEL is the average delay, or
time-out period, between instances of ¢ycle-mode.

DEV: The % of random deviation in the value DEL. Is used to control
degree of non-periodicity in VOSIM sounds.

ENV: The current value of the (as yet unscaled) amplitude envelope.
ENV is scaled by VOL, and the product is used to scale the
waveform sample to being output.

F_INC: Used for frequency control. F_INC is the increment added to the
address of the last waveform sample output, in order to derive
that of the next sample.

MOD_INDEX: Controls the amount of modulation that the current oscilla~
tor "'n" effects on oscillator "n+1". When the msb is zerc, mode is
I'M. When the msb is one, mode is waveshaping. '

OP_SEL: Used to select to which of the four audio cutput busses the
oscillator’'s output should be fed. :

VOL: The maximum volume to which the ehvelope (ENV), and conse-
quently waveform, is to be scaled. VOL is logarithmic scale.

WF_SFEL: A value to select from which of the B waveform buflers the
waveform sample is to be selected. Used to change waveforms.
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